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Abstract

These notes are extracted from the book Robotics – Mod-
elling, Plannig and Control (B. Siciliano, L. Sciavicco,
L. Villani, G. Oriolo, Springer, 2009), where all the back-
ground material can be found. More advanced mate-
rial and a wider list of further readings can be found
in the chapter “Visual Servoing and Visual Tracking”
(F. Chaumette, S. Hutchinson, in Springer Handbook of
Robotics , B. Siciliano, O. Khatib (Eds.), Springer, 2008).
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1 Introduction

Vision plays a key role in a robotic system, as it can be used
to obtain geometrical and qualitative information on the
environment where the robot operates, without physical
interaction. Such information may be employed by the
control system at different levels, for the sole task planning
and also for feedback control.

As an example, consider the case of a robot manipula-
tor, equipped with a camera, which has to grasp an object
using a gripper. Through vision the robot may acquire
information capable of identifying the relative pose of the
object with respect to the gripper. This information allows
the control system to plan a trajectory leading the manip-
ulator in an appropriate grasping configuration, computed
on the basis of the pose and of the shape of the object,
from which the closure of the gripper can be commanded.

The planned trajectory can be executed using a sim-
ple motion controller. In this approach, termed look-and-
move, visual measurements are used in open loop, making
the system very sensitive to uncertainties due, for instance,
to poor positioning accuracy of the manipulator or to the
fact that the object may have moved while the gripper
reaches the grasp position.

On the other hand, in vision-based control or visual ser-
voing, the visual measurements are fed back to the control
to compute an appropriate error vector defined between
the current pose of the object and the pose of the manip-
ulator’s end-effector.

A key characteristic of visual servoing, compared to mo-
tion and force control, is the fact that the controlled vari-
ables are not directly measured by the sensor, but are
obtained from the measured quantities through complex
elaborations, based on algorithms of image processing and
computational vision.

A standard monochrome camera simply provides a two-
dimensional matrix of values of light intensity. From this
matrix, the so-called image feature parameters are to be ex-
tracted in real time. The geometric relationships between
one or more two-dimensional views of a scene and the cor-
responding 3D space are the basis of techniques of pose
estimation of objects in the manipulator workspace or of
the end-effector with respect to the surrounding objects. In
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this regard, of fundamental importance is the operation of
camera calibration, which is necessary for calculating the
intrinsic parameters , relating the quantities measured in
the image plane to those referred to the camera frame, and
the extrinsic parameters , relating the latter to quantities
defined in a frame attached to the manipulator.
The vision-based control schemes can be divided into two

categories, namely, those that realize visual servoing in op-
erational space, also termed position-based visual servoing,
and those that realize visual servoing in the image space,
also known as image-based visual servoing. The main dif-
ference lies in the fact that the schemes of the first category
use visual measurements to reconstruct the relative pose of
the object with respect to the robot, or vice versa, while
the schemes of the second category are based on the com-
parison of the feature parameters of the image of the object
between the current and the desired pose. There are also
schemes combining characteristics common to both cate-
gories, that can be classified as hybrid visual servoing.
Another aspect to be considered for vision-based control

is the type of camera (colour or monochrome, resolution,
fixed or variable focal length, CCD or CMOS technology).
In this chapter, only the case of monochrome cameras with
fixed focal length will be considered.
Equally important is the choice of the number of cameras

composing the visual system and their location; this issue
is briefly discussed in the following.

1.1 Configuration of the Visual System

A visual system may consist of only one camera, or two
or more cameras. If more cameras are used to observe the
same object of a scene, it is possible to retrieve informa-
tion about its depth by evaluating its distance with respect
to the visual system. This situation is referred to as 3D
vision or stereo vision, where the term stereo derives from
the Greek and means solid. The human capability of per-
ceiving objects in three dimensions relies on the fact that
the brain receives the same images from two eyes, observ-
ing the same scene from slightly different angles.
It is clear that 3D vision can be achieved even with one

camera, provided that two images of the same object, taken
from two different poses, are available. If only a single im-
age is available, the depth can be estimated on the basis
of certain geometrical characteristics of the object known
in advance. This means that, in many applications, mono-
camera systems are often preferred to multi-camera sys-
tems, because they are cheaper and easier to calibrate, al-
though characterized by lower accuracy.
Another feature that distinguishes visual systems for

robot manipulators is the placement of cameras. For mono-
camera systems there are two options: the fixed configura-
tion, often referred to as eye-to-hand , where the camera is
mounted in a fixed location, and the mobile configuration,
or eye-in-hand , with the camera attached to the robot.
For multi-camera systems, in addition to the mentioned
solutions, it is also possible to consider the hybrid config-
uration, consisting of one or more cameras in eye-to-hand

configuration, and one or more cameras in eye-in-hand con-
figuration.

In the eye-to-hand configuration, the visual system ob-
serves the objects to be manipulated by a fixed pose with
respect to the base frame of the manipulator. The advan-
tage is that the camera field of view does not change during
the execution of the task, implying that the accuracy of
such measurements is, in principle, constant. However, in
certain applications, such as assembly, it is difficult to pre-
vent that the manipulator, moving in the camera field of
view, occludes, in part or in whole, the view of the objects.

In the eye-in-hand configuration, the camera is placed on
the manipulator and can be mounted both before and after
the wrist. In the first case, the camera can observe the end-
effector by a favourable pose and without occlusions caused
by the manipulator arm; in the latter case, the camera is
attached to the end-effector and typically observes only
the object. In both situations, the camera field of view
changes significantly during the motion and this produces a
high variability in the accuracy of measurements. However,
when the end-effector is close to the object, the accuracy
becomes almost constant and is usually higher than that
achievable with eye-to-hand cameras, with the advantage
that occlusions are virtually absent.

Finally, hybrid configuration combines the benefits of the
other two configurations, namely, ensures a good accuracy
throughout the workspace, while avoiding the problems of
occlusions.

A separate category is represented by robotic heads,
which are typically equipped with a stereo vision system
consisting of two cameras mounted on motorized mecha-
nisms that allow for yaw motion, or pan, and pitch motion,
or tilt , hence the name of pan-tilt cameras.

In this chapter, only schemes based on a single eye-in-
hand camera will be considered. The extension of the algo-
rithms to the case of a eye-to-hand camera, or to the case
of multiple cameras, requires only minor modifications.

1.2 Vision Sensors

The task of a camera as a vision sensor is to measure the
intensity of the light reflected by an object. To this end,
a photosensitive element, termed pixel (or photosite), is
employed, which is capable of transforming light energy
into electric energy. Different types of sensors are available
depending on the physical principle exploited to realize the
energy transformation. The most widely used devices are
CCD and CMOS sensors based on the photoelectric effect
of semiconductors.

The camera is a complex system comprising several de-
vices other than the photosensitive sensor, i.e., a shutter ,
a lens and analog preprocessing electronics . The lens is re-
sponsible for focusing the light reflected by the object on
the plane where the photosensitive sensor lies, called the
image plane.

