
Java: Exercises in Style

Marco Faella

June 1, 2018

i

ii

This work is licensed under the Creative Commons Attribution-
NonCommercial 4.0 International License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View,
CA 94042, USA.

Author: Marco Faella, marfaella@gmail.com

Preface to the Online Draft

This draft is a partial preview of what may eventually become a book. The
idea is to share it with the public and obtain feedback to improve its quality.
So, if you read the whole draft, or maybe just a chapter, or you just glance
over it long enough to spot a typo, let me know!

I’m interested in all comments and suggestions for improvement, including
(natural) language issues, programming, book structure, etc.

I would like to thank all the students who have attended my Programming
Languages class, during the past 11 years. They taught me that there is no
limit to the number of ways you may think to have solved a Java assignment.

Naples, Italy Marco Faella
January 2018

iii

Contents

Contents iv

I Preliminaries 1

1 Introduction 3
1.1 Software Qualities . 5

2 Problem Statement 9
2.1 Data Model and Representations 10

3 Hello World! 13

4 Reference Implementation 17
4.1 Space Complexity . 21
4.2 Time Complexity . 23

II Software Qualities 29

5 Need for Speed 31
5.1 Optimizing “getAmount” and “addWater” 32
5.2 Optimizing “connectTo” and “addWater” 34
5.3 The Best Balance: Union-Find Algorithms 37
5.4 Experiments . 43

6 Precious Memory 45
6.1 Gently Squeezing . 45
6.2 Plain Arrays . 48
6.3 Forgoing Objects . 50
6.4 The Black Hole . 54

7 Reliability 57
7.1 Designing Containers by Contract 59
7.2 Checking Contracts . 63

iv

CONTENTS v

7.3 Checking Invariants . 68
7.4 Testing . 72

8 Readability 85
8.1 Readable Containers . 86

9 Multi-Threading 93
9.1 Global Locking . 93
9.2 A Failed Attempt . 95
9.3 Thread-safe Containers . 95

10 Generality 99
10.1 The General Framework . 100
10.2 A Concrete Implementation . 101

11 Golf Coding 103
11.1 The Shortest I Came Up With 103

Index 107

Part I

Preliminaries

1

Chapter 1

Introduction

In the modern classic Exercises in Style, Raymond Queneau writes the same
story in 99 different ways. The point of the book is not the story, which is sim-
ple and unremarkable, but rather the whimsical exploration of the virtually
endless expressive capabilities of natural languages. Programming is certainly
not literature, despite efforts by renowed personalities such as Donald Knuth
to bring the two closer together. In fact, beginner programmers may be for-
given if they think that that there is one best way to solve each programming
assignment, just like simple math problems have a single solution. In real-
ity, modern day programming can be much more similar to literature than
to math. Programming languages have evolved to include ever more abstract
constructions, multiplying the ways to achieve the same goal. Even after their
introduction, programming languages evolve, often by acquiring new ways of
doing the same things. The most used languages, such as Java, have been
evolving at a higher and accelerated pace, to keep up with the younger lan-
guages trying to take their positions.

In this book I try to give a taste of the wide range of possibilities that
one should consider, or at least be aware of, when solving a simple program-
ming task. The task I propose is quite unremarkable: a class representing
water containers, that can be connected with pipes and filled with liquid.
Clients interact continuously with the containers, adding or removing water,
and placing new pipes at any time.

I present and discuss 15 different implementations for this task. My ex-
amples are extreme: in each one I strive to focus on a single objective, be
it performance, code clarity, or other. As a consequence, in most practical
contexts, none of my examples is right. Life demands compromises, and pro-
gramming is no exception. In real-world scenarios, the context dictates which
compromise between different program qualities is the most reasonable prac-
tical objective to shoot at.

The book is not a dry sequence of code snippets. Whenever the context
calls for it, I take the opportunity to introduce a number of specialized topics,

3

4 CHAPTER 1. INTRODUCTION

pertaining to computer science (complexity theory and amortized complexity),
Java programming (thread synchronization and the Java memory model), or
software engineering (the design-by-contract methodology and testing tech-
niques).

Who is this Book for?

The core message of this book is intended for programmers of all trades and
levels: programming is a complex creative endeavor, involving many different
concurrent objectives. A good programmer is aware of them. A very good
programmer can selectively optimize the system with respect to each one of
them. A great programmer can effectively choose the best balance among
them, based on the context.

The content of the book may not be appropriate for beginner programmers.
This is neither a Java manual, nor an introductory programming textbook.
To make the most out of this book, you should be familiar with basic object-
oriented programming in Java. Even on more advanced topics, such as multi-
threading, I will only cover what is needed to understand the specific usage
done in the examples. At the end of each chapter, the “Further Reading”
sections list various resources to learn or refresh your memory on specific
topics.

Regarding general programming, you should be aware of recursion and
the general tenets of OOP. Specifically regarding Java, besides the basics, you
should have some exposure to the standard collections (sets and lists) and
to basic multi-threading and low-level thread synchronization (synchronized
blocks and methods).

The idea for writing this book came after 12 years of teaching an advanced
undergraduate programming class. I hope that the result might be useful for
similar classes, as a way to frame in the same context a number of topics
that are usually spread out in different programming, algorithm, or software
engineering courses.

Book Organization

After this introduction, the book presents the programming task that all sub-
sequent chapters solve, each in its own way. A simple use case establishes
a common public interface, that most implementations adhere to. The next
chapter describes a reference implementation, that tries to strike a compromise
between different qualities. Other versions are then compared to it.

All code snippets are correct, in the sense that they can be compiled and
give rise to a program that respects the initial specifications, up to some point.
The pros and cons of each version are discussed in each section.

All the code appearing in the book can be found online in a Git repository:

https://bitbucket.org/mfaella/ExercisesInStyle

1.1. SOFTWARE QUALITIES 5

Each version is identified by a tag, which corresponds to the Java file name
in the repository. For instance, the reference implementation from Chapter 4
is denoted by Reference, and its file name is Reference.java.

This is a theory box. In the rest of the book, it is used to include tech-
nical information that frames the content in the wider Computer Science
picture. You can skip them with no adverse effects, except a missed op-
portunity to expand your understanding!

1.1 Software Qualities

As for all products, software qualities are ways to define the extent to which
the system fulfills its purposes. They are traditionally divided into internal
and external qualities. External qualities are those that can be perceived by
the end user. Typical external qualities are:

• Efficiency — adequate consumption of resources, mostly time and space
(memory).

• Correctness — adherence to stated objectives, a.k.a. requirements or
specifications.

• Robustness — resilience to incorrect inputs or adverse/unanticipated
external conditions (e.g., lack of some resource). Correctness and ro-
bustness are sometimes lumped together as reliability .

• Usability — a measure of the effort needed to learn how to use it and
to achieve its goals; ease of use.

The most important internal qualities are:

• Readability — Clarity, understandability by fellow programmers.

• Maintainability — Ease of finding and fixing bugs, as well as evolve the
software.

• Testability — Ability and ease of writing tests that can trigger all rele-
vant program behaviors and observe their effects.

The boundary between the two categories is not clear-cut. Most internal
qualities can be indirectly perceived by the end user. Maintainability is mostly
internal, but end users will be made aware of it if a defect is found and it takes
programmers a long time to fix it. Conversely, robustness can also be internal,
if the piece of software under consideration is not exposed to the end user, but
only interacts with other system modules.

6 CHAPTER 1. INTRODUCTION

readability

robustness -

space efficiency

Þ

-

time efficiency

Þ Þ Þ
readability robustness space efficiency time efficiency

Table 1.1: Typical interactions between code qualities:

Þ

stands for “hurts”
and - for “no interaction”. Inspired by Figure 20-1 in Code Complete.

