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We consider the problem of computing the controllable region of a Linear Hybrid Automaton with control-
lable and uncontrollable transitions, w.r.t. a reachability objective. We provide an algorithm for the finite-
horizon version of the problem, based on computing the set of states that must reach a given non-convex
polyhedron while avoiding another one, subject to a polyhedral constraint on the slope of the trajectory. Ex-
perimental results are presented, based on an implementation of the proposed algorithm on top of the tool
SpaceEx.
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1. INTRODUCTION
Hybrid systems are a type of non-linear dynamic systems, characterized by the pres-
ence of continuous and discrete variables. Hybrid automata [Henzinger 1996] are the
most common syntactic variety of hybrid system: a finite set of locations, similar to
the states of a finite automaton, represents the value of the discrete variables. The
current location, together with the current value of the (continuous) variables, form
the instantaneous description of the system. Change of location happens via discrete
transitions, and the evolution of the variables is governed by differential inclusions
attached to each location. In a Linear Hybrid Automaton (LHA), the allowed differen-
tial inclusions are of the type ẋ ∈ P , where ẋ is the vector of the first derivatives of
all variables and P ⊆ Rn is a convex polyhedron. Notice that differential inclusions
are non-deterministic, allowing for infinitely many solutions with the same starting
conditions.

We study LHAs whose discrete transitions are partitioned into controllable and un-
controllable ones, giving rise to a 2-player model called Linear Hybrid Game (LHG):
on one side the controller, which can only issue controllable transitions; on the other
side the environment, which can choose the trajectory of the variables and can take
uncontrollable transitions whenever they are enabled.

As control goal, we consider reachability, i.e., the objective of reaching a given set of
target states. As we show in Section 2.2, it is easy to show that the reachability control
problem is undecidable, being harder than the standard reachability verification (i.e.,
1-player reachability) for LHAs [Henzinger et al. 1998]. We present the first exact
algorithm for 1-step controllability under a reachability objective, namely reaching
the target region with at most one discrete transition. In turn, this provides an exact
algorithm for bounded-horizon reachability control (i.e., reaching the target within a
fixed number of discrete steps), and a semi-algorithm1 for the infinite-horizon case.

We recently presented a semi-algorithm for the control problem of LHGs with safety
objectives [Benerecetti et al. 2011a; 2013]. Although the control goal we examine, as a
language of infinite traces, is the dual of safety, the corresponding synthesis problem
is not, because our game model is asymmetric (continuous-time trajectories are always
uncontrollable). Hence, it is not possible to solve the control problem with reachability
goal T by exchanging the roles of the two players and then solving the safety control
problem with goal T (i.e., the complement of T ).

1In other words, a procedure that may or may not terminate, and that provides the correct answer whenever
it terminates.
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On the one hand, the one-step safety control problem can be solved by comput-
ing the may-reach-while-avoiding operator RWAm. Given two sets of states U and
V , RWAm(U, V ) collects the states from which there exists a system trajectory that
reaches U while avoiding V at all times. On the other hand, the one-step reachability
control problem requires a different operator, called must-reach-while-avoiding and
denoted by RWAM(U, V ). As suggested by its name, such operator computes the set of
states from which all system trajectories reach U while avoiding V . The main technical
result of this paper is that the first operator can be used to compute the latter, once a
suitable over-approximation of RWAM(U, V ) is available (Theorem 4.5). Moreover, we
present two effective ways to obtain such an over-approximation, which are compared
experimentally in Section 7.

To the best of our knowledge, the reachability control goal was never considered for
LHGs. This paper extends the results presented in [Benerecetti et al. 2012], where the
problem was first considered. Compared to the preliminary version, here we present
a second over-approximation, which significantly improves the performance of the al-
gorithm in several cases. Moreover, the experiments, based on the tool SpaceEx, are
entirely new and compare the performance of the two over-approximations proposed
in the paper. Finally, several proofs have been extended with further details and the
decidability status of the problem restricted to non-Zeno systems has been addressed
in a new subsection.