With reference to Fig. 1, consider a frame Oc–xcyczc at-
tached to the camera, whose location with respect to the
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Figure 1: Perspective transformation

base frame is identified by the homogeneous transforma-
tion matrix T b

c. Take a point of the object of coordinates

pc = [ pcx pcy pcz ]
T
; typically, the centroid of the object

is chosen. Then, the coordinate transformation from the
base frame to the camera frame is described as

p̃
c = T c

bp̃, (1)

where p denotes the object position with respect to the
base frame and homogeneous representations of vectors
have been used.
A reference frame can be introduced on the image plane,

whose axesX and Y are parallel to the axes xc and yc of the
camera frame, and the origin is at the intersection of the
optical axis with the image plane, termed principal point.
Due to the refraction phenomenon, the point in the camera
frame is transformed into a point in the image plane via
the perspective transformation, i.e.,

Xf = −
fpcx
pcz

Yf = −
fpcy
pcz

where (Xf , Yf ) are the new coordinates in the frame de-
fined on the image plane, and f is the focal length of the
lens. Notice that these coordinates are expressed in metric
units and the above transformation is singular at pcz = 0.
The presence of the minus sign in the equations of the

perspective transformation is consistent with the fact that
the image of an object appears upside down on the image
plane of the camera. Such an effect can be avoided, for
computational ease, by considering a virtual image plane
positioned before the lens, in correspondence of the plane
zc = f of the camera frame. In this way, the model repre-
sented in Fig. 2 is obtained, which is characterized by the
frontal perspective transformation

Xf =
fpcx
pcz

(2)

Yf =
fpcy
pcz

(3)

Figure 2: Frontal perspective transformation

where, with abuse of notation, the name of the variables
on the virtual plane has not been changed.

These relationships hold only in theory, since the real
lenses are always affected by imperfections, which cause
image quality degradation. Two types of distortions can be
recognized, namely, aberrations and geometric distortion.
The former can be reduced by restricting the light rays to
a small central region of the lens; the effects of the latter
can be compensated on the basis of a suitable model whose
parameters are to be identified.

A visual information is typically elaborated by a digital
processor, and thus the measurement principle is to trans-
form the light intensity I(X,Y ) of each point in the image
plane into a number. It is clear that a spatial sampling
is needed since an infinite number of points in the image
plane exist, as well as a temporal sampling since the image
can change during time. The CCD or CMOS sensors play
the role of spatial samplers, while the shutter in front of
the lens plays the role of the temporal sampler.

The spatial sampling unit is the pixel, and thus the co-
ordinates (X,Y ) of a point in the image plane are to be
expressed in pixels, i.e., (XI , YI). Due to the photosite
finite dimensions, the pixel coordinates of the point are re-
lated to the coordinates in metric units through two scale
factors αx and αy, namely,

XI =
αxfp

c
x

pcz
+X0 (4)

YI =
αyfp

c
y

pcz
+ Y0, (5)

where X0 and Y0 are the offsets which take into account
the position of the origin of the pixel coordinate system
with respect to the optical axis. This nonlinear transfor-
mation can be written in a linear form by resorting to the
homogeneous representation of the point (xI , yI , zI) via the
relationships

XI =
xI

λ

YI =
yI
λ

where λ > 0. As a consequence, (4), (5) can be rewritten
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as 

xI

yI
λ


 = λ



XI

YI

1


 = ΩΠ




pcx
pcy
pcz
1


 (6)

where

Ω =



fαx 0 X0

0 fαy Y0

0 0 1


 (7)

Π =



1 0 0 0
0 1 0 0
0 0 1 0


 . (8)

At this point, the overall transformation from the Carte-
sian space of the observed object to the image space of its
image in pixels is characterized by composing the transfor-
mations in (1), (6) as

Ξ = ΩΠT c
b (9)

which represents the so-called camera calibration matrix.
It is worth pointing out that such a matrix contains intrin-
sic parameters (αx, αy, X0, Y0, f) in Ω depending on the
sensor and lens characteristics as well as extrinsic parame-
ters in T b

c depending on the relative position and orienta-
tion of the camera with respect to the base frame. Several
calibration techniques exist to identify these parameters in
order to compute the transformation between the Carte-
sian space and the image space as accurately as possible.
If the intrinsic parameters of a camera are known, from a

computationally viewpoint, it is convenient to refer to the
normalized coordinates (X,Y ), defined by the normalized
perspective transformation

λ



X
Y
1


 = Π




pcx
pcy
pcz
1


 . (10)

These coordinates are defined in metrical units and coin-
cide with the coordinates (2), (3) in the case when f = 1.
Comparing (6) with (10) yields the invertible transforma-
tion 


XI

YI

1


 = Ω



X
Y
1


 (11)

relating the normalized coordinates to those expressed in
pixels through the matrix of intrinsic parameters.
The last step of the measurement process is to digitize

the analog video signal. The special analog-to-digital con-
verters adopted for video signal acquisition are called frame
grabbers . By connecting the output of the camera to the
frame grabber, the video waveform is sampled and quan-
tized and the values stored in a two-dimensional memory
array representing the spatial sample of the image, known
as framestore; this array is then updated at field or frame
rate.

In the case of CMOS cameras (currently available only
for monochrome images), thanks to CMOS technology
which allows the integration of the analog-to-digital con-
verter in each pixel, the output of the camera is directly
a two-dimensional array, whose elements can be accessed
randomly. Such advantage, with respect to CCD cameras,
leads to the possibility of higher frame rates if only parts
of the entire frame are accessed.
The sequence of steps from image formation to image ac-

quisition described above can be classified as a process of
low-level vision; this includes the extraction of elementary
image features, e.g., centroid and intensity discontinuities.
On the other hand, a robotic system can be considered re-
ally autonomous only if procedures for emulating cognition
are available, e.g., recognizing an observed object among a
set of CAD models stored into a data base. In this case,
the artificial vision process can be referred to as high-level
vision.

2 Pose Estimation

Visual servoing is based on the mapping between the fea-
ture parameters of an object measured in the image plane
of the camera and the operational space variables defining
the relative pose of the object with respect to the camera
or, equivalently, of the camera with respect to the object.
The set of feature parameters of an image defines a (k×

1) vector s, termed feature vector . In the following, to
simplify notation, normalized coordinates (X,Y ) defined
in (10) will be used in place of pixel coordinates (XI , YI) to
define the feature vector. Since only pixel coordinates can
be directly measured, the normalized coordinates should
be computed from pixel coordinates using the inverse of
mapping (11), provided that the intrinsic parameters of
the camera are known.
The feature vector s of a point is defined as

s =

[
X
Y

]
, (12)

while

s̃ =



X
Y
1




denotes its representation in homogeneous coordinates.
Consider a camera, for example an eye-in-hand camera,

and a reference frame Oc–xcyczc attached to the camera;
consider also a reference frame Oo–xoyozo attached to the
object, supposed to be rigid, and let T c

o be the homoge-
neous transformation matrix corresponding to the relative
pose of the object with respect to the camera, defined as

T c
o =

[
Rc

o oc
c,o

0T 1

]
, (13)

with oc
c,o = oc

o − oc
c, where oc

c is the position vector of the
origin of the camera frame with respect to the base frame,
expressed in camera frame, oc

o is the position vector of the
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Figure 3: Reference frames for an eye-in-hand camera

origin of the object frame with respect to the base frame,
expressed in the camera frame, and Rc

o is the rotation ma-
trix of the object frame with respect to the camera frame
(Fig. 3).
The problem to solve is that of computing the elements of

matrix T c
o from the measurements of object feature param-

eters in the camera image plane. To this end, consider n
points of the object and let roo,i = po

i −oo
o, i = 1, . . . , n, de-

note the corresponding position vectors with respect to the
object frame. These quantities are assumed to be known,
for example, from a CAD model of the object. The projec-
tions of these points on the image plane have coordinates

si =

[
Xi

Yi

]
,

and define the feature vector

s =



s1
...
sn


 . (14)

The homogeneous coordinates of the points of the object
with respect to the camera frame can be expressed as

r̃
c
o,i = T c

or̃
o
o,i.

