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Abstract

These notes are extracted from the book Robotics – Mod-
elling, Plannig and Control (B. Siciliano, L. Sciavicco,
L. Villani, G. Oriolo, Springer, 2009), where all the back-
ground material can be found. More advanced material
and a wider list of further readings can be found in the
chapter “Force Control” (L. Villani, J. De Shutter, in
Springer Handbook of Robotics , B. Siciliano, O. Khatib
(Eds.), Springer, 2008).
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1 Introduction

Control of interaction between a robot manipulator and the
environment is crucial for successful execution of a number
of practical tasks where the robot’s end-effector has to ma-
nipulate an object or perform some operation on a surface.

Typical examples include polishing, deburring, machining
or assembly. A complete classification of possible robot
tasks is practically infeasible in view of the large variety of
cases that may occur, nor would such a classification be re-
ally useful to find a general strategy to interaction control
with the environment.

During the interaction, the environment sets constraints
on the geometric paths that can be followed by the end-
effector. This situation is generally referred to as con-
strained motion. In such a case, the use of a purely motion
control strategy for controlling interaction is a candidate
to fail, as explained below.
Successful execution of an interaction task with the en-

vironment by using motion control could be obtained only
if the task were accurately planned. This would, in turn,
require an accurate model of both the robot manipulator
(kinematics and dynamics) and the environment (geometry
and mechanical features). Manipulator modelling can be
achieved with enough precision, but a detailed description
of the environment is difficult to obtain.
To understand the importance of task planning accuracy,

it is sufficient to observe that to perform a mechanical part
mating with a positional approach, the relative positioning
of the parts should be guaranteed with an accuracy of an
order of magnitude greater than part mechanical tolerance.
Once the absolute position of one part is exactly known,
the manipulator should guide the motion of the other with
the same accuracy.
In practice, the planning errors may give rise to a con-

tact force causing a deviation of the end-effector from the
desired trajectory. On the other hand, the control system
reacts to reduce such deviation. This ultimately leads to
a build-up of the contact force until saturation of the joint
actuators is reached or breakage of the parts in contact
occurs.
The higher the environment stiffness and position con-

trol accuracy, the more likely a situation like the one just
described can occur. This drawback can be overcome if
compliant behaviour is ensured during the interaction.

From the above discussion it should be clear that the
contact force is the quantity describing the state of in-
teraction in the most complete fashion; to this end, the
availability of force measurements is expected to provide
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enhanced performance for controlling interaction.
Interaction control strategies can be grouped in two cat-

egories; those performing indirect force control and those
performing direct force control . The main difference be-
tween the two categories is that the former achieve force
control via motion control, without explicit closure of a
force feedback loop; the latter, instead, offer the possibility
of controlling the contact force to a desired value, thanks to
the closure of a force feedback loop. To the first category
belong compliance control and impedance control which are
treated next. Then, force control and hybrid force/motion
control schemes will follow.

2 Compliance Control

For a detailed analysis of interaction between the manipu-
lator and environment it is worth considering the behaviour
of the system under a position control scheme when con-
tact forces arise. Since these are naturally described in the
operational space, it is convenient to refer to operational
space control schemes.
The manipulator dynamic model in contact with the en-

vironment can be written as

B(q)q̈ +C(q, q̇)q̇ + F q̇ + g(q) = u− JT (q)he (1)

where he is the vector of contact forces exerted by the
manipulator’s end-effector on the environment.1

It is reasonable to predict that, in the case he 6= 0, the
control scheme based on PD control with gravity compen-
sation in the operational space:

u = g(q) + JT
A(q)KP x̃− JT

A(q)KDJA(q)q̇ (2)

no longer ensures that the end-effector reaches its desired
pose xd. In fact, by recalling that x̃ = xd − xe, where xe

denotes the end-effector pose, at the equilibrium it is

JT
A(q)KP x̃ = JT (q)he. (3)

On the assumption of a full-rank Jacobian, one has

x̃ =K−1

P T T
A(xe)he =K

−1

P hA (4)

where hA is the vector of equivalent forces. The expression
in (4) shows that at the equilibrium the manipulator, under
a pose control action, behaves like a generalized spring in
the operational space with compliance K−1

P in respect of
the equivalent force hA. By recalling the expression of the
transformation matrix

TA(φe) =

[
I O

O T (φe)

]
, (5)

depending on the orientation coordinates φe, and assuming
matrixKP to be diagonal, it can be recognized that linear
compliance (due to force components) is independent of the

1In this chapter the term force, in general, is referred to a (6× 1)
vector of force and moment, unless otherwise specified.

configuration, whereas torsional compliance (due to mo-
ment components) does depend on the current end-effector
orientation through the matrix T .
On the other hand, if he ∈ N (JT ), one has x̃ = 0 with

he 6= 0, namely contact forces are completely balanced by
the manipulator mechanical structure; for instance, the an-
thropomorphic manipulator at a shoulder singularity does
not react to any force orthogonal to the plane of the struc-
ture.
Equation (4) can be rewritten in the form

hA =KP x̃ (6)

whereKP represents a stiffness matrix as regards the vec-
tor of the equivalent forces hA. It is worth observing that
the compliant (or stiff) behaviour of the manipulator is
achieved by virtue of the control. This behaviour is termed
active compliance whereas the term passive compliance de-
notes mechanical systems with a prevalent dynamics of
elastic type.
For a better understanding of the interaction between

manipulator and environment, it is necessary to analyze
further the concept of passive compliance.

2.1 Passive Compliance

Consider two elastically coupled rigid bodies R and S and
two reference frames, each attached to one of the two bod-
ies so that at equilibrium, in the absence of interaction
forces and moments, the two frames coincide. Let dxr,s

denote an elementary displacement from the equilibrium
of frame s with respect to frame r, defined as

dxr,s =

[
dor,s
ωr,sdt

]
= vr,sdt (7)

where vr,s = vs − vr is the vector of linear and angular
velocity of frame s with respect to frame r, dor,s = os−or
is the vector corresponding to the translation of the ori-
gin os of frame s with respect to the origin or of frame
r and ωr,sdt, with ωr,s = ωs − ωr, represents the vec-
tor of small rotations of frame s about the axes of frame
r. This elementary displacement is assumed to be equiva-
lently referred to frame r or s because, at the equilibrium,
the two frames coincide; therefore, the reference frame was
not explicitly denoted.
To the displacement dxr,s, coinciding with the deforma-

tion of the spring between R and S, it corresponds the
elastic force

hs =

[
fs

µs

]
=

[
Kf Kc

KT
c Kµ

] [
dor,s
ωr,sdt

]
=Kdxr,s, (8)

applied by body S on the spring and referred equivalently
to one of the two reference frames. In view of the action-
reaction law, the force applied by R has the expression
hr = −hs =Kdxs,r, being dxs,r = −dxr,s.
The (6×6) matrixK represents a stiffness matrix , which

is symmetric and positive semi-definite. The (3 × 3) ma-
tricesKf andKµ are known as translational stiffness and
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rotational stiffness , respectively. The (3× 3) matrix Kc is
known as coupling stiffness . An analogous decomposition
can be made for the compliance matrix C in the mapping

dxr,s = Chs. (9)

In the real elastic systems, matrix Kc is, in general,
non-symmetric. However, there are special devices, such
as the RCC (Remote Centre of Compliance), where Kc

can be symmetric or null. These are elastically compli-
ant mechanical devices, suitably designed to achieve max-
imum decoupling between translation and rotation, that
are interposed between the manipulator last link and the
end-effector. The aim is that of introducing a passive com-
pliance of desired value to facilitate the execution of as-
sembly tasks. For instance, in a peg-in-hole insertion task,
the gripper is provided with a device ensuring high stiffness
along the insertion direction and high compliance along the
other directions. Therefore, in the presence of unavoidable
position displacements from the planned insertion trajec-
tory, contact forces and moments arise which modify the
peg position so as to facilitate insertion.
The inconvenience of such devices is their low versatility

to different operating conditions and generic interaction
tasks, namely, whenever a modification of the compliant
mechanical hardware is required.