Some software qualities represent contrasting objectives, while others go
hand-in-hand. The result is a balancing act common to all engineering spe-
cialties. Table 1.1 summarizes the relationships between four of the qualities
that we examine in this book.

Both time and space efficiency usually hinder readability. Seeking maxi-
mum performance leads to sacrificing abstraction and writing lower level code.
In Java, this may entail using primitive types instead of objects, or in extreme
cases writing performance-critical parts in a lower-level language like C and
connect them with the main program using the Java Native Interface.

Minimizing memory requirements also favors the use of primitive types,
as well as special encodings, where a single value is used as a compact way
to represent different things (we’ll see an example of this in Section 6.4).
All these techniques tend to hurt readability. Conversely, readable code uses
more temporary variables and support methods, and shies away from low-level
performance hacks mentioned above.

Time and space efficiency also conflict with each other. For instance, a
common strategy for improving performance consists in storing extra infor-
mation in memory, instead of computing it every time it is requested. A
prominent example is the difference between singly and doubly linked lists.
Even though the “back” link of every node could in principle be computed by
scanning the list, storing and maintaining those links allows for constant-time
deletion of arbitrary nodes. The class in Section 6.4 trades improved space
efficiency for increased running time.

Maximizing robustness requires adding code that checks for abnormal cir-
cumstances and reacts in the proper way. Such checks incur a performance
overhead, albeit usually quite limited. Space efficiency need not be impacted
in any way. Similarly, in principle there is no reason why robust code should
be less readable.

In this book, we focus on those software qualities that remain meaningful
when applied to a small software unit consisting of a single class. Moreover,
we will mostly stick to a fixed public interface and only change the internal
implementation of the class. In detail, here is a break down of the chapters
and their corresponding code qualities.

1.1. SOFTWARE QUALITIES 7

Chapter 2 The description of the programming task to be solved.

Chapter 3 A naive implementation, as conceived by an inexperienced pro-
grammer. To break the ice and have some fun.

Chapter 4 The reference implementation (in the following, Reference).

Chapter 5 Time efficiency. We improve the running time of Reference by
up to two orders of magnitude (500x), and discover that different use
cases lead to different performance trade-offs.

Chapter 6 Space (memory) efficiency. Compared to Reference, we shrink
the memory footprint of containers by more than 50% when using objects
and by 90% when forgoing an object for each container.

Chapter 7 Reliability, comprising correctness and robustness. Robustness
is intended in its internal meaning: how gracefully a piece of software
reacts to being invoked in the wrong way. We discuss the design by
contract methodology and apply the related coding techniques: runtime
checks, assertions, and unit tests.

Chapter 8 Readability. Starting from Reference, we follow the best-practices
for clean self-documenting code.

Chapter 9 Thread-safety. This is not a general code quality, but rather the
specific ability of a class and its objects to simultaneously interact with
different threads.

Chapter 11 Succinctness, i.e., writing the shortest possible code for the
given task. This is not a code quality at all. On the contrary, it leads to
horrible, obscure code. It is included as a fun exercise that pushes the
language to its limits.

Further Reading

• R. Queneau. Exercises in Style. New Directions, 2013

The original “exercises in style” book (actually, the original was written
in French in 1947).

• C. Videira Lopes. Exercises in Programming Style. CRC, 2014

Very related to the book you are reading: the author solves a simple
programming task in 33 different styles, using Python. Rather than op-
timizing different code qualities, every style results from obeying certain
constraints. Among other things, it teaches you a lot about the history
of programming languages.

8 CHAPTER 1. INTRODUCTION

• D.E. Knuth. Literate Programming. Center for the Study of Language
and Information, 1995

• S. McConnell. Code Complete. Microsoft Press, 2nd edition, 2004

A precious book on coding style and all-round good software. Among
many other things, it discusses about code qualities and their interac-
tions.

• S. Naik and P. Tripathy. Software Testing and Quality Assurance: The-
ory and Practice. John Wiley & Sons, 2008

It includes a detailed chapter on software qualities and the related in-
ternational standards.

Chapter 2

Problem Statement

This section describes the programming problem that all examples solve, each
in its own peculiar way. We want to model a set of water containers. All
containers are identical and have a virtually unlimited capacity. The state
of a container is described by the amount of liquid it contains. Morerover,
two containers can be connected by pipes. Whenever two containers are con-
nected, they become communicating vessels and therefore split equally the
liquid contained in them.

Therefore, at the very least we require a Container class, with the following
three methods:

1. public double getAmount()
Returns the amount of water in this container.

2. public void addWater(double amount)
Pour amount quantity of water into this container. Water is automat-
ically and equally distributed among all containers that are connected,
directly or indirectly, to this one.

This method can also be used with a negative amount, to remove water
from this container. In that case, there should be enough water in the
group of connected containers to satisfy the request (we wouldn’t want
to leave a negative amount of water in a container).

3. public void connectTo(Container other)
Connects this container with other, using a (permanent) pipe.

The next code fragment shows a simple use case for the Container class.

UseCase: Part 1Container a = new Container();
Container b = new Container();
Container c = new Container();
Container d = new Container();

9

10 CHAPTER 2. PROBLEM STATEMENT

a.addWater(12);
d.addWater(8);
a.connectTo(b);
System.out. println (a.getAmount()+” ”+b.getAmount()+” ”+

c.getAmount()+” ”+d.getAmount());

At the end of this fragment, containers a and b are connected, so they
share the water that was put into a, whereas containers c and d are isolated.
So, the desired output from the println is:

6.0 6.0 0.0 8.0

Then, let’s continue the use case with the following lines.

UseCase: Part 2b.connectTo(c);
System.out. println (a.getAmount()+” ”+b.getAmount()+” ”+

c.getAmount()+” ”+d.getAmount());

The first line above connects c to b and, indirectly, to a. So, a, b, and c are
now communicating vessels and the total amount of water contained in all of
them distributes equally among them. Container d is unaffected, leading to
the output:

4.0 4.0 4.0 8.0

This point in the use case is what we will use to show the memory layout of
all the implementations in the following chapters.

Finally, we connect d to b, and all containers form a single connected
group:

UseCase: Part 3b.connectTo(d);
System.out. println (a.getAmount()+” ”+b.getAmount()+” ”+

c.getAmount()+” ”+d.getAmount());

In the final output the water level is equal in all containers.

5.0 5.0 5.0 5.0

In this use case, we first inserted water and then we started connecting
containers. In general, those two operations may be freely interleaved. What’s
more, new containers can be created at any time.

2.1 Data Model and Representations

Before we start discussing various possible implementations for our problem,
let us pause and make some preliminary observations. What fields should
our Container class include? This is often the most important decision when

2.1. DATA MODEL AND REPRESENTATIONS 11

designing any class. The examples in this book show that many different
answers can be given, based on the specific objectives we aim at.

Irrespective of the objectives, we should include enough information to
offer the services required by our contracts. This much is clear. Once this
basic criterion is met, we still have two types of decision to make:

1. Do we store any extra information, even if not strictly necessary?

2. How do we encode all the information we want to store? Which data
types or structures shall we use?

Regarding question 1, we may want to store unnecessary information for two
possible reasons. First, we may do it for performance; this is the case of
information that could be derived from other fields, but we prefer to have
it ready. Secondly, we sometimes store extra information to make room for
future extensions.

In our case, it seems clear that containers should know the amount of water
in them. Moreover, when adding water to a container, the liquid must be dis-
tributed equally over all containers that are connected (directly or indirectly)
to this one. So, each container must be able to identify all the containers that
are connected to it. An important decision is whether to distinguish direct
from indirect connections. A direct connection between a and b can only be
established via the call a.connectTo(b) or b.connectTo(a), whereas an indirect
connection may arise as a consequence of direct ones. In mathematical terms,
indirect connections correspond to the transitive closure of direct ones.