Therefore, using (10), the homogeneous coordinates of the
projections of these points on the image plane are given by

λis̃i = ΠT c
or̃

o
o,i, (15)

with λi > 0.
Assume that n correspondences are available, namely n

equations of the form (15) for n points of the object, whose
coordinates are known both in the object frame and in the
image plane. These correspondences define a system of
equations to be solved for the unknown elements of matrix
T c

o. Computing the solution is a difficult task because, de-
pending on the type and on the number of correspondences,
multiple solutions may exist. This problem, in photogram-
metry, is known as PnP (Perspective-n-Point) problem. In
particular, it can be shown that:

• P3P problem has four solutions, in the case of three
non-collinear points.

• P4P and P5P problems each have at least two solu-
tions, in the case of non-coplanar points, while the
solution is unique in the case of at least four coplanar
points and no triplets of collinear points.

• PnP problem, with n ≥ 6 non-coplanar points, has
only one solution.

The analytic solution to PnP problem is rather labori-
ous. The derivation becomes simpler in some particular
cases as, for example, in the case of coplanar points, but
will not be considered here.
Notice that, to compute T c

o by solving the PnP prob-
lem, it is necessary to know the object geometry but also
the camera intrinsic parameters . The latter are required
for computing normalized coordinates si from pixel coor-
dinates. Moreover, if it is required to compute the object
pose with respect to the base frame (as usually happens
in the case of eye-to-hand cameras) or to the end-effector
frame (as usually happens in the case of eye-in-hand cam-
eras), then it is also necessary to know the camera extrinsic
parameters . In fact, in the first case, it is

T b
o = T b

cT
c
o, (16)

where the elements of matrix T b
c represent the extrinsic

parameters of an eye-to-hand camera; on the other hand,
in the case of eye-in-hand camera, it is

T e
o = T e

cT
c
o, (17)

where the extrinsic parameters matrix T e
c characterize the

pose of the camera with respect to the end-effector frame.

2.1 Interaction Matrix

If the object is in motion with respect to the camera, the
feature vector s is, in general, time-varying. Therefore, it
is possible to define a (k × 1) velocity vector in the image
plane ṡ.
The motion of the object with respect to the camera is

characterized by the relative velocity

vc
c,o =

[
ȯc
c,o

RT
c (ωo − ωc)

]
, (18)

where ȯc
c,o is the time derivative of vector oc

c,o = RT
c (oo −

oc), representing the relative position of the origin of the
object frame with respect to the origin of the camera frame,
while ωo and ωc are the angular velocities of the object
frame and camera frame, respectively.
The equation relating ṡ to vc

c,o is

ṡ = Js(s,T
c
o)v

c
c,o, (19)

where Js is a (k× 6) matrix termed image Jacobian. This
equation is linear but Js depends, in general, on the cur-
rent value of the feature vector s and on the relative pose
of the object with respect to the camera T c

o.
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It is useful to consider also the mapping between the
image plane velocity ṡ, the absolute velocity of the camera
frame

vc
c =

[
RT

c ȯc

RT
c ωc,

]

and the absolute velocity of the object frame

vc
o =

[
RT

c ȯo

RT
c ωo

]
.

To this end, vector ȯc
c,o can be expressed as

ȯc
c,o = RT

c (ȯo − ȯc) + S(oc
c,o)R

T
c ωc,

which allows equality (18) to be rewritten in the compact
form

vc
c,o = vc

o + Γ(oc
c,o)v

c
c, (20)

with

Γ(·) =

[
−I S(·)
O −I

]
.

Therefore, Eq. (19) can be rewritten in the form

ṡ = Jsv
c
o +Lsv

c
c, (21)

where the (k × 6) matrix

Ls = Js(s,T
c
o)Γ(o

c
c,o) (22)

is termed interaction matrix . This matrix, in view of (21),
defines the linear mapping between the absolute velocity of
the camera vc

c and the corresponding image plane velocity
ṡ, in the case that the object is fixed with respect to the
base frame (vc

o = 0).
The analytic expression of the interaction matrix is, in

general, simpler than that of the image Jacobian. The
latter can be computed from the interaction matrix using
the equation

Js(s,T
c
o) = LsΓ(−oc

c,o), (23)

obtained from (22), with Γ−1(oc
c,o) = Γ(−oc

c,o). In the
following, examples of computation of interaction matrix
and image Jacobian for some of the most common cases in
applications are provided.

2.1.1 Interaction matrix of a point

Consider a point P of the object characterized, with respect
to the camera frame, by the vector of coordinates

rc
c = RT

c (p− oc), (24)

where p is the position of point P with respect to the base
frame. Choose vector s of normalized coordinates (12) as
the feature vector of the point. In view of (10), the follow-
ing expression holds:

s = s(rc
c), (25)

with

s(rcc) =
1

zc

[
xc

yc

]
=

[
X

Y

]
, (26)

and rcc = [xc yc zc ]
T . Computing the time derivative

of (25) and using (26) yields

ṡ =
∂s(rc

c)

∂rcc
ṙc
c, (27)

with

∂s(rc
c)

∂rcc
=

1

zc

[
1 0 −xc/zc

0 1 −yc/zc

]
=

1

zc

[
1 0 −X

0 1 −Y

]
.

To compute the interaction matrix, vector ṙcc can be ob-
tained from the time derivative of (24) under the assump-
tion that p is constant:

ṙc
c = −RT

c ȯc + S(rc
c)R

T
c ωc = [−I S(rc

c) ]v
c
c. (28)

Combining Eqs. (27), (28), the following expression of in-
teraction matrix of a point can be found:

Ls(s, zc)=



−

1

zc
0

X

zc
XY −(1 +X2) Y

0 −
1

zc

Y

zc
1 + Y 2 −XY −X


 , (29)

revealing that this matrix depends on the components of
vector s and the sole component zc of vector rcc.
The image Jacobian of a point can be computed using

(23), (29).

2.1.2 Interaction matrix of a set of points

The interaction matrix of a set of n points of the object
P1, . . . Pn can be built by considering the (2n× 1) feature
vector (14). If Lsi(si, zc,i) denotes the interaction matrix
corresponding to point Pi, then the interaction matrix of
the set of points will be the (2n× 6) matrix

Ls(s, zc) =



Ls1(s1, zc,1)

...
Lsn(sn, zc,n)


 ,

with zc = [ z c,1 . . . zc,n]
T .