2.2 Active Compliance

The aim of compliance control is that of achieving a suit-
able active compliance that can be easily modified acting
on the control software so as to satisfy the requirements of
different interaction tasks.
Notice that the equilibrium equations in (4) and (6) show

that the compliant behaviour with respect to he depends
on the actual end-effector orientation, also for elementary
displacements, so that, in practice, the selection of stiff-
ness parameters is quite difficult. To obtain an equilibrium
equation of the form (8), a different definition of error in
the operational space must be considered.
Let Oe–xeyeze and Od–xdydzd denote the end-effector

frame and the desired frame respectively. The correspond-
ing homogeneous transformation matrices are

T e =

[
Re oe

0T 1

]
T d =

[
Rd od

0T 1

]
,

with obvious meaning of notation. The position and orien-
tation displacement of the end-effector frame with respect
to the desired frame can be expressed in terms of the ho-
mogeneous transformation matrix

T d
e = (T d)

−1T e =

[
Rd

e odd,e
0T 1

]
, (10)

where Rd
e = RT

dRe and odd,e = RT
d (oe − od). The new

error vector in the operational space can be defined as

x̃ = −

[
odd,e,
φd,e

]
(11)

where φd,e is the vector of Euler angles extracted from the

rotation matrixRd
e . The minus sign in (11) depends on the

fact that, for control purposes, the error is usually defined
as the difference between the desired and the measured
quantities.
Computing the time derivative of odd,e and taking into

account
Ṙ = S(ω)R (12)

and
RS(ω)RT = S(Rω), (13)

gives

ȯdd,e = R
T
d (ȯe − ȯd)− S(ω

d
d)R

T
d (oe − od). (14)

On the other hand, computing the time derivative of φd,e

and taking into account

ωe = T (φe)φ̇e, (15)

yields

φ̇d,e = T
−1(φd,e)ω

d
d,e = T

−1(φd,e)R
T
d (ωe − ωd). (16)

Considering that the desired quantities od and Rd are con-
stant, vector ˙̃x can be expressed in the form

˙̃x = −T−1

A (φd,e)

[
RT

d O

O RT
d

]
ve (17)

being ve = [ ȯTe ωT
e ]T = J(q)q̇ the vector of linear and

angular velocity of the end-effector. Therefore

˙̃x = −JAd
(q, x̃)q̇, (18)

where the matrix

JAd
(q, x̃) = T−1

A (φd,e)

[
RT

d O

O RT
d

]
J(q) (19)

represents the analytic Jacobian corresponding to the def-
inition (11) of error in the operational space.
The PD control with gravity compensation analogous

to (2), with the definition (11) of error in the operational
space, has the expression

u = g(q) + JT
Ad

(q, x̃)(KP x̃−KDJAd
(q, x̃)q̇). (20)

Notice that, in the case where the operational space is de-
fined only by the position components, the control laws (2)
and (20) differ only because the position error (and the cor-
responding derivative term) is referred to the base frame
in (2), while it is referred to the desired frame in (20).
In the absence of interaction, the asymptotic stability

of the equilibrium pose corresponding to x̃ = 0, assum-
ing that KP and KD are symmetric and positive definite
matrices, can be proven using the Lyapunov function

V (q̇, x̃) =
1

2
q̇TB(q)q̇ +

1

2
x̃
T
KP x̃ > 0 ∀q̇, x̃ 6= 0,

as for the case of the control law (2).
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In the presence of interaction with the environment, at
the equilibrium it is

JT
Ad

(q)KP x̃ = JT (q)he; (21)

hence, assuming a full-rank Jacobian, the following equal-
ity holds:

hd
e = T−T

A (φd,e)KP x̃. (22)

The above equation, to be compared to the elastic
model (8), must be rewritten in terms of elementary dis-
placements. To this end, taking into account (17) and (7),
it is

dx̃ = ˙̃x
∣∣∣
x̃=0

dt = T−1

A (0)(vdd − v
d
e)dt = T

−1

A (0)dxe,d (23)

where dxe,d is the elementary displacement of the desired
frame with respect to the end-effector frame about the
equilibrium, referred to any of the two frames. The value
of TA(0) depends on the particular choice of Euler an-
gles; in the following, angles XYZ are adopted, for which
TA(0) = I. Therefore, rewriting (22) in terms of elemen-
tary displacements gives

he =KPdxe,d, (24)

which is formally identical to (8), where vectors are as-
sumed to be referred to the desired frame or to the end-
effector frame, equivalently. It follows that matrixKP has
the meaning of an active stiffness corresponding to a gen-
eralized spring acting between the end-effector frame and
the desired frame. Equation (24) can be rewritten in the
equivalent form

dxe,d =K−1

P he, (25)

showing that K−1

P corresponds to an active compliance.
The selection of the elements of matrix KP must be

made taking into account geometry and mechanical fea-
tures of the environment. To this end, assume that the
interaction force between the end-effector and the envi-
ronment derives from a generalized spring acting between
the end-effector frame and a reference frame Or–xryrzr
attached to the environment rest position. Considering an
elementary displacement dxr,e between the two reference
frames, the corresponding elastic force applied by the end-
effector is

he =Kdxr,e (26)

with a stiffness matrix K, where vectors can be referred,
equivalently, to the frame attached to the rest position of
the environment or to the end-effector frame. Typically,
the stiffness matrix is positive semi-definite because, in
general, the interaction forces and moments belong to some
particular directions, spanning R(K).
In view of the model (26), of (24) and of the equality

dxr,e = dxr,d − dxe,d,

the following expression of the contact force at equilibrium
can be found:

he =
(
I6 +KK

−1

P

)−1
Kdxr,d. (27)

Substituting this expression into (25) yields

dxe,d =K−1

P

(
I6 +KK

−1

P

)−1
Kdxr,d, (28)

representing the pose error of the end-effector at the equi-
librium.
Notice that vectors in (27) and (28) can be referred,

equivalently, to the end-effector frame, to the desired frame
or to the frame attached to the environment rest position;
these frames coincide at equilibrium.
The analysis of (28) shows that the end-effector pose

error at the equilibrium depends on the environment rest
position, as well as on the desired pose imposed by the
control system of the manipulator. The interaction of the
two systems (environment and manipulator) is influenced
by the mutual weight of the respective compliance features.