The operations required by our use case do not distinguish these two types
of connections, so we could do without the distinction and just store the more
general type: indirect connections. However, suppose that at some point in
the future we want to add a “disconnectFrom” operation, whose intent is to
undo a previous “connectTo” operation. If we mix up direct and indirect
connections, we cannot hope to correctly implement “disconnectFrom”.

Indeed, consider the two scenarios represented in Figure 2.1, where direct
connections are drawn as lines between containers, and water levels are not
shown. If only indirect connections are stored in memory, the two scenarios
are indistinguishable: in both cases, all containers are mutually connected.
Hence, if the same sequence of operations is applied to both scenarios, they
are bound to react in the exact same way. On the other hand, consider what
should happen if the client issues the following operations:

a.disconnectFrom(b);
a.addWater(1);

In the first scenario (Fig. 2.1A) the three containers are still mutually
connected, so the extra water must be split equally in all of them. Conversely,
in the second scenario (Fig. 2.1B) container a becomes isolated, so the extra

12 CHAPTER 2. PROBLEM STATEMENT

a b

c

(A) Three mutually connected con-
tainers

a b

c

(B) Containers a and c are only in-
directly connected

Figure 2.1: Two 3-container scenarios. Lines between containers represent
direct connections.

water must be added to a only. Clearly, storing indirect connections only is
incompatible with a “disconnectFrom” operation.

So, if we think that the future addition of a “disconnectFrom” operation is
likely, we may have reason to store direct connections explicitly and separately
from indirect ones. However, if we do not have specific information about
the future direction of our software, we should be wary of such temptations.
Programmers are known to be prone to over-generalization, and tend to weigh
the hypothetical benefits more than the certain costs that come with it. Notice
that costs are not limited to development time, as each unnecessary feature
needs to be tested, documented, and maintained just like the necessary ones.

Also, there is no limit to the amount of extra information one may want
to include. What if we want to remove all connections older than 1 hour? We
should store the time when each connection was made! What if we want to
know how many threads have created connections? We should store the set
of threads that have ever created a connection, and so on.

In the following chapters, we will generally stick to only storing the infor-
mation that is necessary for our present purposes, with a few clearly marked
exceptions.

In graph-theoretic terms, our containers can be seen as nodes in an undi-
rected graph, whose edges are the connections established by the connectTo
method. The graph is undirected because our connections are symmetric.
Proper water distribution requires connected components to be known.
Summarizing, the overall setting can be seen as an example of mainte-
nance of transitive closure with edge insertions, a type of dynamic graph
connectivity problem.

Chapter 3

Hello World!

This chapter presents a simple implementation, that could be authored by a
novice programmer, who’s just picked up Java after some exposure to a struc-
tured language like C. This implementation compiles and works as expected,
but it contains several shortcomings, that I will comment right after each code
snippet.

Let’s start with the class fields and constructor.

Novicepublic class Container {

Container [] g;
int n;
double x;

public Container() {
g = new Container[1000];
g [0] = this;
n = 1;
x = 0;

}

The intent is the following: g is the array of all containers connected to
this one, including this one (as clear from the constructor); n is the number
of containers in g; x is the amount of liquid in this container.

These few lines contain a wealth of small and not-so-small defects. Let’s
focus on the ones that are superficial and simple to fix, as the others will
become apparent when we move to better versions in the next chapters.

The single quirk that immediately marks the code as amateurish is the
choice of variable names. They are too short and completely uninformative.
A pro wouldn’t call the group g if a mobster gave him 60 seconds to hack into
a super-secure system of water containers. Meaningful naming is the first rule
of readable code, as we’ll see in Chapter 8.

Then, we have the visibility issue. Fields should be private instead of
default. Recall that default visibility is more open than private: it allows access

13

14 CHAPTER 3. HELLO WORLD!

from other classes that reside in the same package. Information hiding (a.k.a.
encapsulation) is a fundamental OO principle, enabling classes to (a) ignore
the internals of other classes and interact with them via a well-defined public
interface (a form of separation of concerns), and (b) change their internal
representation without affecting existing clients.

Encapsulation provides footing to this book too. The many implementa-
tions presented in the following chapters comply with the same public API,
and therefore can in principle be used interchangeably by clients.

Moving along, the array size is defined by a so-called magic number , i.e., a
constant that is not given any name. Best practices dictate that all constants
should be assigned to some final variable, so that: (a) the variable name can
document the meaning of the constant, and (b) there is a single point where
the value of that constant is set, which is especially useful if the constant is
used multiple times.

The very choice of using a plain array is not very appropriate, as it puts an
a-priori bound to the maximum number of connected containers: too small a
bound and the program is bound to fail; too large is just wasted space.

Moreover, using an array forces us to manually keep track of the number
of containers actually in the group (field n here). Better options exist in the
Java API and are discussed in Chapter 4. Nevertheless, plain arrays will come
handy in Chapter 6, where our primary objective is to save space.

Let’s proceed to the source for the first two methods.

Novicepublic double getAmount() { return x; }

public void addWater(double x) {
double y = x / n;
for (int i=0; i<n; i++)

g[i]. x = g[i]. x + y;
}

getAmount is a trivial getter and addWater shows the usual naming prob-
lems with variables x and y, whereas i is acceptable as the traditional name
for an array index. If the last line used the += operator we wouldn’t have
to look back and forth to make sure that it is actually incrementing the same
variable.

Notice that addWater does not check whether its argument is negative and,
in that case, whether there is enough water in the group to satisfy the request.
Robustness issues like this one will be dealt with specifically in Chapter 7.

The connectTo method is where the naming issues hurt the most.

Novicepublic void connectTo(Container c) {
if (g==c.g) return;
double z = (x∗n + c.x∗c.n) / (n + c.n);

for (int i=0; i<c.n; i++)

15

g[n+i] = c.g[i];
n += c.n;

// Each container that is connected with c belongs to the new group
for (int i=0; i<c.n; i++) {

c.g[i]. g = g;
c.g[i]. n = n;

}

// Update amount
for (int i=0; i<n; i++) {

g[i]. n = n;
g[i]. x = z;

}
}

All those single letter names make it really hard to understand what’s go-
ing on. Besides, the method is too long and should be split. For a dramatic
comparison, you may want to compare it with the readability-optimized ver-
sion on page 87.

In the next chapter, we are going to present a reference implementation,
that solves most of the superficial issues noted here, while striking a balance
between different code qualities.

Chapter 4

Reference Implementation

This chapter presents a version of the Container class that tries to strike a good
balance between different qualities, such as clarity, efficiency, and memory
usage.

As discussed in Section 2.1, we store and maintain the set of indirect
connections between containers. In practice, we equip each container with a
reference to the set of containers directly or indirectly connected to it, called its
group. We try to exploit the Java Collection Framework as much as possible.
For starters, the container group is represented by a Set<Container>. Set is
an interface used for unordered collections with no duplicates, which fits our
purposes nicely. Initially, the group consists of this object only. Additionally,
each container is aware of the amount of water in it, encoded by a double
value.

Referenceimport java. util .∗;

/∗ A water container .
∗
∗ by Marco Faella
∗/

public class Container {

private Set<Container> group;
private double amount;

/∗ Creates an empty container. ∗/
public Container() {

group = new HashSet<Container>();
group.add(this) ;

}

Figure 4.1 shows the memory layout of Reference, after executing Use-
Case, Part 2. At that point, three of the four containers are connected in
a group, and the fourth one is isolated. The memory layout diagram is a

17

18 CHAPTER 4. REFERENCE IMPLEMENTATION

simplified scheme of how the objects are arranged in memory, similar to UML
object diagrams. Both display static snapshots of a set of objects, including
the value of their fields and their relationships.