The image Jacobian of a set of points can be easily com-
puted from the interaction matrix, using (23).

2.2 Algorithmic Solution

The interaction matrix Ls is, in general, a matrix of di-
mension (k×m), where k is equal to the number of feature
parameters of the image and m is the dimension of velocity
vector vc

c. Usually m = 6, but it may happen that m < 6,
when the relative motion of the object with respect to the
camera is constrained.
The image Jacobian Js is also of dimension (k × m),

being related to Ls by mapping (23). Since this mapping
is invertible, the rank of Js coincides with that of Ls.
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In the case that Ls is full rank, by using (19), it is pos-
sible to compute vc

c,o from ṡ.
In particular, if k = m, the velocity vc

c,o can be obtained
using the expression

vc
c,o = Γ(oc

c,o)L
−1

s ṡ, (30)

which requires the computation of the inverse of the inter-
action matrix.
In the case k > m, the interaction matrix has more rows

than columns and Eq. (19) can be solved using a least-
squares technique, whose solution can be written in the
form

vc
c,o = Γ(oc

c,o)(L
T
s Ls)

−1LT
s ṡ, (31)

where (LT
s Ls)

−1LT
s is the left pseudo-inverse of Ls. This

situation is rather frequent in applications, because it per-
mits using interaction matrices with good condition num-
bers.
Finally, in the case k < m, the interaction matrix has

more columns than rows and Eq. (19) admits infinite solu-
tions. This implies that the number of parameters of the
observed image is not sufficient to determine uniquely the
relative motion of the object with respect to the camera.
Hence, there exist relative motions of the object with re-
spect to the camera (or vice versa) that do not produce
variations of the image feature parameters. The veloci-
ties associated with these relative motions belong to the
null subspace of Js, which has the same dimension of the
null subspace of Ls. If the problem is that of computing
uniquely the relative pose of the object with respect to the
camera from feature parameters in the image plane, this
case has no interest.
The pose estimation problem may be cast in a form anal-

ogous to that of inverse kinematics algorithms for robot
manipulators. To this end, it is necessary to represent the
relative pose of the object with respect to the camera using
a minimum number of coordinates, in terms of the (m× 1)
vector

xc,o =

[
oc
c,o

φc,o

]
, (32)

where oc
c,o characterizes the position of the origin of the

object frame with respect to the camera frame and φc,o

characterizes the relative orientation. If Euler angles are
used to represent orientation, then φc,o is the vector of the
angles extracted from rotation matrix Rc

o and the mapping
between vc

c,o and ẋc,o is expressed by

vc
c,o =

[
I O

O T (φc,o)

]
ẋc,o = TA(φc,o)ẋc,o. (33)

Equation (19) can be rewritten in the form

ṡ = JAs
(s,xc,o)ẋc,o, (34)

where the matrix

JAs
(s,xc,o) = LsΓ(−oc

c,o)TA(φc,o) (35)

Figure 4: Pose estimation algorithm based on the inverse
of image Jacobian

has a meaning analogous to that of the analytic Jacobian
of a manipulator.
Equation (34) is the starting point of a numeric inte-

gration algorithm for the computation of xc,o, similar to
inverse kinematics algorithms. Let x̂c,o denote the current
estimate of vector xc,o and let

ŝ = s(x̂c,o)

be the corresponding vector of image feature parameters
computed from the pose specified by x̂c,o; the objective of
this algorithm is the minimization of the error

es = s− ŝ. (36)

Notice that, for the purpose of numerical integration, vec-
tor s is constant while the current estimate ŝ depends on
the current integration time. Therefore, computing the
time derivative of (36) yields

ės = − ˙̂s = −JAs
(ŝ, x̂c,o) ˙̂xc,o. (37)

Assumed that matrix JAs
is square and nonsingular, the

choice
˙̂xc,o = J−1

As
(ŝ, x̂c,o)Kses (38)

leads to the equivalent linear system

ės +Kses = 0. (39)

Therefore, if Ks is a positive definite matrix (usually di-
agonal), system (39) is asymptotically stable and the error
tends to zero with a convergence speed that depends on the
eigenvalues of matrix Ks. The convergence to zero of error
es ensures the asymptotic convergence of the estimate x̂c,o

to the true value xc,o.
The block scheme of the pose estimation algorithm is

shown in Fig. 4, where s(·) denotes the function computing
the feature vector of the ‘virtual’ image corresponding to
the current estimate x̂c,o of the object pose with respect to
the camera. This algorithm can be used as an alternative
to the analytic methods for pose estimation. Obviously,
the convergence properties depend on the choice of the im-
age feature parameters and on the initial value of estimate
x̂c,o(0), which may produce instability problems related to
the singularities of matrix JAs

.
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Notice that, in view of (35), the singularities of matrix
JAs

are both the representation singularities of the orienta-
tion and those of the interaction matrix. The most critical
singularities are those of the interaction matrix, since they
depend on the choice of the image feature parameters.
To separate the effects of the two types of singularities,

it is convenient to compute (38) in two steps, evaluating
first

v̂
c
c,o = Γ(oc

c,o)L
−1

s Kses, (40)

and then
˙̂xc,o = T−1

A (φc,o)v̂
c
c,o. (41)

Assumed to work far from representation singularities,
the problem of singularities of Ls can be overcome by using
a number k of feature parameters greater than the mini-
mum required m. This choice also allows a reduction of
the effects of measurement noise. The resulting estimation
algorithm requires the use of the left pseudo-inverse of Ls

in place of the inverse, namely

v̂
c
c,o = Γ(oc

c,o)(L
T
s Ls)

−1LT
s Kses (42)

in place of (40). The convergence of error (36) can be
shown using the direct Lyapunov method based on the pos-
itive definite function

V (es) =
1

2
eTs Kses > 0 ∀es 6= 0.

Computing the time derivative of this function, and us-
ing (37), (35), (41), (42), yields

V̇ = −eTs KsLs(L
T
s Ls)

−1LT
s Kses,

which is negative semi-definite because N (LT
s ) 6= Ø, LT

s

being a matrix with more columns than rows. Therefore,
the system is stable but not asymptotically stable. This
implies that the error is bounded, but in some cases the
algorithm can get stuck with es 6= 0 and Kses ∈ N (LT

s ).
Notice that the pose estimation methods based on in-

verse Jacobian are as efficient in terms of accuracy, speed
of convergence and computational load, as the initial esti-
mate x̂c,o(0) is close to the true value xc,o. Therefore, these
methods are mainly adopted for real-time ‘visual tracking’
applications, where the estimate on an image taken at time
t̄ is computed assuming as initial value the estimate com-
puted on the image taken at time t̄− T , T being the sam-
pling time of the image (multiple of the sampling time of
the numerical integration algorithm).