Related work. The idea of automatically synthesizing controllers for dynamic sys-
tems arose in connection with discrete systems [Ramadge and Wonham 1987]. Then,
the same idea was applied to real-time systems modeled by timed automata [Maler
et al. 1995], thus coming one step closer to the continuous systems that control theory
usually deals with. Finally, it was the turn of hybrid systems [Henzinger et al. 1999;
de Alfaro et al. 2001], and in particular of Linear Hybrid Automata [Wong-Toi 1997],
the very model that we analyze in this paper. Wong-Toi proposed a symbolic semi-
algorithm to compute the controllable region of a LHA w.r.t. a safety goal [Wong-Toi
1997].

Tomlin et al. [2000], Lygeros et al. [1999] and Balluchi et al. [2003] analyze much
more expressive models, with generality in mind rather than automatic synthesis.
Asarin et al. [2000] investigate the synthesis problem for hybrid systems where all
discrete transitions are controllable and the trajectories satisfy given linear differen-
tial equations of the type ẋ = Ax. The expressive power of these constraints is in-
comparable with the one offered by the differential inclusions occurring in LHAs and
LHGs. In particular, linear differential equations give rise to deterministic trajectories,
while differential inclusions are non-deterministic. In control theory terms, differen-
tial inclusions can represent the presence of environmental disturbances. Bouyer et
al. [2010] propose a general abstraction technique for hybrid systems, and focus on
decidable classes of o-minimal automata.

A series of papers deals with the synthesis of continuous feedback control laws with
the objective of reaching a given facet of a simplex [Habets et al. 2006; Lin and Broucke
2006]. Compared to LHGs, the systems of interest have a more expressive dynamics,
but they allow no disturbances, so they are deterministic once control is applied.

Structure of the paper. The rest of the paper is organized as follows. Section 2 intro-
duces and motivates the model. The proposed semi-algorithm is presented as divided
in two layers: Section 3 illustrates the outer layer, dealing with multiple locations and
discrete transitions, while Section 4 focuses on the geometric problem arising from
the analysis of a single location. In particular, it introduces the operator RWAM and
shows how to compute it by applying RWAm to suitable over-approximations of the
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desired result. Sections 5 and 6 focus on the computation of such over-approximations
using simple geometric operations on polyhedra. Section 7 reports some experiments
performed on our implementation of the procedure in SpaceEx [Frehse et al. 2011].
Finally, some conclusions are drawn in Section 8.

2. LINEAR HYBRID GAMES
A convex polyhedron is a subset of Rn that is the intersection of a finite number of
strict and non-strict affine half-spaces. A polyhedron is a subset of Rn that is the union
of a finite number of convex polyhedra. For a general (i.e., not necessarily convex)
polyhedron G ⊆ Rn, we denote by cl(G) its topological closure, and by [[G]] ⊆ 2R

n

its
representation as a finite set of convex polyhedra.

Given an ordered set X = {x1, . . . , xn} of variables, a valuation is a function v :
X → R. Let Val(X) denote the set of valuations over X. There is an obvious bijection
between Val(X) and Rn, allowing us to extend the notion of (convex) polyhedron to
sets of valuations. We denote by CPoly(X) (resp., Poly(X)) the set of convex polyhedra
(resp., polyhedra) on X. Let A be a set of valuations, states or points in Rn, we denote
by A its complement.

We use Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted variables, used to represent the first
derivatives, and X ′ to denote the set {x′1, . . . , x′n} of primed variables, used to represent
the new values of variables after a transition. Given two valuations u, v ∈ Val(X), we
denote by u ⊗ v the valuation in Val(X ∪ X ′) obtained by conjoining u and v while
renaming the variables of v. Conversely, for w ∈ Val(X ∪ X ′), we denote by w�X and
w�X′ the projections of w on X and X ′, respectively. Notice that w = w�X ⊗ w�X′ .
Arithmetic operations on valuations are defined in the straightforward way.