In fact, it is possible to modify the active compliance
K−1

P so that the manipulator dominates the environment
and vice versa. Such a dominance can be specified with
reference to the single directions of the operational space.

For a given environment stiffness K, according to the
prescribed interaction task, one may choose large values of
the elements ofKP for those directions along which the en-
vironment has to comply and small values of the elements
ofKP for those directions along which the manipulator has
to comply. As a consequence, the manipulator pose error
dxe,d tends to zero along the directions where the environ-
ment complies; vice versa, along the directions where the
manipulator complies, the end-effector pose tends to the
rest pose of the environment, namely dxe,d ≃ dxr,d.
Equation (27) gives the value of the contact force at the

equilibrium. This expression reveals that, along the direc-
tions where the manipulator stiffness is much higher than
the environment stiffness, the intensity of the elastic force
mainly depends on the stiffness of the environment and
on the displacement dxr,e between the equilibrium pose of
the end-effector (which practically coincides with the de-
sired pose) and the rest pose of the environment. In the
dual case that the environment stiffness is much higher
than the manipulator stiffness, the intensity of the elas-
tic force mainly depends on the manipulator stiffness and
on the displacement dxe,d between the desired pose and
the equilibrium pose of the end-effector (which practically
coincides with the rest pose of the environment).

To complete the analysis of manipulator compliance in
contact with environment, it is worth considering the ef-
fects of a joint space position control law. With reference
to the control law

u = g(q) +KP q̃ −KDq̇, (29)

in the presence of end-effector contact forces, the equilib-
rium posture is determined by

KP q̃ = JT (q)he (30)

and then

q̃ =K−1

P JT (q)he. (31)
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On the assumption of small displacements from the equilib-
rium, it is reasonable to compute the resulting operational
space displacement as dx̃ ≈ J(q)dq̃, referred to the base
frame. Therefore, in view of (31) it is

dx̃ = J(q)K−1

P JT (q)he, (32)

corresponding to an active compliance referred to the base
frame. Notice that the compliance matrix J(q)K−1

P JT (q)
depends on the manipulator posture, both for the force and
moment components. Also in this case, the occurrence of
manipulator Jacobian singularities is to be analyzed apart.

3 Impedance Control

It is now desired to analyze the interaction of a manipu-
lator with the environment under the action of an inverse
dynamics control in the operational space. With reference
to model (1), consider the control law

u = B(q)y + n(q, q̇),

with n = C(q, q̇)q̇ + F q̇ + g(q). In the presence of end-
effector forces, the controlled manipulator is described by

q̈ = y −B−1(q)JT (q)he (33)

that reveals the existence of a nonlinear coupling term due
to contact forces. Choose y as

y = J−1

A (q)M−1

d

(
Mdẍd +KD

˙̃x+KP x̃−MdJ̇A(q, q̇)q̇
)

(34)
where Md is a positive definite diagonal matrix. Substi-
tuting (34) into (33) and accounting for second-order dif-
ferential kinematics in the form

ẍe = JA(q)q̈ + J̇A(q, q̇)q̇, (35)

yields

Md
¨̃x+KD

˙̃x+KP x̃ =MdB
−1

A (q)hA, (36)

where
BA(q) = J

−T
A (q)B(q)J−1

A (q)

is the inertia matrix of the manipulator in the operational
space; this matrix is configuration-dependent and is posi-
tive definite if JA has full rank.
The expression in (36) establishes a relationship through

a generalized mechanical impedance between the vector of
forcesMdB

−1

A hA and the vector of displacements x̃ in the
operational space. This impedance can be attributed to a
mechanical system characterized by a mass matrix Md, a
damping matrix KD, and a stiffness matrix KP , which
can be used to specify the dynamic behaviour along the
operational space directions.
The presence of B−1

A makes the system coupled. If it is
wished to keep linearity and decoupling during interaction
with the environment, it is then necessary to measure the
contact force; this can be achieved by means of appropriate

force sensors which are usually mounted to the manipulator
wrist. Choosing

u = B(q)y′ + n(q, q̇) + JT (q)he (37)

with
y′ = y − J−1

A (q)M−1

d hA, (38)

and y as in (34), under the assumption of error-free force
measurements, yields

Md
¨̃x+KD

˙̃x+KP x̃ = hA. (39)

It is worth noticing that the addition of the term JThe

in (37) exactly compensates the contact forces and then it
renders the manipulator infinitely stiff as regards the exter-
nal stress. In order to confer a compliant behaviour to the
manipulator, the term −J−1

A M−1

d hA has been introduced
in (38) so that the manipulator can be characterized as a
linear impedance with regard to the equivalent forces hA,
as shown in (39).
The behaviour of the system in (39) at the equilibrium is

analogous to that described by (6); nonetheless, compared
to a control with active compliance specified by K−1

P , the
equation in (39) allows a complete characterization of sys-
tem dynamics through an active impedance specified by
matrices Md, KD, KP . Also in this case, it is not diffi-
cult to recognize that, as regardshe, impedance depends on
the current end-effector orientation through the matrix T .
Therefore, the selection of the impedance parameters be-
comes difficult; moreover, an inadequate behaviour may
occur in the neighbourhood of representation singularities.
To avoid this problem it is sufficient to redesign the

control input y as a function of the operational space er-
ror (11).
Under the assumption that the desired frame Od–xdydzd

is time-varying, in view of (14), (16), the time derivative
of (11) has the expression

˙̃x = −JAd
(q, x̃)q̇ + b(x̃,Rd, ȯd,ωd), (40)

where JAd
is the analytic Jacobian (19) and vector b is

b(x̃,Rd, ȯd,ωd) =

[
RT

d ȯd + S(ω
d
d)o

d
d,e

T−1(φd,e)ω
d
d

]
.

Computing the time derivative of (40) yields

¨̃x = −JAd
q̈ − J̇Ad

q̇ + ḃ, (41)

where, for simplicity, the dependence of the functions on
their arguments was omitted. As a consequence, using (37)
with

y = J−1

Ad
M−1

d

(
KD

˙̃x+KP x̃−MdJ̇Ad
q̇ +Mdḃ− h

d
e

)
,

(42)
yields the equation

Md
¨̃x+KD

˙̃x+KP x̃ = hd
e , (43)

where all the vectors are referred to the desired frame. This
equation represents a linear impedance as regards the force
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Figure 1: Block scheme of impedance control

vector hd
e , independent from the manipulator configura-

tion.

The block scheme representing impedance control is re-
ported in Fig. 1.

Similar to active and passive compliance, the concept
of passive impedance can be introduced if the interaction
force he is generated at the contact with an environment of
proper mass, damping and stiffness. In this case, the sys-
tem of manipulator with environment can be regarded as
a mechanical system constituted by the parallel of the two
impedances, and then its dynamic behaviour is conditioned
by the relative weight between them.

The selection of good impedance parameters, so as to
achieve a satisfactory behaviour during the interaction, is
not an easy task. The closed-loop dynamics along the free
motion directions is different from the closed-loop dynam-
ics along the constrained directions. In this latter case, the
dynamic behaviour depends on the stiffness characteristics
of the environment. The execution of a complex task, in-
volving different types of interaction, may require different
values of impedance parameters.