Unified Modeling Language (UML) is a standard providing a rich col-
lection of diagrams, intended to describe various aspects of a software
system. Class diagrams and sequence diagrams are two of the most com-
monly used parts of the standard.

A class diagram is a description of the static properties of a set of
classes, particularly regarding their mutual relationships, such as inheri-
tance or containment. The above mentioned object diagrams are closely
related to class diagrams, except that they depict individual instances of
those classes.

For instance, the class diagram for Reference may look like this:

Container

- amount : double

+ getAmount(): double
+ addWater(amount: double)
+ connectTo(other: Container)

HashSetmember

1..*

1
group

The Container box is quite self-explanatory, listing fields and methods,
whose visibility is denoted by a plus (public) or minus (private) sign. The
HashSet box does not specify any field or method, and that is perfectly
fine for such diagrams: they can be as abstract or as detailed as you wish.

The line between the two boxes is called an association and represents
a relation between two classes. At each end of the line, we can describe
the role of each class in the association (member, group) and the so-called
cardinality of the association. The latter specifies how many instances of
that class are in relation to each instance of the other class. In our case,
each Container belongs to a single group and each group includes one or
more members, denoted in UML by “ 1..* ”.

Although formally correct, the class diagram above is too detailed for
most purposes. UML diagrams are intended to describe a model of the
system, not the system itself. If a diagram becomes too detailed, it may
as well be replaced by the actual source code. Hence, standard collections
such as HashSet are normally not explicitly mentioned. Rather, they are
interpreted as just one possible implementation of an association between
classes.

In our case, the HashSet can be replaced by a more abstract asso-
ciation linking the Container class with itself. In this way, rather than
describing the implementation, we are conveying the idea that each con-

19

tainer may be connected to zero or more other containers. This can be
represented graphically as follows.

Container

- amount : double

+ getAmount(): double
+ addWater(amount: double)
+ connectTo(other: Container)

is connected to 0..*

1

UML object diagrams appear very similar to class diagrams. For in-
stance, here is the object diagram for Reference, after executing Use-
Case up to its Part 2.

a: Container

amount = 4.0

b: Container

amount = 4.0

c: Container

amount = 4.0

d: Container

amount = 8.0

is connected to

The object diagram above follows the second class diagram, where
the HashSet’s are not explicitly modeled, but rather hidden within the
association between containers. Objects are distinguished from classes by
having their names and types underlined.

In the following of this book, instead, I’m going to use a custom, more
intuitive form of object diagram.

In the memory layout diagrams in this book, many details, such as the
object header, are omitted. The internal composition of the HashSet is com-
pletely hidden, as the focus is on which object contains each piece of informa-
tion, and which object points to which other object.

Going back to the code, compared to Novice, this version uses proper
encapsulation and field naming. The getAmount method is a trivial getter.

Reference/∗ Returns the amount of water held in this container ∗/
public double getAmount() { return amount; }

Next, let us analyze the connectTo method, displayed below. Start by
observing that connecting two containers essentially entails merging their two
groups. So, the method initially computes the total amount of water in the
two groups and the amount of water in each container after the merge. Then,

20 CHAPTER 4. REFERENCE IMPLEMENTATION

4.0a

4.0b

4.0c

8.0d

HashSet

HashSet

a

b

c

d

Figure 4.1: Memory layout of Reference after executing UseCase, Part 2.
To avoid the clutter, the references from the HashSet’s back to the containers
are pictured as reaching the name of the container.

the group of this container is modified to absorb the second group, and all
containers of the second group are assigned the new, larger group. Finally,
the amount of water in each container is updated with the pre-computed new
amount.

Reference/∗ Connects this container with other . ∗/
public void connectTo(Container other) {

// If they are already connected, do nothing
if (group==other.group) return;

int size1 = group.size () ,
size2 = other.group. size () ;

double tot1 = amount ∗ size1,
tot2 = other.amount ∗ size2,
newAmount = (tot1 + tot2) / (size1 + size2);

// Merge the two groups
group.addAll(other .group);
// Update group of containers connected with other
for (Container c: other .group) c.group = group;
// Update amount of all newly connected containers
for (Container c: group) c.amount = newAmount;

}

The method above is heavily commented in an attempt to improve its
readability. The modern trend, instead, would be to split it in smaller methods
and use descriptive names, as we show in Chapter 8.

4.1. SPACE COMPLEXITY 21

The addWater method simply distributes an equal amount of water to each
container in the group.

Reference/∗ Adds water to this container . ∗/
public void addWater(double amount) {

double amountPerContainer = amount / group.size();
for (Container c: group) c.amount += amountPerContainer;

}

As in Novice, the method above accepts all negative values, thus running
the risk of leaving a negative amount of water in one or more containers.
This sort of robustness issues are addressed in Chapter 7. In the next two
sections, we are going to analyze the memory and time consumption of the
above implementation, so as to compare it with those of the following chapters.

4.1 Space Complexity

Despite the fact that primitive types have a fixed size, estimating the memory
size of a Java object is not trivial. Three factors render the exact size of
an object architecture and implementation-dependent: reference size, object
headers, and padding.

How these factors influence the size of an object depends on the specific
JVM used to run your program. Recall that the Java framework is based on
two official specifications: one for the Java language and one for the virtual
machine. Different vendors are free to implement their own compiler and/or
VM, and indeed as of today Wikipedia lists 17 actively developed JVMs.
In the following VM-dependent arguments, we are going to refer to Oracle’s
standard JVM, called HotSpot .

Let’s consider each of the above factors in more detail. First, the size of a
reference is not fixed by the language. Whereas this size is 32 bits on 32-bit
hardware, on modern 64-bit processors it can be either 32 or 64 bits, due to a
technology called Compressed ordinary object pointers (OOPs). Compressed
OOPs allow the program to store references as 32-bit values, even when the
hardware supports 64-bit addresses, at the cost of using up to 32GB of the
total available heap space. In our estimates, we assume a fixed reference size
of 32 bits.

Compressed OOPs work by implicitly adding 3 zeros at the end of each
32-bit address, so that a stored address of, say, 0x1 is interpreted as the
machine address 0x1000. In this way, machine addresses effectively span
35 bits, and the program can access up to 32GB of memory. The JVM
must also take steps to align all variables to 8-byte boundaries, as the
program can only refer to addresses that are multiples of 8.

Summarizing, this technology saves space for each reference but in-

22 CHAPTER 4. REFERENCE IMPLEMENTATION

creases padding space and incurs a time overhead when mapping stored
addresses to machine addresses (a quick left shift operation). Compressed
OOPs are turned on by default, and can be turned off with a JVM
command-line option.

Second, the memory layout of all objects starts with a header containing
some standard information needed by the JVM. As a consequence, even an
object with no fields (a.k.a. a stateless object) takes up some memory.

The detailed composition of the object header goes beyond the scope of
this book 1, but three features of the Java language are mainly responsible for
it: reflection, multi-threading, and garbage collection.

1. Reflection requires objects to know their type. Hence, each object must
store a reference to its class, or a numeric identifier referring to a table of
loaded classes. This mechanism allows the instanceof operator to check
the dynamic type of an object and the getClass method of the Object
class to return a reference to the (dynamic) class of this object.

2. Multi-threading support assigns a monitor to each object (accessible
via the synchronized keyword). Hence, the header must accommodate
a reference to a monitor object. Modern virtual machines create such
monitor on demand, only when multiple threads actually compete for
exclusive access to that object.