A trajectory over X is a function f : R≥0 → Val(X) that is differentiable but for a
finite subset of R≥0. The issues arising from the stronger requirement of differentiabil-
ity in every time point have been investigated elsewhere [Benerecetti and Faella 2013]
and are out of the scope of this paper. Let Trj (X) denote the set of trajectories over X.
The derivative ḟ of a trajectory f is defined in the standard way and it is a trajectory
over Ẋ.

Definition 2.1. A Linear Hybrid Game (LHG) (Loc, X,Edgc,Edgu,Flow , Inv , Init)
consists of the following components:

— A finite set Loc of locations.
— A finite set X = {x1, . . . , xn} of real-valued variables.
— Two sets Edgc,Edgu ⊆ Loc × Poly(X ∪ X ′) × Loc of controllable and uncontrollable

transitions, respectively.
— A mapping Flow : Loc → CPoly(Ẋ), called the flow constraint.
— A mapping Inv : Loc → Poly(X), called the invariant.
— A mapping Init : Loc → Poly(X), contained in the invariant, defining the initial states

of the automaton.

A state is a pair 〈l, v〉 of a location l and a valuation v ∈ Val(X). Transitions describe
instantaneous changes of location, in the course of which the variables may change
their value. Each transition (l, J, l′) ∈ Edgc ∪ Edgu consists of a source location l, a
target location l′, and a jump relation J ∈ Poly(X ∪ X ′), that specifies how the vari-
ables may change their value during the transition. The projection of J on X contains
the valuations for which the transition is enabled, a.k.a. a guard. Jump relations gen-
eralize assignments to Boolean combinations of linear inequalities over current and
next-state variable valuations. The flow constraint attributes to each location a set of
valuations over the first derivatives of the variables, which determines how variables
can change over time.
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Intuitively, our objective is to synthesize a control strategy that exploits controllable
transitions to achieve a reachability goal, regardless of the continuous-time evolution
and uncontrollable transitions, both governed by the environment.

We use the abbreviations S = Loc×Val(X) for the set of states and Edg = Edgc∪Edgu
for the set of all transitions. Moreover, we let InvS =

⋃
l∈Loc{l} × Inv(l) and InitS =⋃

l∈Loc{l}× Init(l). Notice that InvS and InitS are sets of states. Given a set of states A
and a location l, we denote by A�l the projection of A on l, i.e. {v ∈ Val(X) | 〈l, v〉 ∈ A}.

2.1. Semantics
The behavior of an LHG is based on two types of transitions: discrete transitions corre-
spond to the Edg component, and produce an instantaneous change in both the location
and the variable valuation; timed transitions describe the change of the variables over
time in accordance with the Flow component.

Given a set F ⊆ Rn, a trajectory f ∈ Trj (X) is called admissible w.r.t. F if, whenever
ḟ(δ) is defined, we have that ḟ(δ) ∈ F . We denote by Adm(u, F ) the set of trajectories
that start from u ∈ Rn and are admissible w.r.t. F . Given a state s = 〈l, v〉, let loc(s) = l
and val(s) = v. With a slight abuse of notation, we write Adm(s) for Adm(v,Flow(l)).
Additionally, for f ∈ Adm(s), the span of f in l, denoted by span(f, l) is the set of all
values δ ≥ 0 such that 〈l, f(δ′)〉 ∈ InvS for all 0 ≤ δ′ ≤ δ. Intuitively, δ is in the span
of f iff f never leaves the invariant in the first δ time units. If all non-negative reals
belong to span(f, l), we write∞ ∈ span(f, l).

Runs. Given states s, s′, and a transition e ∈ Edg , there is a discrete step s
e−→ s′

with source s and target s′ iff: (i) s, s′ ∈ InvS , (ii) e = (loc(s), J, loc(s′)), and (iii) val(s)⊗
val(s′) ∈ J . Whenever there is a discrete step s e−→ s′, we say that e is enabled in s.