Notice that impedance control, in the absence of inter-
action or along the directions of free motion, is equivalent
to an inverse dynamics position control. Therefore, for the
selection of the impedance parameters, one also has to take
into account the need to ensure high values to the rejec-
tion factor of the disturbances due to model uncertainties
and to the approximations into the inverse dynamics com-
putation. Such a factor increases proportionally to the
gain matrix KP . Hence the closed-loop behaviour is the
more degraded by disturbances, the more compliant the
impedance control is made (by choosing low values for the
elements of KP ) to keep interaction forces limited.

A possible solution may be that of separating the mo-
tion control problem from the impedance control problem
according to the control scheme represented in Fig. 2. The
scheme is based on the concept of compliant frame, which
is a suitable reference frame describing the ideal behaviour
of the end-effector under impedance control. This frame
is specified by the position of the origin ot, the rotation
matrix Rt, as well as by the liner and angular velocities
and accelerations. These quantities can be computed by

Figure 2: Block scheme of admittance control

integrating the impedance equations in the form

M t
¨̃z +KDt

˙̃z +KPtz̃ = hd
e , (44)

starting from the measurements of the force vector he,
where M t, KDt, KPt are the parameters of a mechani-
cal impedance. In the above equation, vector z̃ represents
the operational space error between the desired frame and
the compliant frame, as defined in (11), using subscript t
in place of subscript e.
The kinematic variables of the compliant frame are then

input to the motion control of inverse dynamics type, com-
puted according to Eqs. (34), (37). In this way, the gains of
the motion control law (34) can be designed so as to guar-
antee a high value of the disturbance rejection factor. On
the other hand, the gains of the impedance control law (44)
can be set so as to guarantee satisfactory behaviour dur-
ing the interaction with the environment. Stability of the
overall system can be ensured provided that the equivalent
bandwidth of the motion control loop is larger than the
equivalent bandwidth of the impedance control loop.
The above control scheme is also known as admittance

control because Equation (44) corresponds to a mechan-
ical admittance being used by the controller to generate
the motion variables (outputs) from the force measure-
ments (inputs). On the other hand, the control defined by
Eqs. (38) or (42) and (37) can be interpreted as a system
producing equivalent end-effector forces (outputs) form the
measurements of the motion variables (inputs), thus corre-
sponding to a mechanical impedance.

4 Constrained Motion

The above schemes implement an indirect force control ,
because the interaction force can be indirectly controlled
by acting on the desired pose of the end-effector assigned
to the motion control system. Interaction between manip-
ulator and environment is anyhow directly influenced by
compliance of the environment and by either compliance
or impedance of the manipulator.
If it is desired to control accurately the contact force, it is

necessary to devise control schemes that allow the desired
interaction force to be directly specified.
However, force control schemes must suitably take into

account the geometric features of the environment and the
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force and position references are to be chosen so that they
are compatible with those features.
A real manipulation task is characterized by complex

contact situations where some directions are subject to
end-effector pose constraints and others are subject to in-
teraction force constraints. During task execution, the na-
ture of constraints may vary substantially.
The need to handle complex contact situations requires

the capacity to specify and perform control of both end-
effector pose and contact force. However, a fundamen-
tal aspect to be considered is that it is not possible to
impose simultaneously arbitrary values of pose and force
along each direction. Moreover, one should ensure that the
reference trajectories for the control system be compatible
with the constraints imposed by the environment during
task execution.
For the above reasons, it is useful to have an analytic de-

scription of the interaction forces, which is very demanding
from a modelling point of view.
A real contact situation is a naturally distributed phe-

nomenon in which the local characteristics of the contact
surfaces as well as the global dynamics of the manipulator
and environment are involved. In detail:

• The environment imposes kinematic constraints on the
end-effector motion, due to one or more contacts of
different type; reaction forces and moments arise when
the end-effector tends to violate the constraints (e.g.,
the case of a robot sliding a rigid tool on a frictionless
rigid surface).

• The end-effector, while being subject to kinematic
constraints, may also exert dynamic forces and mo-
ments on the environment, in the presence of envi-
ronment dynamics (e.g., the case of a robot turning a
crank, when the crank dynamics is relevant, or a robot
pushing against a compliant surface).

• The contact force and moment may depend on the
structural compliance of the robot, due to the finite
stiffness of the joints and links of the manipulator, as
well as of the wrist force/torque sensor or of the tool
(e.g. an end-effector mounted on an RCC device).

• Local deformations of the contact surfaces may occur
during the interaction, producing distributed contact
areas; moreover, static and dynamic friction may be
present in the case of non-ideally smooth contact sur-
faces.

The design of the interaction control is usually carried
out under simplifying assumptions. The following two
cases are considered:

• The robot and the environment are perfectly rigid and
purely kinematics constraints are imposed by the en-
vironment.

• The robot is perfectly rigid, all the compliance of the
system is localized in the environment and the contact

force and moment is approximated by a linear elastic
model.

In both cases, frictionless contact is assumed. It is ob-
vious that these situations are only ideal. However, the
robustness of the control should be able to cope with sit-
uations where some of the ideal assumptions are relaxed.
In that case the control laws may be adapted to deal with
non-ideal characteristics.

4.1 Rigid Environment

The kinematic constraints imposed by the environment can
be represented by a set of algebraic equations that the
variables describing the end-effector position and orienta-
tion must satisfy; since these variables depend on the joint
variables through the direct kinematic equations, the con-
straint equations can also be expressed in the joint space
as

ϕ(q) = 0. (45)

Vector ϕ is an (m × 1) function, with m < n, where n
is the number of joints of the manipulator, assumed to be
nonredundant; without loss of generality, the case n = 6
is considered. The constraints of the form (45), involving
only the generalized coordinates of the system, are known
as holonomic constraints . Computing the time derivative
of (45) yields

Jϕ(q)q̇ = 0, (46)

where Jϕ(q) = ∂ϕ/∂q is the (m × 6) Jacobian of ϕ(q),
known as constraint Jacobian. It is assumed that Jϕ is of
rank m at least locally in a neighborhood of the operating
point; equivalently, the m constraint equations (45) are
assumed to be locally independent.
In the absence of friction, the interaction forces are re-

action forces arising when the end-effector tends to violate
the constraints. These end-effector forces produce reaction
torques at the joints that can be computed using the prin-
ciple of virtual work, taking into account that the work
of the reaction forces, by definition, should be null for all
virtual displacements which satisfy the constraints. Con-
sidering the expression δWτ = τ T δq of the virtual work of
the joint torques τ and that, in view of (46), the virtual
displacement δq satisfy the equation

Jϕ(q)δq = 0,

yields
τ = JT

ϕ(q)λ,

where λ is a suitable (m × 1) vector. The corresponding
forces applied to the end-effector are

he = J
−T (q)τ = Sf (q)λ, (47)

assuming a nonsingular J , with

Sf = J−T (q)JT
ϕ(q). (48)