3. Garbage collection needs to store some information on each object, such
as a reference count. In fact, modern garbage collection algorithms as-
sign objects to different generations, based on the time since they were
created. In that case, the header also contains an age field.

In this book, we will assume a fixed 12-byte per-object overhead, which is
typical of modern 64-bit JVMs.

Finally, hardware architectures require or prefer data to be aligned to cer-
tain boundaries, i.e., they work more efficiently if memory accesses employ
addresses that are multiples of some power of 2 (usually 4 or 8). This circum-
stance leads to compilers and virtual machines to employ padding : inflating
the memory layout of an object with empty space, so that each field is properly
aligned and the whole object fits exactly into an integer number of words. For
simplicity, in this book we will ignore such architecture-dependent padding
issues.

We can now turn our attention to the actual memory occupancy of the
reference implementation. For starters, each Container object requires 12 bytes
for overhead, 8 bytes for the amount field, 4 bytes for the reference to the set,
plus the size of the set itself.

1 If you’re curious for details, you can browse the source code for HotSpot. The header’s
content is described in the file src/share/vm/oops/markOop.hpp.

4.2. TIME COMPLEXITY 23

A HashSet is typically implemented by an array of linked lists (called buck-
ets), plus a couple of extra fields for bookkeeping. The size of the array is
proportional to the number of elements in the set, and the lists tend to be
very short, ideally at most one element long. Summarizing, an empty HashSet
takes up approximately 64 bytes, and each extra element in the set requires
one reference (to the list) and a list with one element: approximately 28 more
bytes.

To get actual numbers and ease comparisons with other implementations,
we will consider two scenarios: first, 1000 isolated containers; second, 1000
containers connected in 100 groups of ten containers each. In those two sce-
narios, our reference implementation performs as reported in Table 4.1.

scenario bytes

1000 isolated 1000 · (12 + 8 + 4 + 64 + 28) 116 000
100 groups of 10 1000 · (12 + 8 + 4) + 100 · (64 + 10 · 28) 58 400

Table 4.1: Memory requirements of Reference.

4.2 Time Complexity

When measuring the memory footprint of a program, we can use bytes as
the standard basic unit. If we ignore certain low-level details, such as word
size and memory alignment issues, a given Java program will take the same
amount of memory on all computers.

The situation for time measurements is more fishy. The same program per-
forms in vastly different ways on different computers. Rather than measuring
actual running time, we can then count the number of basic steps performed
by the program. Roughly speaking, we can define as basic step any operation
that requires a constant amount of time. For instance, any arithmetical or
comparison operation can be considered a basic step 2.

The second issue we need to face is the fact that the same function can
execute a different number of basic steps when given different inputs. For
instance, the connectTo method above contains two for loops, whose length
(i.e., number of iterations) depends on the size of the two container groups
being merged. Incidentally, notice how in OOP the current state of this object
is part of the input to an instance method. This is not surprising, considering
that this is an effective (albeit hidden) parameter for these methods.

In such cases, we summarize with one or more numeric parameters what
it is in the input that influences the running time of our algorithm. Usually,

2The formal definition of basic step must be based on a formal model of computation,
such as Turing machines. A basic step may then be defined as any operation that requires
a constant number of steps of a Turing machine.

24 CHAPTER 4. REFERENCE IMPLEMENTATION

the summary consists in measuring the size of the input in some way. If the
number of basic steps of our algorithm varies even for same-sized inputs, we
just consider the worst case, i.e., the maximum number of steps performed on
any input of a given size.

Going back to our connectTo method, as a first attempt we may consider
two parameters size1 and size2: the sizes of the two groups of containers
being merged. Using these parameters, we may analyse the connectTo method
as follows:

4.2. TIME COMPLEXITY 25

Referencepublic void connectTo(Container other) {

// If they are already connected, do nothing
if (group==other.group) return;

int size1 = group.size () ,
size2 = other.group. size () ;

double tot1 = amount ∗ size1,
tot2 = other.amount ∗ size2,
newAmount = (tot1 + tot2) / (size1 + size2);

// Merge the two groups
group.addAll(other .group);
// Update group of containers connected with other
for (Container c: other .group) c.group = group;
// Update amount of all newly connected containers
for (Container c: group) c.amount = newAmount;

}

1 step

5 steps

size2 steps

size2 steps

size1 + size2

steps

I’m counting as one step anything that does not involve a loop, because its
running time is going to be essentially constant, and in particular independent
of the parameters size1 and size2. According to the above reasoning, the
number of basic steps performed by connectTo is

6 + 2 ∗ size2 + (size1 + size2) = 6 + size1 + 3 ∗ size2. (4.1)

However, we should recognize that the number 6 in the above expression is
somewhat arbitrary. If we counted assembly lines instead of Java lines, we
might get 6 thousand instead of 6, and 6 million steps if we counted steps
of a Turing machine. For the same reason the 3 multiplier in front of size2
is essentially arbitrary. In other words, constants 3 and 6 depend on the
granularity we choose for our basic steps.

A more interesting way to count steps, that elegantly sidesteps the gran-
ularity issue, is to only focus on how quickly the number of steps grows when
the size parameters grow. This is called the order of growth and it is the
basic tenet of complexity theory, a branch of Computer Science. The order
of growth frees us from the burden of establishing a specific granularity for
the basic steps, thus providing performance estimates that are more abstract
but easier to compare to one another. At the same time, the order of growth
preserves the asymptotic behavior of our function: i.e., the trend for large
values of its parameter(s).

In practice, the most common way to indicate the order of growth is the
so-called big-O notation. For instance, the expression (4.1) above in big-O
notation becomes O(size1 + size2), effectively hiding all arbitrary additive

26 CHAPTER 4. REFERENCE IMPLEMENTATION

and multiplicative constants. In so doing, it highlights the fact that the num-
ber of steps is lineraly proportional to size1 and size2. More precisely, the
big-O notation establishes an upper bound to the growth of a function. So,
O(size1 + size2) asserts that our running time grows at most linearly with
respect to size1 and size2.

Before we delve a little deeper into the asymptotic notation, let us further
simplify our complexity analysis, by switching from two size parameters to a
single one. Call n the total number of containers ever created, clearly size1+
size2 is at most equal to n (distinct groups are disjoint by definition). Since
the upper bound O(size1+size2) holds for our function, so does O(n), which
is greater than the first. In words, we are saying that the time required by a
connectTo operation grows at most linearly with the total number of containers
around. This may seem like a brutal approximation, and it is. After all, size1
and size2 are likely to be much smaller than n. However, rough as it is, this
type of upper bound is going to be accurate enough to distinguish the efficiency
of the various implementations presented in the following chapters.

When someone says that an algorithm has complexity O(f(n)), for some
function f , they mean that f(n) is an upper bound to the number of basic
steps performed by the algorithm on inputs of size n. Clearly, this makes
sense if we agree on how to measure the size of the input with a single
parameter n. The following table presents some common big-O bounds,
their names, and examples of array algorithms matching that bound. For
algorithms running on arrays, the parameter n is generally understood to
refer to the size of the array.

Notation Name Example

O(1) constant time checking whether the first ele-
ment in an array is zero

O(log n) logarithmic time binary search: the smart way
to look for a specific value in
a sorted array

O(n) linear time finding the maximum value in
an unsorted array

O(n log n) quasilinear time sorting an array using merge
sort

O(n2) quadratic time sorting an array using bubble
sort

4.2. TIME COMPLEXITY 27

method time complexity

getAmount O(1)

connect O(n)

addWater O(n)

Table 4.2: Time complexities for Reference.