3 Stereo Vision

The bidimensional image provided by a camera does not
give any explicit information on depth, namely, the dis-
tance of the observed object from the camera. This in-
formation can be recovered in an indirect way from the
geometric model of the object, assumed to be known.
On the other hand, the depth of a point can be directly

computed in the case that two images of the same scene are

available, taken from two different points of view. The two
images can be obtained using two cameras, or sequentially,
using a moving camera. These cases are referred to as
stereo vision.
In the framework of stereo vision, two fundamental prob-

lems can be devised. The first is the correspondence prob-
lem, which consists of the identification of the points of the
two images that are projections of the same point of the
scene. These points are termed conjugate or correspond-
ing. This problem is not easy to solve, and the solution
is based on the existence of geometric constraints between
two images of the same point, besides the fact that some
details of the scene appear to be similar in the two images.
The second problem is that of 3D reconstruction which,

in general, consists of the computation of the relative pose
of the cameras (calibrated and not) and thus, starting from
this pose, the position in the 3D space of the points of the
observed object.
An interesting case of application of 3D reconstruction

occurs when the feature points of the observed object lie on
the same plane. This geometric property represents a con-
straint between the projections of each point on the image
plane of the two cameras, known as planar homography.

3.1 3D Reconstruction from Planar Ho-

mography

Assume that two cameras are available, with respective
reference frames, denoted as 1 and 2. Moreover, let o1

1,2

denote the position vector and R1

2
the rotation matrix of

Frame 2 with respect to Frame 1 and let T 1

2
be the corre-

sponding homogeneous transformation matrix. The coor-
dinates of a point P expressed in the two frames are related
by equation

p1 = o1

1,2 +R1

2
p2. (43)

Let n2 denote the unit vector orthogonal to the plane
containing the feature points and d2 > 0 the distance of
the plane from the origin of Frame 2. By virtue of sim-
ple geometric considerations, the following equation can
be derived:

1

d2
n2Tp2 = 1 (44)

which defines the set of points p2 belonging to the plane.
In view of the above equality, Eq. (43) can be rewritten in
the form

p1 = Hp2, (45)

with

H = R1

2
+

1

d2
o1

1,2n
2T . (46)

Let s1 and s2 be the coordinates of the projections of P
on the image planes of the cameras; in view of (10) it is

λis̃i = Πp̃
i = pi, i = 1, 2. (47)

Replacing (47) into (45) yields

s̃1 = λHs̃2, (48)
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Figure 5: General block scheme of position-based visual
servoing

where λ = λ2/λ1 > 0 is an arbitrary constant. Premulti-
plication of both sides of (48) by S(s̃1) yields the equality

S(s̃1)Hs̃2 = 0, (49)

which is valid for the projections of all the points of the
plane defined by (44). This equation is known a planar
homography, defined by matrix H .
Using a derivation similar to that adopted for solving the

PnP problem, it is possible to compute numerically matrix
ζH , up to a scaling factor ζ, starting from the coordinates
of n points of the plane, with n ≥ 4.
The value of the scaling factor ζ can be computed using

a numerical algorithm based on expression (46) of matrix
H; once H is known, it is possible to compute quantities
R1

2
, o1

1,2/d2 and n2 in (46) — actually, it can be shown
that two admissible solutions exist.
This result is of a certain relevance for visual servoing

applications. For example, in the case of a camera in mo-
tion with respect to the object, if Frames 1 and 2 represent
the poses of the camera in two different time instants, the
computation of H with decomposition (46) can be used to
evaluate the orientation displacement of the camera frame
and the position displacement of the origin, the latter de-
fined up to a scaling factor d2. This information can be
achieved without knowing the object geometry, as long as
the feature points all belong to the same plane.

4 The Visual Servoing Problem

Visual measurements allow a robot to collect information
on the surrounding environment. In the case of robot ma-
nipulators, such information is typically used to compute
the end-effector pose with respect to an object observed by
the camera. The objective of visual servoing is to ensure
that the end-effector, on the basis of visual measurements
elaborated in real time, reaches and keeps a (constant or
time-varying) desired pose with respect to the observed
object.
It is worth remarking that the direct measurements pro-

vided by the visual system are concerned with feature pa-
rameters in the image plane, while the robotic task is de-
fined in the operational space, in terms of the relative pose

Figure 6: General block scheme of image-based visual ser-
voing

of the end-effector with respect to the object. This fact nat-
urally leads to considering two kinds of control approaches,
illustrated by the block schemes of Figs. 5 and 6, namely
position-based visual servoing, also termed visual servoing
in the operational space, and image-based visual servoing,
also termed visual servoing in the image space. In these
schemes, the case of eye-in-hand camera is considered; for
eye-to-hand cameras, similar schemes can be adopted.

The position-based visual servoing approach is concep-
tually similar to the operational space control. The main
difference is that feedback is based on the real-time esti-
mation of the pose of the observed object with respect to
the camera using visual measurements. Estimation can be
performed analytically or using iterative numerical algo-
rithms. Its conceptual advantage regards the possibility
of acting directly on operational space variables. There-
fore, the control parameters can be selected on the basis
of suitable specifications imposed to the time response of
the end-effector motion variables, both at steady state and
during the transient. The drawback of this approach is
that, due to the absence of direct control of the image fea-
tures, the object may exit from the camera field of view
during the transient or as a consequence of planning er-
rors; hence, the feedback loop turns out to be open due to
lack of visual measurements and instability may occur.

In the image-space visual servoing approach, the control
action is computed on the basis of the error defined as the
difference between the value of the image feature param-
eters in the desired configuration — computed using per-
spective transformation or directly measured with the cam-
era in the desired pose — and the value of the parameters
measured with the camera in the current pose. The con-
ceptual advantage of this solution regards the fact that the
real-time estimate of the pose of the object with respect to
the camera is not required. Moreover, since the control acts
directly in the image feature parameters, it is possible to
keep the object within the camera field of view during the
motion. However, due to the nonlinearity of the mapping
between the image feature parameters and the operational
space variables, singular configurations may occur, which
cause instability or saturation of the control action. Also,
the end-effector trajectories cannot be easily predicted in
advance and may produce collisions with obstacles or joint
limits violation.

To compare the two control strategies it is also worth
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Figure 7: Block scheme of position-based visual servoing of PD type with gravity compensation

considering the operating conditions. Of particular impor-
tance is the issue of camera calibration. It is easy to under-
stand that position-based visual servoing is more sensitive
to camera calibration errors compared to image-based vi-
sual servoing. In fact, for the first approach, the presence of
uncertainties on calibration parameters, both intrinsic and
extrinsic, produces errors on the estimate of operational
space variables that may be seen as an external disturbance
acting on the feedback path of the control loop, where dis-
turbance rejection capability is low. On the other hand, in
the image-based visual servoing approach, the quantities
used for the computation of the control action are directly
defined in the image plane and measured in pixel units;
moreover, the desired value of the feature parameters is
measured using the camera. This implies that the uncer-
tainty affecting calibration parameters can be seen as a
disturbance acting on the forward path of the control loop,
where disturbance rejection capability is high.
A further aspect to analyze concerns knowledge of the ge-

ometric model of the object. It is evident that, for position-
based visual servoing, the object geometry must be known
if only one camera is used, because it is necessary for pose
estimation, while it may be unknown when a stereo cam-
era system is employed. On the other hand, image-based
visual servoing does not require, in principle, knowledge of
the object geometry, even for mono-camera systems.
On the above premises, in the following, the main

position-based and image-based visual servoing schemes
are illustrated. For both approaches, the problem of regu-
lation to a constant set-point is presented and the object is
assumed to be fixed with respect to the base frame. With-
out loss of generality, the case of a single calibrated camera,
mounted on the manipulator’s end-effector, is considered
(see Fig. 3); moreover, the end-effector frame is chosen so
as to coincide with the camera frame.