Notice that Eq. (45) corresponds to a set of bilateral
constraints . This means that the reaction forces (47) act
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so that, during the motion, the end-effector always keeps
contact with the environment, as for the case of a gripper
turning a crank. However, in many applications, the in-
teraction with the environment corresponds to unilateral
constraints . For example, in the case of a tool sliding on a
surface, the reaction forces arise only when the tool pushes
against the surface and not when it tends to detach. How-
ever, Eq. (47) can be still applied under the assumption
that the end-effector, during the motion, never loses con-
tact with the environment.
From (47) it follows that he belongs to the m-

dimensional subspace R(Sf ). The inverse of the linear
transformation (47) can be computed as

λ = S†
f (q)he, (49)

where S†
f denotes a weighted pseudo-inverse of matrix Sf ,

namely
S

†
f = (ST

fWSf )
−1ST

fW , (50)

where W is a symmetric and positive definite weighting
matrix.
Notice that, while subspace R(Sf ) is uniquely defined

by the geometry of the contact, matrix Sf in (48) is not
unique, because constraint equations (45) are not uniquely
defined. Moreover, in general, the physical dimensions of
the elements of vector λ are not homogeneous and the
columns of matrix Sf , as well as of matrix S†

f , do not nec-
essarily represent homogeneous entities. This may produce
invariance problems in the transformation (49) if he repre-
sents a quantity that is subject to disturbances and, as a
result, may have components outsideR(Sf ). In particular,
if a physical unit or a reference frame is changed, matrix
Sf undergoes a transformation; however, the result of (49)
with the transformed pseudo-inverse, in general, depends
on the adopted physical units or reference frame! The rea-
son is that, if he /∈ R(Sf ), the problem of computing λ
from (47) does not have a solution. In this case, Eq. (49)
represents only an approximate solution which minimizes
the norm of vector he − Sf (q)λ weighted by matrix W .
It is evident that the invariance of the solution can be en-
sured only if, in the case that a physical unit or a reference
frame is changed, the weighting matrix is transformed ac-
cordingly. In the ideal case he ∈ R(Sf ), the computation
of the inverse of (47) has a unique solution, defined by (49),
regardless the weighting matrix; hence the invariance prob-
lem does not occur.
In order to guarantee invariance, it is convenient choos-

ing matrix Sf so that its columns represent linearly in-
dependent forces. This implies that (47) gives he as a
linear combination of forces and λ is a dimensionless vec-
tor. Moreover, a physically consistent norm in the space of
forces can be defined based on the quadratic form hT

e Che,
which has the meaning of an elastic energy if C is a posi-
tive definite compliance matrix. Hence, the choiceW = C
can be made for the weighting matrix and, if a physical
unit or a reference frame is changed, the transformations
to be applied to matrices Sf and W can be easily found
on the basis of their physical meaning.

Notice that, for a given Sf , the constraint Jacobian can

be computed from (48) as Jϕ(q) = ST
f J(q); moreover,

if necessary, the constraint equations can be derived by
integrating (46).
In view of ve = J(q)q̇ and (48), equality (46) can be

rewritten in the form

Jϕ(q)J
−1(q)J(q)q̇ = ST

f ve = 0, (51)

which, by virtue of (47), is equivalent to

hT
e ve = 0. (52)

Equation (52) represents the kinetostatic relationship,
known as reciprocity, between the interaction force and mo-
ment he — belonging to the so-called force controlled sub-
space — which coincides with R(Sf ) and the end-effector
linear and angular velocity ve — belonging to the so-called
velocity controlled subspace. The concept of reciprocity ex-
presses the physical fact that, under the assumption of rigid
and frictionless contact, the forces do not produce any work
for all the end-effector displacements which satisfy the con-
straints. This concept is often confused with the concept
of orthogonality, which is meaningless in this case because
velocities and forces are non-homogeneous quantities be-
longing to different vector spaces.
Equations (51), (52) imply that the dimension of the

velocity controlled subspace is 6−m whereas the dimension
of the force controlled subspace is m; moreover, a (6× (6−
m)) matrix Sv can be defined, which satisfies equation

ST
f (q)Sv(q) = O (53)

and such thatR(Sv) represents the velocity controlled sub-
space. Therefore:

ve = Sv(q)ν, (54)

where ν denotes a suitable ((6 −m)× 1) vector.
The inverse of the linear transformation (54) can be com-

puted as

ν = S†
v(q)ve, (55)

where S†
v denotes a suitable weighted pseudo-inverse of ma-

trix Sv, computed as in (50). Notice that, as for the case of
Sf , although the subspace R(Sv) is uniquely defined, the
choice of matrix Sv itself is not unique. Moreover, about
Eq. (55), invariance problems analogous to that consid-
ered for the case of (49) can be observed. In this case, it
is convenient to select the matrix Sv so that its columns
represent a set of independent velocities; moreover, for the
computation of the pseudo-inverse, a norm in the space of
velocities can be defined based on the kinetic energy of a
rigid body or on the elastic energy expressed in terms of
the stiffness matrix K = C−1.
Matrix Sv may also have an interpretation in terms of

Jacobian. In fact, due to the presence of m independent
holonomic constraints (45), the configuration of a manip-
ulator in contact with the environment can be locally de-
scribed in terms of a ((6−m)× 1) vector r of independent
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coordinates. From the implicit function theorem, this vec-
tor can be defined as

r = ψ(q), (56)

where ψ(q) is any ((6−m)× 1) vector function such that
the m components of φ(q) and the 6 −m components of
ψ(q) are linearly independent at least locally in a neigh-
borhood of the operating point. This means that the map-
ping (56), together with the constraint equations (45), is
locally invertible, with inverse defined as

q = ρ(r). (57)

Equation (57) explicitly provides all the joint vectors q
which satisfy the constraint equations (45), for any r ar-
bitrary selected in a neighborhood of the operating point.
Moreover, the vector q̇ that satisfies (46) can be computed
as

q̇ = Jρ(r)ṙ,

where Jρ(r) = ∂ρ/∂r is a (6× (6−m)) full rank Jacobian
matrix. Also, the following equality holds:

Jϕ(q)Jρ(r) = O,

which can be interpreted as a reciprocity condition between
the subspace R(JT

ϕ) of the joint torques τ corresponding
to the reaction forces acting on the end-effector and the
subspace R(Jρ) of the joint velocities q̇ which satisfy the
constraints.
The above equation can be rewritten as

Jϕ(q)J
−1(q)J(q)Jρ(r) = O.

Hence, assuming that J is nonsingular and taking into ac-
count (48), (53), matrix Sv can be computed as

Sv = J(q)Jρ(r). (58)

The matrices Sf , Sv and the corresponding pseudo-

inverse matrices S†
f , S

†
v are known as selection matrices .

These matrices play a fundamental role for task specifi-
cation, since they can be used to assign the desired end-
effector motion and the interaction forces and moments
consistently with the constraints. Also, they are essential
for control synthesis.
To this end, notice that the (6 × 6) matrix P f = SfS

†
f

projects a generic force vector he on the force controlled
subspace R(Sf ). Matrix P f is idempotent, namely P 2

f =
P fP f = P f , and therefore is a projection matrix . More-
over, matrix (I6 −P f ) projects force vector he on the or-
thogonal complement of the force controlled subspace; also,
this matrix, being idempotent, it is a projection matrix.
Similarly, it can be verified that the (6 × 6) matrices

P v = SvS
†
v and (I6 − P v) are projection matrices, pro-

jecting a generic linear and angular velocity vector ve on
the controlled velocity subspace R(Sv) and on its orthog-
onal complement.