More formally, the big-O notation can be applied to any function
f(n), representing the number of steps required by some algorithm when
run on an input of size n. Consider an algorithm and let g(n) be the
actual number of “steps”, however these may be defined, performed by
the algorithm on an input of size n. Then, writing that the algorithm has
time complexity O(f(n)) means that there exist two numbers m and c
such that, for all n ≥ m,

g(n) ≤ c · f(n) .

In other words, for sufficiently large inputs, the actual number of steps is
at most equal to a constant times the value of the f function.

Complexity theory includes several other notations, denoting lower
bounds, simultaneous lower and upper bounds, and so on.

We can now precisely state the time complexity of all the methods from
Reference. The getAmount method takes constant time, while connectTo
and addWater need to cycle over all containers in a group. Since a group
can be as large as the whole set of all containers, their complexity in the
worst case is linear in the total number n of containers. Table 4.2 summarizes
these observations. Chapter 5 is devoted to trying to improve these time
complexities.

Further Reading

There are a thousand introductory books on Java programming. My favorites
are:

• C.S. Horstmann. Core Java. Prentice Hall, 2015

A two-volume behemoth, which covers many parts of the API in detail,
with a strong teaching emphasis.

• P. Sestoft. Java Precisely. MIT Press, 3rd edition, 2016

28 CHAPTER 4. REFERENCE IMPLEMENTATION

Not an actual introductory book, but rather a concise and comprehen-
sive reference guide to the language and a limited selection of the API
(including collections and Java 8 streams).

Regarding time complexity and the big-O notation, any introductory book
on algorithms features comprehensive explanations on the topic. The classical
one is the following.

• T.H. Cormen, C.E. Leicerson, R.L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2009

Finally, for UML and related software engineering techniques:

• Martin Fowler. UML Distilled. Addison-Wesley, 2003

As its name suggests, this book condenses in fewer than 200 pages a solid
introduction to UML notation, with special focus on class and sequence
diagrams.

• Craig Larman. Applying UML and Patterns. Prentice Hall, 2004

Much wider in scope and page count than Fowler’s book, this volume
goes way beyond UML and serves as a systematic introduction to OO
analysis and design. The second edition is also available as a free down-
load.

Part II

Software Qualities

29

Chapter 5

Need for Speed

Achieving the maximum possible speed for a given computational task has
fascinated programmers since the ancient times of punch-card programming.
Indeed, one may say that a large part of computer science itself was born to
meet this urge. In this chapter, I will present three different implementations,
that optimize speed in different ways. Why three? Can’t I just present you
the best one? The thing is, there is no single best version, and that is perhaps
the main takeaway from this chapter.

If you mostly studied computer science in school and have little program-
ming experience, this may come as a surprise. Computer science curricula
deal extensively with time efficiency, particularly in algorithm and data struc-
ture classes. Those classes and their textbooks focus on a single problem at
a time, be it visiting a graph or balancing a tree. When you consider a single
algorithmic problem, with given inputs and desired outputs, you can compare
any two algorithms for performance, and possibly find the fastest possible pro-
cedure, as the one with the least asymptotic worst-case time complexity. This
is indeed how research makes progress on single computational questions.

On the other hand, real-world programming and our little container ex-
ample are not like that. They do not accept an input, compute an output and
then terminate. They ask of us to design a number of interacting methods or
functionalities, that may be used repeatedly any number of times. Different
data structures may favor one method over another, improving the complex-
ity of the first and slowing down the latter. For this reason, often there is no
all-the-way best solution, just different trade-offs.

In a multi-method context like ours, worst-case time complexity induces
a partial order between implementations. A partial order is a binary
relation such that not every pair of items is comparable. For instance,
consider the binary relation “being descendant from”, applied to pairs of
people. A pair like (Mike, Anna) belongs to the relation if Mike descends
from Anna. If two people a and b are unrelated, neither the pair (a, b) nor

31

32 CHAPTER 5. NEED FOR SPEED

the pair (b, a) belongs to the relation, which means that the relation is a
partial order. In a partial order, there might be items that are not smaller
than any other. They are top items. Economists call these items Pareto
optimal, and Pareto front the set of all those items. If we interpret “being
descendant from” as “being smaller”, the mythical Adam and Eve would
be the only top elements, as they are not smaller than (i.e., descendant
from) any other person.

If we don’t have specific information on how many times and in what
sequence each one of our methods will be invoked, the best we can do is
to pick a Pareto optimal implementation. In such an implementation, no
method can be improved without degrading the performance of another
method. This chapter presents three Pareto optimal implementations for
our problem.

5.1 Optimizing “getAmount” and “addWater”
[Speed1]

First, we are going to optimize the addWater method, bringing down its time
complexity from linear to constant. The good news is that we can do this
without increasing the complexity of the other two methods in the class.

In Reference, the problem with addWater is that it needs to visit all
containers that are connected to this one, and update their water amount.
This is a waste, especially because all connected containers share the same
amount. So, we move the amount field from the Container class to a new
Group class. All containers belonging to the same group will point to the
same Group object, containing the amount of water present in each of those
containers.

In practice, our new Container class has a single field:

private Group group = new Group(this);

and Group is the following nested class.

Speed1private static class Group {
double amount;
Set<Container> elems;

Group(Container c) {
elems = new HashSet<>();
elems.add(c);

}
}

The Group class is static because we do not need each group to be permanently
linked to the container that created it. It is private because it should not be

5.1. OPTIMIZING “GETAMOUNT” AND “ADDWATER” 33

exposed to the clients. Being private , there is no point in applying visibility
modifiers to its constructor and fields. The resulting memory layout is pictured
in Figure 5.1.

a

b

c

d

4.0

Group

8.0

Group

HashSet

HashSet

a

b

c

d

Figure 5.1: Memory layout of Speed1 after executing UseCase, Part 2.

Then, the read and write methods of Container operate straightforwardly
on the Group object.

Speed1public double getAmount() { return group.amount; }

public void addWater(double amount) {
double amountPerContainer = amount / group.elems.size();
group.amount += amountPerContainer;

}

The connectTo method is very similar to the one in Reference and can be
found in the repository.

Time complexity. Similarly to Reference, the connectTo method still
needs to iterate over all containers in a group, leading to the time complexities
in Table 5.1.

method time complexity

getAmount O(1)

connect O(n)

addWater O(1)

Table 5.1: Time complexities of Speed1.

34 CHAPTER 5. NEED FOR SPEED

There are two steps in the connectTo method that require linear time to
complete:

1. merging the elements of the two groups with addAll;

2. informing the elements of one of the groups being merged that their
group has changed.

The first step above is easy to replace with a faster alternative. Switch
from sets to linked lists and voilà: merging two collections becomes a constant-
time operation. Step 2, instead, is much more complicated to avoid. In fact,
it is impossible to make connectTo run in constant time without raising the
time complexity of getAmount. However, if for some reason we really need
a constant-time connectTo, we can employ the implementation from the next
section.

5.2 Optimizing “connectTo” and “addWater”
[Speed2]

In this section we are going to use a radically different way to represent a
group of connected containers: a manually implemented circular linked list.
A circular linked list is a sequence of nodes where each node points to the
next one, in a circular fashion. There is no first or last node, no head or tail.

In our application, each container is a node in a list, featuring an amount
field and a single “next” reference, resulting in a singly linked list.

Speed2public class Container {

private double amount;
private Container next = this;

A nice property of circular linked lists and the very reason we are using
them here is that, if you are given any two nodes from two such lists, you can
merge the lists in constant time, even if the lists are singly linked. The merge
is accomplished by swapping the “next” references of the two nodes, as shown
in Figure 5.2.