5 Position-based Visual Servoing

In position-based visual servoing schemes, visual measure-
ments are used to estimate in real time the homogeneous
transformation matrix T c

o, representing the relative pose of
the object frame with respect to the camera frame. From
matrix T c

o, the (m× 1) vector of independent coordinates
xc,o, defined in (32), can be extracted.

Assumed that the object is fixed with respect to the
base frame, the position-based visual servoing problem can
be formulated by imposing a desired value to the relative
pose of the object frame with respect to the camera frame.
This quantity can be specified in terms of homogeneous
transformation matrix T d

o, where superscript d denotes the
desired pose of the camera frame. From this matrix, the
(m× 1) operational space vector xd,o can be extracted.

Matrices T c
o and T d

o can be used to obtain the homoge-
neous transformation matrix

T d
c = T d

o(T
c
o)

−1 =

[
Rd

c od
d,c

0T 1

]
, (50)

expressing the position and orientation displacement of the
camera frame in the current pose with respect to the de-
sired pose. From this matrix, a suitable error vector in the
operational space can be computed, defined as

x̃ = −

[
od
d,c

φd,c

]
, (51)

where φd,c is the vector of the Euler angles extracted from

rotation matrix Rd
c . Vector x̃ does not depend on the

object pose and represents the error between the desired
pose and the current pose of the camera frame. It is worth
observing that this vector does not coincide with the differ-
ence between xd,o and xc,o, but it can be computed from
the corresponding homogeneous transformation matrices,
using (50), (51).

The control has to be designed so that the operational
space error x̃ tends to zero asymptotically.

Notice that, for the choice of the set point xd,o, the
knowledge of the object pose is not required. However,
the control objective can be satisfied provided that the de-
sired pose of the camera frame with respect to the base
frame, corresponding to the homogeneous transformation
matrix

T d = T c(T
d
c)

−1 =

[
Rd od

0T 1

]
, (52)

belongs to the dexterous workspace of the manipulator.
If the object is fixed with respect to the base frame, this
matrix is constant.
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Figure 8: Block scheme of resolved-velocity position-based visual servoing

5.1 PD Control with Gravity Compensa-

tion

Position-based visual servoing can be implemented using
PD control with gravity compensation, suitably modified
with respect to that used for motion control.
Computing the time derivative of (51), for the position

part, gives
ȯd
d,c = ȯd

c − ȯd
d = RT

d ȯc,

while, for the orientation part, it gives

φ̇d,c = T−1(φd,c)ω
d
d,c = T−1(φd,c)R

T
dωc.

To compute the above expressions, equalities ȯd
d = 0 and

ωd
d = 0 have been taken into account, observing that od

and Rd are constant. Therefore, ˙̃x has the expression

˙̃x = −T−1

A (φd,c)

[
RT

d O

O RT
d

]
vc. (53)

Since the end-effector frame and the camera frame coincide,
the following equality holds:

˙̃x = −JAd
(q, x̃)q̇, (54)

where the matrix

JAd
(q, x̃) = T−1

A (φd,c)

[
RT

d O

O RT
d

]
J(q) (55)

has the meaning of analytic Jacobian of the manipulator
in the operational space.
Position-based visual servoing of PD type with gravity

compensation has the expression

u = g(q) + JT
Ad

(q, x̃)(KP x̃−KDJAd
(q, x̃)q̇). (56)

The asymptotic stability of the equilibrium pose corre-
sponding to x̃ = 0, under the assumption of symmetric
and positive definite matrices KP , KD, can be proven us-
ing the Lyapunov function

V (q̇, x̃) =
1

2
q̇TB(q)q̇ +

1

2
x̃
T
KP x̃ > 0 ∀q̇, x̃ 6= 0.

Notice that, for the computation of control law (56), the
estimation of xc,o and the measurements of q and q̇ are
required. Moreover, the derivative term can also be chosen
as −KDq̇.
The block scheme of position-based visual servoing of PD

type with gravity compensation is shown in Fig. 7. Notice
that the sum block computing error x̃ and that computing
the output of the controlled system have a purely concep-
tual meaning and do not correspond to algebraic sums.

5.2 Resolved-velocity Control

The information deriving from visual measurements is
computed at a frequency lower or equal to the camera
frame rate. This quantity, especially for CCD cameras,
is at least of one order of magnitude lower than the typical
frequencies used for motion control of robot manipulators.
As a consequence, in the digital implementation of control
law (56), to preserve stability of the closed-loop system,
the control gains must be set to values much lower than
those typically used for motion control; therefore, the per-
formance of the closed-loop system in terms of speed of
convergence and disturbance rejection capability turns out
to be poor.
This problem can be avoided assuming that the manip-

ulator is equipped with a high-gain motion controller in
the joint space or in the operational space. Neglecting the
effects on the tracking errors deriving from manipulator dy-
namics and disturbances, the controlled manipulator can
be considered as an ideal positioning device. This implies
that, in the case of joint space motion control, the following
equality holds:

q(t) ≈ qr(t), (57)

qr(t) being the imposed reference trajectory for the joint
variables.
Therefore, visual servoing can be achieved by computing

the trajectory qr(t) on the basis of visual measurements, so
that the operational space tracking error (51) goes asymp-
totically to zero.
To this end, Eq. (54) suggests the following choice for

the joint space reference velocity:

q̇r = J−1

Ad
(qr, x̃)Kx̃ (58)

which, replaced in (54), by virtue of equality (57), yields
the linear equation

˙̃x+Kx̃ = 0. (59)

This equality, for a positive definite matrix K, implies
that the operational space error tends to zero asymptot-
ically with a convergence of exponential type and speed
depending on the eigenvalues of matrix K; the larger the
eigenvalues, the faster the convergence.
The above scheme is termed resolved-velocity control in

the operational space, because it is based on the computa-
tion of velocity q̇r from the operational space error. Trajec-
tory qr(t) is computed from (58) via a simple integration.
The block scheme of resolved-velocity position-based vi-

sual servoing is reported in Fig. 8. Also in this case, the
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Figure 9: Block scheme of image-based visual servoing of PD type with gravity compensation

sum block computing the error x̃ and that computing the
output of the scheme have a purely conceptual meaning
and do not correspond to algebraic sums.
Notice that the choice of K influences the transient be-

haviour of the trajectory of the camera frame, which is the
solution to the differential equation (59). If K is a diago-
nal matrix with the same gains for the positional part, the
origin of the camera frame follows the line segment con-
necting the initial position to the desired position. On the
other hand, the orientation trajectory depends on the par-
ticular choice of Euler angles and, more in general, of the
orientation error. The possibility of knowing in advance
the trajectory of the camera is important because, during
the motion, the object may exit from the camera field of
view, making visual measurements unavailable.