There is a timed step s f,δ−−→ s′ with duration δ ∈ R≥0 and trajectory f ∈ Adm(s) iff: (i)
s ∈ InvS , (ii) δ ∈ span(f, loc(s)), and (iii) s′ = 〈loc(s), f(δ)〉. For technical convenience,
we admit timed steps of duration zero2. The special timed step denoted by s

f,∞−−→
represents the case when the system follows a trajectory forever. This is only allowed
if∞ ∈ span(f, loc(s)). A joint step s f,δ,e−−−→ s′ represents the timed step s f,δ−−→ 〈loc(s), f(δ)〉
followed by the discrete step 〈loc(s), f(δ)〉 e−→ s′. Finally, a run is a sequence

r = s0
f0,δ0−−−→ s′0

e0−→ s1
f1,δ1−−−→ s′1

e1−→ s2 · · · sn · · · (1)

of alternating timed and discrete steps, such that either the sequence is infinite, or it
ends with a timed transition of the type sn

f,∞−−→. If the number of steps in r is finite, we
define len(r) = n to be the length of the run, otherwise we set len(r) = ∞. The above
run is non-Zeno if for all δ ≥ 0 there exists i ≥ 0 such that

∑i
j=0 δj > δ. We denote

by States(r) the set of all states visited by r. Formally, States(r) is the set of all states
〈loc(si), fi(δ)〉, for all 0 ≤ i ≤ len(r) and all 0 ≤ δ ≤ δi. Notice that the states from which
discrete transitions start (states s′i in (1)) appear in States(r). Moreover, if r contains a
sequence of one or more zero-time timed transitions, all intervening states appear in
States(r).

For a set of states A and a transition e ∈ Edg , let Pre (e,A) be the set of states in
InvS where transition e is enabled and may lead to A. For x ∈ {u, c}, let Prex(A) =⋃
e∈Edgx

Pre (e,A).

2Timed steps of duration zero can be disabled by adding a clock variable t to the automaton and requesting
that each discrete transition happens when t > 0 and resets t to 0 when taken.
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Zenoness and well-formedness. A well-known problem of real-time and hybrid sys-
tems is that definitions like the above admit runs that take infinitely many discrete
transitions in a finite amount of time (i.e., Zeno runs), even if such behaviors are phys-
ically meaningless. In this paper, we assume that the hybrid automaton under consid-
eration generates no such runs. This can be achieved using different syntactical con-
straints. For instance, one can use an extra variable, representing a clock, to ensure
that the delay between any two location switches is bounded from below by a constant,
called minimum dwell time. We leave it to future work to combine our results with
the more sophisticated approaches to Zenoness known in the literature [Balluchi et al.
2003; de Alfaro et al. 2003].

Moreover, we assume that the hybrid automaton under consideration is non-
blocking, i.e., before all system trajectories leave the invariant, there must be an un-
controllable transition enabled. Formally, for all states s in the invariant, if all trajec-
tories f ∈ Adm(s) eventually leave the invariant, there exists one such trajectory f
and a time δ ∈ span(f, loc(s)) such that s′ = 〈loc(s), f(δ)〉 is in the invariant and there
is an uncontrollable transition that is enabled in s′. If a hybrid automaton is non-Zeno
and non-blocking, we say that it is well-formed. In the following, all hybrid automata
are assumed to be well-formed.