That figure represents the memory layout in two moments during the ex-
ecution of UseCase, with the implementation of containers from this section
(that is, Speed2). In the left-hand side of the figure, containers a, b, and c
have been connected into a single group, so they are linked to each other in a
circular fashion. Container d is still isolated, so its “next” reference points to
itself.

The right-hand side shows the effect of running the b.connectTo(d) in-
struction. Swapping the “next” references of b and d is sufficient to merge the
two lists into a single one. Such swapping is in fact the only content of the
following connectTo implementation.

5.2. OPTIMIZING “CONNECTTO” AND “ADDWATER” 35

4.0a 4.0 b

4.0c

8.0d

(A) Before b.connectTo(d).

5.0a 5.0 b

5.0c

5.0d

(B) After b.connectTo(d). Swapping the
next pointers of b and d leads to merging the
two lists into a single one.

Figure 5.2: Memory layout of Speed2 during the execution of UseCase,
before and after Part 3.

Speed2public void connectTo(Container other) {
Container oldNext = next;
next = other.next;
other .next = oldNext;

}

To keep connectTo running in constant time, it does not update the water
amounts in any way. After all, water amounts are only visible when getAmount
is called. So, we delay the update until the next call to getAmount. This ap-
proach is a standard trick in the programmer’s toolbox, called lazy evaluation,
a staple of functional programming.

We use the same laziness with addWater, so that it only updates the current
container, without actually distributing water among the group.

Speed2public void addWater(double amount) {
this .amount += amount;

}

Unfortunately, sooner or later getAmount will be called, and we are going
to pay for all our laziness with a costly update operation, which distributes
water amounts equally within a group.

For clarity, let’s delegate the update to a separate private method.

Speed2public double getAmount() {

36 CHAPTER 5. NEED FOR SPEED

updateGroup();
return amount;

}
private void updateGroup() {

Container cur = this;
double totalAmount = 0;
int groupSize = 0;
// First pass : collect amounts and count
do {

totalAmount += cur.amount;
groupSize++;
cur = cur.next;

} while (cur != this) ;
double newAmount = totalAmount / groupSize;
cur = this;
// Second pass: update amounts
do {

cur .amount = newAmount;
cur = cur.next;

} while (cur != this) ;
}

The update method makes two passes over the circular list representing
this group: in the first pass, it computes the total amount of water in the
group and it counts the number of containers in it; in the second pass, it
actually updates the amount of water in each container to the appropriate
value.

It is easy to visit each node in a circular list. You can start from any node,
follow the “next” references and just stop whenever you go back to your initial
node.

A couple of questions come to mind:

1. Do we really need to invoke updateGroup every time? Perhaps we could
use a boolean flag to remember whether this container is already updated
and avoid unnecessary calls to updateGroup.

2. Can we move the updateGroup call from getAmount to addWater? It
would be more reasonable to pay the price when writing, rather than
reading.

Unfortunately, neither of these potential improvements is feasible. That is,
assuming we want to keep the connection operation constant-time.

First, suppose we add an “updated” flag to all containers. Whenever a
group is updated, its containers are flagged as updated. Subsequent calls to
getAmount on those containers do not need to invoke updateGroup. So far
so good. Now, suppose that two groups are merged with connectTo. The
“updated” flags of their containers need to be reset, but this cannot be done
in constant time. There goes out first improvement attempt.

5.3. THE BEST BALANCE: UNION-FIND ALGORITHMS 37

Second, moving the updateGroup call from getAmount to addWater is fine,
but only if a similar call is introduced in connectTo as well. Otherwise, reading
the amount right after a group merge would give a stale result. Clearly, this
change also puts connectTo in linear-time complexity, which is against the
objectives of this section.

Time complexity. The worst-case time complexity of this implementation
is summarized in Table 5.2.

method time complexity

getAmount O(n)

connect O(1)

addWater O(1)

Table 5.2: Time complexities of Speed2.

5.3 The Best Balance: Union-Find Algorithms
[Speed3]

It turns out that our little container problem is similar to the classical union-
find setting. In that scenario, one wants to maintain sets of elements, and a
distinguished element for each set, called the set representative. The following
two operations should be supported:

• merge two sets (union operation);

• given an element, find the representative from its set (find operation).

In our case, the sets would be groups of containers. The representative for a
group can be any container, and we are going to use it to store the “official”
water amount for that group. So, when a container receives a getAmount call,
it invokes a find operation to get the value from its group representative.

Many smart computer scientists have tackled this type of problems, even-
tually developing the following, provably optimal, algorithm. It suggests to
represent a group as a tree of containers, where each container needs only to
know its parent in the tree. The root of each tree is the representative for the
group. Roots should also store the size of their tree.

In computer science, a (parent pointer) tree is a linked data structure in
which each node points to exactly another node, called its parent, except
one special node, called the root, that points to no other node. Moreover,

38 CHAPTER 5. NEED FOR SPEED

all nodes can reach the root following the pointers.
The constraints above also ensure that the pointers form no cycle, so

trees are a special type of directed acyclic graphs (DAGs). The height of
a tree is the length of the longest path from any node to the root.

We end up with the following fields in each container:

Speed3public class Container {

private double amount;
private Container parent = this;
private int size = 1;

The root of a tree is identified by having parent==this. You can see above
that each new container is initially the root of its tree, and the only node
in it. The fields amount and size are only used for the root containers. For
the others, they are just wasting space. A memory-optimized implementation
may want to do something about that.

A private support method called findRootAndCompress returns the repre-
sentative for this container (i.e., it is the standard find operation). As its name
suggests, it also modifies the tree in such a way that future calls to it are more
efficient. Specifically, the method navigates the tree from this container up
to the root of its tree, following the parent links. Along the way, it updates
the parent reference of all encountered elements to point directly at the root.
In other words, it flattens the path it travels by turning each container into a
direct child of the root. As a consequence, whenever findRootAndCompress is
called again on any of those objects, it will terminate in constant time, because
it will immediately find the root. Here is a simple, recursive implementation
of this method.

Speed3private Container findRootAndCompress() {
if (parent != this)

parent = parent.findRootAndCompress();
return parent ;

}

We can now easily understand the following two methods.

Speed3public double getAmount() {
Container root = findRootAndCompress();
return root .amount;

}
public void addWater(double amount) {

Container root = findRootAndCompress();
root .amount += amount / root.size;

}

5.3. THE BEST BALANCE: UNION-FIND ALGORITHMS 39

The tree structure allows for a straightforward connection algorithm. We
find the roots of the two groups being merged and we let one of the roots
become a child of the other root. To get a more balanced tree, we apply the
following rule: we attach the smaller tree (the one with fewer nodes) to the
root of the larger tree. This is called link-by-size policy and it is an important
ingredient to obtain the desired performance, as explained in the following
section.

Figure 5.3 shows the memory layout of this implementation after execut-
ing UseCase, Part 2. At that point, b is the representative for the group
comprising containers a, b, and c, whereas d is its own representative.

12.0 1a

4.0 3b

0.0 1c

8.0 1d

Figure 5.3: Memory layout of Speed3 after executing UseCase, Part 2. The
amount and size fields of a and c are greyed out because they contain stale
values that are irrelevant to the behavior of their objects. Only fields of group
representatives are relevant and up-to-date.

Speed3public void connectTo(Container other) {
Container root1 = findRootAndCompress(),

root2 = other.findRootAndCompress();
int size1 = root1. size , size2 = root2. size ;
double newAmount = ((root1.amount ∗ size1) +

(root2.amount ∗ size2)) / (size1 + size2) ;

if (size1 <= size2) {
root1.parent = root2;
root2.amount = newAmount;
root2. size += size1;

} else {
root2.parent = root1;
root1.amount = newAmount;
root1. size += size2;

}
}

}

40 CHAPTER 5. NEED FOR SPEED

Time complexity. The first time findRootAndCompress is called on a given
container, it may have to perform a number of iterations that is proportional
to the current height of that tree. Under our link-by-size policy, the height of
a tree is at most logarithmic w.r.t. its size.