6 Image-based Visual Servoing

If the object is fixed with respect to the base frame, image-
based visual servoing can be formulated by stipulating that
the vector of the object feature parameters has a desired
constant value sd corresponding to the desired pose of the
camera. Therefore, it is implicitly assumed that a desired
pose xd,o exists so that the camera pose belongs to the
dexterous workspace of the manipulator and

sd = s(xd,o). (60)

Moreover, xd,o is supposed to be unique. To this end, the
feature parameters can be chosen as the coordinates of n
points of the object, with n ≥ 4 for coplanar points (and no
triplets of collinear points) or n ≥ 6 in case of non-coplanar
points. Notice that, if the operational space dimension is
m < 6, as for the case of SCARA manipulator, a reduced
number of points can be used.

The interaction matrix Ls(s, zc) depends on variables
s and zc with zc = [ z c,1 . . . zc,n]

T , zc,i being the third
coordinate of the generic feature point of the object.

It is worth noticing that the task is assigned directly in
terms of feature vector sd, while pose xd,o does not need
to be known. In fact, sd can be computed by measuring
the feature parameters when the object is in the desired
pose with respect to the camera.

The control law must be designed so as to guarantee that
the image space error

es = sd − s (61)

tends asymptotically to zero.

6.1 PD Control with Gravity Compensa-

tion

Image-based visual servoing can be implemented using a
PD control with gravity compensation defined on the basis
of the image space error.
To this end, consider the following positive definite

quadratic form as Lypapunov function candidate:

V (q̇, es) =
1

2
q̇TB(q)q +

1

2
eTs KPses > 0 ∀q̇, es 6= 0,

(62)
with KPs symmetric and positive definite (k × k) matrix.
Computing the time derivative of (62) and taking into

account the expression of the joint space dynamic model
of the manipulator and the skew-symmetry of Ḃ(q) −
2C(q, q̇) yields

V̇ = −q̇TF q̇ + q̇T (u − g(q)) + ėTs KPses. (63)

Since ṡd = 0 and the object is fixed with respect to the
base frame, the following equality holds:

ės = −ṡ = −JL(s, zc, q)q̇, (64)

where

JL(s, zc, q) = Ls(s, zc)

[
RT

c O

O RT
c

]
J(q), (65)

the camera frame and the end-effector frame being coinci-
dent.
Therefore, with the choice

u = g(q) + JT
L(s, zc, q) (KPses −KDsJL(s, zc, q)q̇) ,

(66)
where KDs is a symmetric and positive definite (k × k)
matrix, Eq. (63) becomes

V̇ = −q̇TF q̇ − q̇TJT
LKDsJLq̇. (67)
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Figure 10: Block scheme of resolved-velocity image-based visual servoing

Control law (66) includes a nonlinear compensation ac-
tion of gravitational forces in the joint space and a linear
PD action in the image space. The last term, in view
of (64), corresponds to a derivative action in the image
space and has been added to increase damping. The re-
sulting block scheme is reported in Fig. 9.
The direct measurement of ṡ would permit the computa-

tion of the derivative term as −KDsṡ; this measurement,
however, is not available. As an alternative, the derivative
term can simply be set as −KDq̇, with KD symmetric and
positive definite (n× n) matrix.
Equation (67) reveals that, for all trajectories of the sys-

tem, the Lyapunov function decreases until q̇ 6= 0. There-
fore the system reaches an equilibrium state, characterized
by

JT
L(s, zc, q)KPses = 0. (68)

Equations (68), (65) show that, if the interaction matrix
and the geometric Jacobian of the manipulator are full
rank, then es = 0, which is the sought result.
Notice that control law (66) requires not only the mea-

surement of s but also the computation of vector zc which,
in the image-based visual servoing philosophy, should be
avoided. In some applications zc is known with good ap-
proximation, as in the case that the relative motion of the
camera with respect to the object belongs to a plane. Al-
ternatively, estimated or constant values can be used for
zc, as the value in the initial configuration or that in the
desired configuration. This is equivalent to using an esti-
mate L̂s of the interaction matrix. In such cases, however,
the stability proof becomes much more complex.

6.2 Resolved-velocity Control

The concept of resolved-velocity control can easily be ex-
tended to the image space. In such a case, Eq. (64) suggests
the following choice of the reference velocity in joint space

q̇r = J−1

L (s, zc, qr)Kses, (69)

under the assumption of invertible matrix JL. This control
law, replaced in (64), yields the linear equation

ės +Kses = 0. (70)

Therefore, if Ks is a positive definite matrix, Eq. (70) is
asymptotically stable and error es tends asymptotically to

zero with convergence of exponential type and speed de-
pending on the eigenvalues of matrix Ks. The convergence
to zero of the image space error es ensures the asymptotic
convergence of xc,o to the desired pose xd,o.
The block scheme of resolved-velocity image-based visual

servoing is shown in Fig. 10.
Notice that this control scheme requires the computa-

tion of the inverse of matrix JL; therefore it is affected by
problems related to the singularities of this matrix which,
in view of (65), are both those of the geometric Jacobian
and those of the interaction matrix. The most critical sin-
gularities are those of the interaction matrix, since they
depend on the choice of the image feature parameters.
Therefore, it is convenient to compute control law (69)

in two steps. The first step is the computation of vector

vc
r = L−1

s (s, zc)Kses. (71)

The second step is the computation of the joint space ref-
erence velocity using the relationship

q̇r = J−1(q)

[
Rc O

O Rc

]
vc
r. (72)

Far from the kinematic singularities of the manipulator,
the problem of the singularities of the interaction matrix
can be overcome by using a number k of feature parameters
greater than the minimum requiredm, similarly to the case
considered in Sect. 2.2. The control law can be modified
by using the left pseudo-inverse of interaction matrix Ls

in place of the inverse, namely

vc
r = (LT

s Ls)
−1LT

s Kses (73)

in place of (71). Stability of the closed-loop system with
control law (72), (73) can be shown using the direct Lya-
punov method based on the positive definite function

V (es) =
1

2
eTs Kses > 0 ∀es 6= 0.

Computing the time derivative of this function and taking
into account (64), (65), (72), (73), yields

V̇ = −eTs KsLs(L
T
s Ls)

−1LT
s Kses

which is negative semi-definite because N (LT
s ) 6= Ø, LT

s

being a matrix with more columns than rows. Therefore,
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the closed-loop system is stable but not asymptotically sta-
ble. This implies that the error is bounded, but in some
cases the system may reach an equilibrium with es 6= 0

and Kses ∈ N (LT
s ).

Another problem connected with the implementation of
control law (71) or (73) and (72) depends on the fact
that the computation of interaction matrix Ls requires
knowledge of zc. Similar to Sect. 6.1, this problem can

be solved by using an estimate of matrix L̂
−1

s (or of its
pseudo-inverse). In this case, the Lypapunov method can
be used to prove that the control scheme remains stable

provided that matrix LsL̂
−1

s is positive definite. Notice
that zc is the only information depending on object geom-
etry. Therefore, it can also be seen that image-based visual
servoing, in the case that only one camera is used, does not
require exact knowledge of object geometry.

The choice of the elements of matrix Ks influences the
trajectories of the feature parameters, which are solution
to differential equation (70). In the case of feature points,
if a diagonal matrix Ks with equal elements is set, the
projections of these points on the image plane will follow
line segments. The corresponding camera motion, how-
ever, cannot be easily predicted, because of the nonlin-
earity of the mapping between image plane variables and
operational space variables.