4.2 Compliant Environment

In many applications, the interaction forces between the
end-effector and a compliant environment can be approx-
imated by the ideal elastic model of the form (26). If the
stiffness matrix K is positive definite, this model corre-
sponds to a fully constrained case and the environment
deformation coincides with the elementary end-effector dis-
placement. In general, however, the end-effector motion is
only partially constrained by the environment and this sit-
uation can be modelled by introducing a suitable positive
semi-definite stiffness matrix.
This kind of situation, even for a simple case, has been

already considered in previous examples concerning the in-
teraction with an elastically compliant plane. In a gen-
eral case, the stiffness matrix describing the partially con-
strained interaction can be computed by modelling the en-
vironment as a pair of rigid bodies, S and R, connected
through an ideal six-DOF spring, and assuming that the
end-effector may slide on the external surface of body S.
Moreover, two reference frames are introduced, one at-

tached to S and one attached to R. At equilibrium, corre-
sponding to the undeformed spring, the end-effector frame
is assumed to be coincident with the frames attached to
S and R. The selection matrices Sf and Sv and the cor-
responding controlled force and velocity subspaces can be
identified on the basis of the geometry of the contact be-
tween the end-effector and the environment.
Assumed frictionless contact, the interaction force ap-

plied by the end-effector on body S belongs to the force
controlled subspace R(Sf ) and thus

he = Sfλ, (59)

where λ is a (m × 1) vector. Due to the presence of the
generalized spring, the above force causes a deformation of
the environment that can be computed as

dxr,s = Che, (60)

where C is the compliance matrix of the spring between S
and R, assumed to be nonsingular. On the other hand, the
elementary displacement of the end-effector with respect
to the equilibrium pose can be decomposed as

dxr,e = dxv + dxf , (61)

where
dxv = P vdxr,e (62)

is the component belonging to the velocity controlled sub-
space R(Sv), where the end-effector may slide on the en-
vironment, whereas

dxf = (I6 − P v)dxr,e = (I6 − P v)dxr,s (63)

is the component corresponding to the deformation of the
environment. Notice that, in general, P vdxr,e 6= P vdxr,s.

Premultiplying both sides of (61) by matrix ST
f and us-

ing (62), (63), (60), (59) yields

ST
f dxr,e = S

T
f dxr,s = S

T
f CSfλ,
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where the equality ST
f P v = O has been taken into ac-

count. The above equation can be used to compute vector
λ which, replaced into (59), yields

he =K
′dxr,e, (64)

where
K′ = Sf (S

T
f CSf )

−1ST
f (65)

is the positive semi-definite stiffness matrix corresponding
to the partially constrained elastic interaction.
Expression (65) is not invertible. However, using

Eqs. (63), (60), the following equality can be derived:

dxf = C ′he, (66)

where the matrix

C ′ = (I6 − P v)C, (67)

of rank 6−m, has the meaning of compliance matrix.
Notice that contact between the manipulator and the

environment may be compliant along some directions and
rigid along other directions. Therefore, the force control
subspace can be decomposed into two distinct subspaces,
one corresponding to elastic forces and the other corre-
sponding to reaction forces. Matrices K′ and C′ should
be modified accordingly.

5 Natural and Artificial Con-

straints

An interaction task can be assigned in terms of a desired
end-effector force hd and velocity vd. In order to be con-
sistent with the constraints, these vectors must lie in the
force and velocity controlled subspaces respectively. This
can be guaranteed by specifying vectors λd and νd and
computing hd and vd as

hd = Sfλd, vd = Svνd,

where Sf and Sv have to be suitably defined on the basis of
the geometry of the task. Therefore vectors λd and νd will
be termed ‘desired force’ and ‘desired velocity’ respectively.
For many robotic tasks it is possible to define an orthog-

onal reference frame, eventually time-varying, where the
constraints imposed by the environment can be easily iden-
tified, making task specification direct and intuitive. This
reference frame Oc–xcyczc is known as constraint frame.
Two DOFs correspond to each axis of the constraint

frame: one associated with the linear velocity or to the
force along the axis direction and the other associated with
the angular velocity and to the moment along the axis di-
rection.
For a given constraint frame, in the case of rigid envi-

ronment and absence of friction, it can be observed that:

• Along each DOF, the environment imposes to the ma-
nipulator’s end-effector either a velocity constraint —

in the sense that it does not allow translation along a
direction or rotation about an axis — or a force con-
straint — in the sense that it does not allow the appli-
cation of any force along a direction or any torque
about an axis; such constraints are termed natural
constraints since they are determined directly by task
geometry.

• The manipulator can control only the variables which
are not subject to natural constraints; the reference
values for those variables are termed artificial con-
straints since they are imposed with regard to the
strategy for executing the given task.

Notice that the two sets of constraints are complemen-
tary, in that they regard different variables for each DOF.
Also, they allow a complete specification of the task, since
they involve all variables.
In the case of compliant environment, for each DOF

where interaction occurs, one can choose the variable to
control, namely force or velocity, as long as the comple-
mentarity of the constraints is preserved. In case of high
stiffness, it is advisable to choose the force as an artificial
constraint and the velocity as a natural constraint, as for
the case of rigid environment. Vice versa, in the case of
low stiffness, it is convenient to make the opposite choice.
Notice also that, in the presence of friction, forces and mo-
ments also arise along the DOFs corresponding to force
natural constraints.

5.1 Analysis of Tasks

To illustrate description of an interaction task in terms of
natural and artificial constraints as well as to emphasize
the opportunity to use a constraint frame for task speci-
fication, in the following a number of typical case studies
are analyzed.

5.1.1 Sliding on a planar surface

The end-effector manipulation task is the sliding of a pris-
matic object on a planar surface. Task geometry suggests
choosing the constraint frame as attached to the contact
plane with an axis orthogonal to the plane (Fig. 3). Al-
ternatively, the task frame can be chosen with the same
orientation but attached to the object.
Natural constraints can be determined first, assuming

rigid and frictionless contact. Velocity constraints describe
the impossibility to generate a linear velocity along axis
zc and angular velocities along axes xc and yc. Force con-
straints describe the impossibility to exert forces along axes
xc and yc and a moment along axis zc.
The artificial constraints regard the variables not subject

to natural constraints. Hence, with reference to the natu-
ral constraints of force along axes xc, yc and moment along
zc, it is possible to specify artificial constraints for linear
velocity along xc, yc and angular velocity along zc. Simi-
larly, with reference to natural constraints of linear velocity
along axis zc and angular velocity about axes xc and yc,
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Figure 3: Sliding of a prismatic object on a planar surface

it is possible to specify artificial constraints for force along
zc and moments about xc and yc. The set of constraints is
summarized in Table 1.

Table 1: Natural and artificial constraints for the task of
Fig. 3
Natural Artificial

constraints constraints
ȯcz f c

z

ωc
x µc

x

ωc
y µc

y

f c
x ȯcx
f c
y ȯcy

µc
z ωc

z

For this task, the dimension of the force controlled sub-
space is m = 3, while the dimension of the velocity con-
trolled subspace is 6−m = 3. Moreover, matrices Sf and
Sv can be chosen as

Sf =




0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0




Sv =




1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1



.