Figure 5.4 shows a sequence of union operations that build a tree with
logarithmic height. The trick is to always merge trees with the same size.
For every such merge, the height of the resulting tree increases by one, but
the number of nodes doubles. Hence, the height is constantly equal to the
logarithm of the size.

+ = 2 1

+ = 4 2

+ = 8 3

nodes height

Figure 5.4: A sequence of union operations building a tree whose height is
logarithmic in its size.

So, some findRootAndCompress calls require logarithmic time. Since that
method is called by all of the three public methods, we obtain the worst-case
time complexities in Table 5.3.

method time complexity

getAmount O(log n)

connect O(log n)

addWater O(log n)

Table 5.3: Time complexities of Speed3.

We will see shortly how the complexities reported in Table 5.3 are in fact
quite misleading, albeit formally correct. For the moment, let us use them

5.3. THE BEST BALANCE: UNION-FIND ALGORITHMS 41

getAmount

connectTo

O(log(n)) O(n)

O(log(n))

O(n)

O(1)

Speed1

Speed2

Speed3

Figure 5.5: Graphical representation of the time complexity of methods
getAmount and connectTo in implementations Speed1, Speed2, and Speed3.
The dashed line connecting the three implementations represents a virtual
Pareto front.

to compare the performance of the three implementations presented in this
chapter.

Figure 5.5 puts into a graphical representation the complexity of methods
getAmount and connectTo in the three versions. As anticipated at the begin-
ning of this chapter, none of them is always better than another. Speed1 is
the only one with guaranteed constant time for getAmount. Symmetrically,
Speed2 features the best performance for connectTo. Speed3 strikes a bal-
ance between the two methods, attributing the same logarithmic complexity
to both. When comparing any pair of implementations, one method improves
its performance and the other method worsens it. To choose an implementa-
tion, we should analyse the application context and figure out how often each
method is going to be called. If most calls are made to getAmount, we should
prefer Speed1. Conversely, if clients are more likely to invoke connectTo,
Speed2 should be picked.

However, the discussion above is unfair to Speed3, whose performance re-
ally shines if standard complexity analysis is replaced by amortized complex-
ity analysis. While standard analysis focuses on a single run of an algorithm,
amortized analysis takes into account sequences of runs. This kind of analysis
is the most appropriate for algorithms that perform some extra operations,
so that future calls may be more efficient. Those extra operations work as
an investment : they are an immediate cost for a future benefit. Standard
analysis would account for the cost, but not for the benefit. By considering

42 CHAPTER 5. NEED FOR SPEED

sequences of operations, amortized analysis manages to measure both the cost
and its future benefit.

In our case, the “compress” part of findRootAndCompress is the extra cost.
It is not needed to find the root, but it makes future calls faster.

To perform amortized analysis, we have to decide on a sequence of op-
erations of arbitrary length m, performed on a set of n containers. We are
interested in the long-run cost, so we assume that m can be bigger than n.
Next, we have to choose how many of those m operations are connectTo,
getAmount, or addWater. Notice that only n− 1 calls to connectTo are signif-
icant: after that, all containers will be connected in a single group. So, the
sequences we are going to analyze are composed as follows:

1. they are generally longer than n;

2. they contain n− 1 calls to connectTo;

3. all the other operations are either getAmount or addWater.

Now, we can ask the asymptotic number of basic steps performed by any
such sequence (i.e., the worst case among all the sequences satisfying our
assumptions). The actual analysis is way beyond the scope of this book, and
you are referred to the “Further Reading” section for details. In fact, even
stating the complexity upper bound is somewhat complex! The most accurate
upper bound for a sequence of m operations is not one of the “easy” functions,
being slightly more than constant, but way less than quasilinear (m logm).
As reported in Table 5.4, it can be written as O

(
m · α(m,n)

)
, where α is the

inverse Ackermann function. If you are in a rush, just know that α(m,n) is at

most 4 for all inputs m and n up to 22
22

16

, which is more than the number of
atoms in the known universe. In other words, the upper bound is essentially
O(m) for all practical purposes. Since we are discussing the complexity of a
sequence of m operations, an O(m) upper bound means that, in the long run,
each operation takes constant time. We couldn’t hope for anything better.
In fact, the experiments presented in the next section show that in this case
the amortized analysis is much more relevant than the standard worst-case
analysis, putting Speed3 way ahead of the competition in a typical scenario.

If you want a little more background on the function α, continue with the
following theory box.

The Ackermann function A(m,n) can be defined recursively as follows:

A(m,n) =

n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) otherwise

5.4. EXPERIMENTS 43

scenario amortized time complexity

a sequence of m operations
on n containers

O
(
m · α(m,n)

)

Table 5.4: Amortized time complexity for Speed3.

This function was originally proposed in 1928 by Wilhelm Ackermann, a
student of renowed mathematician David Hilbert, and an accomplished
researcher himself. It was the first known example of a function that is
algorithmically computable, but not computable through a limited set of
operations called primitive recursive. The key property of this function
is that it grows extremely fast, even for small values of its arguments.
For instance, A(3, 3) is a modest 61, whereas A(4, 4) is the humongous

22
22

22
2

−3. Intuitively, the inverse Ackermann function α grows as slowly
as the Ackermann function is fast.

5.4 Experiments

Skeptics may want to experimentally check that our complexity measures cor-
respond to actual running times. To this aim, I submit you a simple exper-
iment, where the three implementations from this chapter challenge Refer-
ence on the following test case:

1. create 20,000 containers and add some water to each (20k constructor
calls and 20k addWater calls);

2. connect containers in 10,000 pairs, add some water to each pair, query
the amount in each pair (10k connectTo, 10k addWater, and 10k getAmount
);

3. connect pairs of containers until all containers are connected into a single
group; after each connection add some water and query the resulting
amount (10k connectTo, 10k addWater, and 10k getAmount).

Table 5.5 summarizes the results. As expected, all classes from this chapter
greatly outperform Reference, by as much as two orders of magnitude.
In particular, our best attempt Speed3 is 500 times faster. On the other
hand, Speed2 is an order of magnitude slower than Speed1 and Speed3
(but still significantly faster than Reference). As noted before, Speed2 is
a rather odd implementation, that only makes sense if getAmount queries are
rare compared to the other operations. That is not the case for the tested
scenario.

44 CHAPTER 5. NEED FOR SPEED

version time (msec)

Reference 2 300
Speed1 26
Speed2 505
Speed3 6

Table 5.5: Running times for a balanced use case involving 20,000 containers.

version time (msec)

Reference 2 300
Speed1 25
Speed2 4
Speed3 5

Table 5.6: Running times for a use case involving 20,000 containers and a
single call to getAmount.

To verify this analysis, let us run a modified use case, where we remove all
calls to getAmount except for one, at the end. We get the running times from
Table 5.6. As you can see, Speed2 now matches the performance of Speed3,
whereas the other three implementations are essentially unaffected by the
change, demonstrating that the amount query is a very cheap operation in all
other versions. The second experiment confirms that Speed3 is in practice
the best choice overall.

Further Reading

Several standard algorithm books cover union-find algorithms and amortized
complexity.

• T.H. Cormen, C.E. Leicerson, R.L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2009

• J. Kleinberg and E. Tardos. Algorithm Design. Pearson, 2005

• For a quick overview of union-find algorithms, Kevin Wayne from Prince-
ton maintains high-quality slides that summarize their history and prop-
erties, based on the Algorithm Design book above.