7 Hybrid Visual Servoing

An approach which combines the benefits of position-based
and image-based visual servoing is hybrid visual servoing.
The name stems from the fact that the control error is de-
fined in the operational space for some components and in
the image space for the others. This implies that a desired
motion can be specified, at least partially, in the oper-
ational space so that the camera trajectory during visual
servoing can be predicted in advance for some components.
On the other hand, the presence of error components in the
image space helps keep the image features in the camera
field of view, which is a difficult task in position-based ap-
proaches.

Hybrid visual servoing requires the estimation of some
operational space variables. Assume that the object has
a planar surface where at least four feature points, and
no triplets of collinear points, can be selected. Using the
coordinates of these points in the camera image plane, both
in the current and in the desired pose of the camera frame,
it is possible to compute the planar homography H as
described in Sect. 3.1. Notice that, for this computation,
knowledge of the current and the desired camera pose is
not required, provided that the feature vectors s and sd
are known.

In view of (46), assuming that Frame 1 coincides with
the camera frame in the current pose and Frame 2 coincides
with the camera frame in the desired pose, the following

equality holds:

H = Rc
d +

1

dd
oc
c,dn

dT ,

where Rc
d is the rotation matrix between the desired ori-

entation and the current orientation of the camera frame,
oc
c,d is the position vector of the origin of the camera frame

in the desired pose with respect to the current pose, nd is
the unit vector normal to the plane containing the feature
points, and dd is the distance between this plane and the
origin of the camera frame in the desired pose. The quan-
tities Rc

d, n
d, (1/dd)o

c
c,d, in the current camera pose, can

be computed at each sampling time from matrix H .
Adopting a resolved-velocity approach, the control ob-

jective consists of computing the reference absolute veloc-
ity of the camera frame

vc
r =

[
νc
r

ωc
r

]

from a suitably defined error vector.

To this end, the orientation error between the desired
and the current camera pose can be computed from ma-
trix Rc

d, as for position-based visual servoing. If φc,d de-
notes the vector of the Euler angles extracted from Rc

d, the
control vector ωc

r can be chosen as

ωc
r = −T (φc,d)Koφc,d, (74)

whereKo is a (3×3) matrix. With this choice, the equation
of the orientation error has the form

φ̇c,d +Koφc,d = 0. (75)

Equation (75), if Ko is a symmetric and positive definite
matrix, implies that the orientation error tends to zero
asymptotically with convergence of exponential type and
speed depending on the eigenvalues of matrix Ko.

The control vector νc
r should be selected so that the

positional part of the error between the desired and the
current camera pose converges to zero. The position er-
ror could be defined as the difference of the coordinates
of a point of the object in the desired camera frame
rcd = [xd yd zd ]

T and those in the current camera frame
rcc = [xc yc zc ]

T , namely rcd − rc
c. These coordinates,

however, cannot be directly measured, unlike the corre-
sponding coordinates in the image plane, defining the fea-
ture vectors sp,d = [Xd Yd ]

T = [xd/zd yd/zd ]
T and

sp = [X Y ]T = [xc/zc yc/zc ]
T .

The information deriving from the computation of ho-
mography H can be used to rewrite the ratio

ρz = zc/zd

in terms of known or measurable quantities in the form

ρz =
dc
dd

ndT s̃p,d

ncT s̃p
(76)
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with
dc
dd

= 1 + ncT
oc
c,d

dd
= det(H), (77)

and nc = Rc
dn

d, where vectors s̃p and s̃p,d denote the
representations in homogeneous coordinates of sp and sp,d,
respectively.
The position error, expressed in terms of known or mea-

surable quantities, can be defined as

ep(r
c
d, r

c
c) =



Xd −X

Yd − Y

lnρz


 .

Notice that, in view of (10), convergence to zero of ep im-
plies convergence to zero of rc

d − rcc and vice versa.
Computing the time derivative of ep yields

ėp =
∂ep(r

c
c)

∂rcc
ṙcc,

rcd being constant. By taking into account (28) and the
decomposition

vc
c =

[
νc
c

ωc
c

]

with νc
c = RT

c ȯc, the above expression can be rewritten in
the form

ėp = −Jpν
c
c − Joω

c
c,x (78)

with

Jp =
1

zdρz



−1 0 X

0 −1 Y

0 0 −1




and

Jo =




XY −1−X2 Y

1 + Y 2 −XY −X

−Y X 0


 .

Equation (78) suggests the following choice of control vec-
tor νc

r

νc
r = J−1

p (Kpep − Joω
c
r), (79)

Jp being a nonsingular matrix.
Notice that, for the computation of J−1

p , knowledge of
the constant quantity zd is required.
If zd is known, control law (79), in view of assumptions

ȯc
c ≈ νc

r and ωc
c ≈ ωc

r, yields the following error equation:

ėp +Kpep = 0,

which implies the exponential convergence of ep to zero,
provided that Kp is a positive definite matrix.
If zd is not known, an estimate ẑd can be adopted. There-

fore, in control law (79), matrix J−1

p can be replaced by

an estimate Ĵ
−1

p . In view of the equality

Ĵ
−1

p =
ẑd
zd

J−1

p ,

the following error equation is obtained:

ėp +
ẑd
zd

Kpep =

(
1−

ẑd
zd

)
Joω

c
r.

This equation shows that the use of an estimate ẑd in place
of the true value zd implies a simple gain scaling in the error
equation, and asymptotic stability is preserved. Moreover,
due to the presence in the right-hand side of the above
equation of a term depending on ωc

r, the time history of
ep is influenced by the orientation error, which evolves ac-
cording to (75).
The method illustrated above is only one of the possible

visual servoing approaches based on the computation of the
planar homography and on its decomposition. It is worth
pointing out that knowledge of (1/dd)o

c
c,d and Rc

d allows
the computation of the operational space error (51), up to
a scaling factor for the positional part; therefore, it is also
possible to use the position-based visual servoing schemes
presented in Sect. 5. On the other hand, in hybrid visual
servoing approaches, different choices are possible for the
error components depending on feature parameters as well
as for those depending on the operational space variables.

8 Bibliography

The literature dealing with computational vision is quite
extensive and various. Image processing is treated, e.g.,
in [1], while geometrical issues are considered in [2] and [3].
The concept of interaction matrix was originally proposed
in [4] under a different name, while the actual name was
introduced in [9]. The pose estimation algorithm based
on the inverse of the image Jacobian is also termed vir-
tual visual servoing [10]. Position-based visual servoing
was proposed in [4] and, more recently, in [5] and [6]. Sev-
eral papers dealing with image-based visual servoing can
be found, starting from early works of [4] and [7]. A rig-
orous stability analysis is reported in [8] for PD control
with gravity compensation and in [9] for resolved-velocity
control. Hybrid visual servoing, presented in [11], is only
one of advanced control schemes based on decoupling of
the camera DOFs, e.g., the partitioned approach [12] and
the control based on image moments [13]. Finally, visual
servoing based on stereo vision is considered in [14]. An
interesting review of the state of the art of visual servoing
until mid 1990s is presented in [15], while a more recent
review can be found in [16].
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