Notice that, if the constraint frame is chosen attached to
the contact plane, matrices Sf and Sv remain constant
if referred to the base frame but are time-varying if re-
ferred to the end-effector frame. Vice versa, if the con-
straint frame is chosen attached to the object, such matri-
ces are constant if referred to the end-effector frame and
time-varying if referred to the base frame.

In the presence of friction, non-null force and moment
may also arise along the velocity controlled DOFs.

In the case of compliant plane, elastic forces and torques
may be applied along the axis zc and about the axes xc

and yc respectively, corresponding to end-effector displace-
ments along the same DOFs. On the basis of the expres-
sions derived for Sf and Sv, the elements of the stiffness
matrix K′ corresponding to the partially constrained in-
teraction are null with the exception of those of the (3× 3)
block K′

m obtained selecting the rows 3, 4 and 5 of K′.

Figure 4: Insertion of a cylindrical peg in a hole

This block matrix can be computed as

K′
m =



c3,3 c3,4 c3,5
c4,3 c4,4 c4,5
c5,3 c5,4 c5,5



−1

,

where ci,j = cj,i are the elements of the (6 × 6) compliant
matrix C.

5.1.2 Peg-in-hole

The end-effector manipulation task is the insertion of a
cylindrical object (peg) in a hole. Task geometry suggests
choosing the constraint frame with the origin in the centre
of the hole and an axis parallel to the hole axis (Fig. 4).
This frame can be chosen attached either to the peg or to
the hole.

The natural constraints are determined by observing
that it is not possible to generate arbitrary linear and an-
gular velocities along axes xc, yc, nor is it possible to exert
arbitrary force and moment along zc. As a consequence,
the artificial constraints can be used to specify forces and
moments along xc and yc, as well as linear and angular
velocity along zc. Table 2 summarizes the constraints.

Table 2: Natural and artificial constraints for the task of
Fig. 4
Natural Artificial

constraints constraints
ȯcx f c

x

ȯcy f c
y

ωc
x µc

x

ωc
y µc

y

f c
z ȯcz

µc
z ωc

z

Among the variables subject to artificial constraints,
ȯcz 6= 0 describes insertion while the others are typically
null to effectively perform the task.

For this task, the dimension of the force controlled sub-
space is m = 4, while the dimension of the velocity con-
trolled subspace is 6−m = 2. Moreover, matrices Sf and
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Figure 5: Turning a crank

Sv can be expressed as

Sf =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0




Sv =




0 0
0 0
1 0
0 0
0 0
0 1



.

Notice that, if the constraint frame is chosen attached to
the hole, matrices Sf and Sv remain constant if referred to
the base frame but are time-varying if referred to the end-
effector frame. Vice versa, if the constraint frame is chosen
attached to the peg, such matrices are constant if referred
to the end-effector frame and time-varying if referred to
the base frame.

5.1.3 Turning a crank

The end-effector manipulation task is the turning of a
crank. Task geometry suggests choosing the constraint
frame with an axis aligned with the axis of the idle handle
and another axis aligned with the crank lever (Fig. 5). No-
tice that in this case the constraint frame is time-varying.
The natural constraints do not allow the generation of

arbitrary linear velocities along xc, zc and angular veloci-
ties along xc, yc, nor arbitrary force along yc and moment
along zc. As a consequence, the artificial constraints allow
the specification of forces along xc, zc and moments along
xc, yc, as well as a linear velocity along yc and an angular
velocity along zc. The situation is summarized in Table 3.

Table 3: Natural and artificial constraints for task in Fig. 5
Natural Artificial

constraints constraints
ȯcx f c

x

ȯcz f c
z

ωc
x µc

x

ωc
y µc

y

f c
y ȯcy

µc
z ωc

z

Among the variables subject to artificial constraints,
forces and moments are typically null for task execution.

For this task, the dimension of the force controlled sub-
space is m = 4, while the dimension of the velocity con-
trolled subspace is 6−m = 2. Moreover, matrices Sf and
Sv can be expressed as

Sf =




1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




Sv =




0 0
1 0
0 0
0 0
0 0
0 1



,

These matrices are constant in the constraint frame but are
time-varying if referred to the base frame or to the end-
effector frame, because the constraint frame moves with
respect to both these frames during task execution.

6 Hybrid Force/Motion Control

Description of an interaction task between manipulator
and environment in terms of natural constraints and artifi-
cial constraints, expressed with reference to the constraint
frame, suggests a control structure that utilizes the artifi-
cial constraints to specify the objectives of the control sys-
tem so that desired values can be imposed only onto those
variables not subject to natural constraints. In fact, the
control action should not affect those variables constrained
by the environment so as to avoid conflicts between con-
trol and interaction with environment that may lead to
an improper system behaviour. Such a control structure
is termed hybrid force/motion control , since definition of
artificial constraints involves both force and position or
velocity variables.

For the design of hybrid control, it is useful rewriting
the dynamic model of the manipulator with respect to the
end-effector acceleration

v̇e = J(q)q̈ + J̇(q)q̇.

In particular, replacing the joint acceleration

q̈ = −B−1(q)C(q, q̇)q̇ −B−1(q)g(q)

+B−1(q)JT (q)(γe − he)

in the above expression yields

Be(q)v̇e + ne(q, q̇) = γe − he, (68)

where

Be = J−TBJ−1

ne = J−T (Cq̇ + g)−BeJ̇ q̇.

In the following, hybrid force/motion control is presented
first for the case of compliant environment and then for the
case of rigid environment.
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6.1 Compliant Environment

In the case of compliant environment, on the basis of the
decomposition (61) and of Eqs. (62), (66), (59), the follow-
ing expression can be found

dxr,e = P vdxr,e +C
′Sfλ.

Computing the elementary displacements in terms of ve-
locity, in view of (54) and taking into account that frame r
is motionless, the end-effector velocity can be decomposed
as

ve = Svν +C ′Sf λ̇, (69)

where the first term belongs to the velocity control sub-
space and the second term belongs to its orthogonal com-
plement. All the quantities are assumed to be referred to
a common reference frame which, for simplicity, was not
specified.
In the following, the base frame is chosen as the com-

mon reference frame; moreover, the contact geometry and
the compliance matrix are assumed to be constant, namely

Ṡv = O, Ṡf = O and Ċ
′
= O. Therefore, computing the

time derivative of (69) yields the following decomposition
for the end-effector acceleration:

v̇e = Svν̇ +C ′Sf λ̈. (70)

By adopting the inverse dynamics control law

γe = Be(q)α+ ne(q, q̇) + he,

where α is a new control input, in view of (68), the closed-
loop equation is

v̇e = α. (71)

On the basis of the decomposition (70), with the choice

α = Svαν +C ′Sffλ, (72)

a complete decoupling between force control and velocity
control can be achieved. In fact, replacing (70) and (72)
into (71) and premultiplying both sides of the resulting
equation once by S†

v and once by ST
f , the following equal-

ities are obtained:

ν̇ = αν (73)

λ̈ = fλ. (74)

Therefore, the task can be assigned specifying a desired
force, in terms of vector λd(t), and a desired velocity, in
terms of vector νd(t). This control scheme is referred to as
hybrid force/velocity control .
The desired velocity νd can be achieved using the control

law

αν = ν̇d +KPν(νd − ν) +KIν

∫ t

0

(νd(ς)− ν(ς))dς , (75)

whereKPν andKIν are positive definite matrices. Vector
ν can be computed using (55), where the linear and angu-
lar velocity of the end-effector ve is computed from joint
position and velocity measurements.

The desired force λd can be achieved using the control
law

fλ = λ̈d +KDλ(λ̇d − λ̇) +KPλ(λd − λ), (76)

where KDλ and KPλ are positive definite matrices. The
implementation of the above control law requires the com-
putation of vector λ via (49), using the measurements of
end-effector forces and moments he. Also, λ̇ can be com-
puted as

λ̇ = S†
f ḣe

in the ideal case that ḣe is available.
The block scheme of a hybrid force/motion control law

is shown in Fig. 6. The output variables are assumed to be
the vector of end-effector forces and moments he and the
vector of end-effector linear and angular velocities ve.
Since force measurements are often noisy, the use of ḣe

is not feasible. Hence, the feedback of λ̇ is often replaced
by

λ̇ = S†
fK

′J(q)q̇, (77)

whereK′ is the positive semi-definite stiffness matrix (65).
If the contact geometry is known, but only an estimate

of the stiffness/compliance of the environment is available,
control law (72) can be rewritten in the form

α = Svαν + Ĉ
′
Sffλ,

where Ĉ
′
= (I6 − P v)Ĉ and Ĉ is an estimate of C.

In this case, Eq. (73) still holds while, in place of (74),
the following equality can be derived:

λ̈ = Lffλ

where Lf = (ST
fCSf )

−1ST
f ĈSf is a nonsingular matrix.

This implies that the force and velocity control subspaces
remain decoupled and thus velocity control law (75) does
not need to be modified.
Since matrix Lf is unknown, it is not possible to achieve

the same performance of the force control as in the previous
case. Also, if vector λ̇ is computed starting from velocity
measurements using (77) with an estimate of K′, only an

estimate
˙̂
λ is available that, in view of (77), (65), can be

expressed in the form

˙̂
λ = (ST

f ĈSf )
−1ST

f J(q)q̇.

Replacing (69) in the above equation and using (67) yields

˙̂
λ = L−1

f λ̇. (78)

Considering the control law

fλ = −kDλ
˙̂
λ+KPλ(λd − λ), (79)

with a constant λd, the dynamics of the closed-loop system
is

λ̈ + kDλλ̇ +LfKPλλ = LfKPλλd,

where expression (78) has been used. This equation shows
that the equilibrium solution λ = λd is also asymptotically
stable in the presence of an uncertain matrix Lf , with a
suitable choice of gain kDλ and of matrix KPλ.
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Figure 6: Block scheme of a hybrid force/motion control for a compliant environment

6.2 Rigid Environment

In the case of rigid environment, the interaction force and
moment can be written in the form he = Sfλ. Vector
λ can be eliminated from (68) by solving (68) for v̇e and
substituting it into the time derivative of the equality (51).
This yields

λ = Bf (q)
(
ST

fB
−1

e (q)(γe − ne(q, q̇)) + Ṡ
T

f ve

)
, (80)

where Bf = (ST
fB

−1

e Sf )
−1.

Hence, the dynamic model (68) for the manipulator con-
strained by the rigid environment can be rewritten in the
form

Be(q)v̇e + SfBf (q)Ṡ
T

f ve = P (q)(γe − ne(q, q̇)), (81)

with P = I6 − SfBfS
T
fB

−1

e . Notice that PSf = O;
moreover, this matrix is idempotent. Therefore, matrix
P is a (6 × 6) projection matrix that filters out all the
components of the end-effector forces lying in the subspace
R(Sf ).
Equation (80) reveals that vector λ instantaneously de-

pends on the control force γe. Hence, by suitably choosing
γe, it is possible to control directly the m independent
components of the end-effector forces that tend to violate
the constraints; these components can be computed from
λ, using (47).
On the other hand, (81) represents a set of six second

order differential equations whose solution, if initialized on
the constraints, automatically satisfies Eq. (45) at all times.
The reduced-order dynamic model of the constrained sys-

tem is described by 6−m independent equations that are
obtained premultiplying both sides of (81) by matrix ST

v

and substituting the acceleration v̇e with

v̇e = Svν̇ + Ṡvν.

Using the identities (53) and ST
v P = ST

v yields

Bv(q)ν̇ = ST
v

(
γe − ne(q, q̇)−Be(q)Ṡvν

)
, (82)

where Bv = ST
vBeSv. Moreover, expression (80) can be

rewritten as

λ = Bf (q)S
T
fB

−1

e (q)
(
γe − ne(q, q̇)−Be(q)Ṡvν

)
,

(83)

where the identity Ṡ
T

f Sv = −ST
f Ṡv has been exploited.

With reference to (82), consider the choice

γe = Be(q)Svαv + Sffλ + ne(q, q̇) +Be(q)Ṡvν, (84)

where αv and fλ are new control inputs. By replacing (84)
in (82), (83), the following two equations can be found:

ν̇ = αν

λ = fλ,

showing that the inverse dynamics control law (84) allows a
complete decoupling between force and velocity controlled
subspaces.
It is worth noticing that, for the implementation of con-

trol law (84), constraint equations (45) as well as Eq. (56)
defining the vector of the configuration variables for the
constrained system are not required, provided that matri-
ces Sf and Sv are known. These matrices can be com-
puted on the basis of the geometry of the environment or
estimated on-line, using force and velocity measurements.
The task can easily be assigned by specifying a de-

sired force, in terms of vector λd(t), and a desired ve-
locity, in terms of vector νd(t); the resulting scheme of
hybrid force/velocity control is conceptually analogous to
that shown in Fig. 6.
The desired velocity νd can be achieved by setting αν

according to (75), as for the case of compliant environment.
The desired force λd can be achieved by setting

fλ = λd, (85)

but this choice is very sensitive to disturbance forces, since
it contains no force feedback. Alternative choices are

fλ = λd +KPλ(λd − λ), (86)
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or

fλ = λd +KIλ

∫ t

0

(λd(ς)− λ(ς))dς , (87)

whereKPλ andKIλ are suitable positive definite matrices.
The proportional feedback is able to reduce the force error
due to disturbance forces, while the integral action is able
to compensate for constant bias disturbances.
The implementation of force feedback requires the com-

putation of vector λ from the measurement of the end-
effector force and moment he, that can be achieved us-
ing (49).
When Eqs. (45) and (56) are available, matrices Sf and

Sv can be computed according to (48) and (58), respec-
tively. Moreover, a hybrid force/position control can be
designed specifying a desired force λd(t), and a desired po-
sition rd(t).
The force control law can be designed as above, while

the desired position rd can be achieved with the choice

αν = r̈d +KDr(ṙd − ν) +KPr(rd − r), (88)

where KDr and KPr are suitable positive definite matri-
ces. Vector r can be computed from the joint position
measurements using (56).
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control of interaction in the case of dynamic environment
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