Example 2.2. Consider the LHGs in Figure 1, in which locations contain the invari-
ant (first line) and the flow constraint (second line). Solid (resp., dashed) edges repre-
sent controllable (resp., uncontrollable) transitions, and guards are true. The fragment
in Figure 1(a) is non-blocking, because the system may choose derivative ẋ = 0 and
remain indefinitely in location l. The fragment in Figure 1(b) is also non-blocking, be-
cause the system cannot remain in l forever, but an uncontrollable transition leading
outside is always enabled. Finally, the fragment in Figure 1(c) is blocking, because the
system cannot remain in l forever, and no uncontrollable transition is enabled.

x ∈ [0, 1]
ẋ ∈ [−1, 1]

l

(a) Non-blocking.

x ∈ [0, 1]
ẋ ∈ [1, 2]

l

...u

(b) Non-blocking.

x ∈ [0, 1]
ẋ ∈ [1, 2]

l

...c

(c) Blocking.

Fig. 1. Three LHG fragments.

The role of the invariant. In our model, the invariant is a physical constraint of
the system and not a control objective. Accordingly, non-blocking systems are able to
indefinitely evolve in time, with no controller intervention, while remaining in their
invariant at all times. The invariant then serves two purposes:

(1) it constrains the continuous-time evolutions: legal trajectories simultaneously sat-
isfy the differential inclusion and the invariant of the current location;

(2) it indirectly forces the occurrence of uncontrollable transitions: if all trajectories
exit from the invariant, an uncontrollable transition is bound to happen.

Other researchers have adopted different interpretations of invariants. Asarin et
al. [2000] identify the invariants with the (safety) control objective. Their model fea-
tures deterministic trajectories (no disturbances) and does not support uncontrollable
transitions. So, purposes 1 and 2 above are void and the invariant is free to serve as
the control goal.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 M. Benerecetti and M. Faella

Henzinger et al. [1999] support both uncontrollable transitions and disturbances.
They additionally distinguish between the invariant of the environment and the in-
variant of the controller, whereas the control goal is a separate notion. Our invariants
serve the exact same purposes as their environment invariants.

The maze example. As a motivating example, consider a vehicle navigating a maze,
by taking 90-degree left or right turns: the possible directions are North (N), South (S),
West (W) and East (E). One time unit (say, second) must pass between two changes of
direction, while the vehicle speed is 2 unit of length (say, meters) per second. The
corridors are 1 meter wide and the goal consists in reaching a target area positioned
along the corridors.

N
ẋ = 0
ẏ = 2
ṫ = 1

Abort
ẋ = 0
ẏ = 0
ṫ = 0

W
ẋ = −2
ẏ = 0
ṫ = 1

E
ẋ = 2
ẏ = 0
ṫ = 1

S
ẋ = 0
ẏ = −2
ṫ = 1

t ≥
1,
t :=

0

wall hit

Fig. 2. The LHG for the maze example. Solid (resp.,
dashed) edges represent controllable (resp., uncontrol-
lable) transitions.

Figure 2 shows the sketch of an
LHG modeling the system: we have
one location for each direction, where
the derivative of the position vari-
ables (x and y) are set accord-
ing to the corresponding direction.
The variable t represents a clock
(ṫ = 1) that is used to enforce a
one-time-unit delay between turns.
Each change of direction is modeled
by a controllable transition, enabled
when t ≥ 1. The invariant in all loca-
tions corresponds to the shape of the
maze, as shown in Figure 10.

The sink location Abort models all
the cases in which the vehicle hits
one of the walls of the maze. Each
wall is modeled by an uncontrollable
transition, enabled when the vehicle
hits the wall, leading to the Abort lo-
cation. These uncontrollable transitions are not subject to any timing constraint, as
opposed to the controlled ones. As a consequence, the resulting LHG does not satisfy
the minimum dwell time constraint, since the location switch leading to the Abort lo-
cation may occur within an arbitrary small delay since the last change of direction.
The LHG is, however, non-Zeno, as no discrete transition allows the system to leave
the Abort location, once reached.

Strategies. A strategy is a function σ : Edgc → Poly(X,X ′) such that for all e =
(l, J, l′) ∈ Edgc we have that σ(e) ⊆ J . Strategies assign to each controllable transi-
tion a possibly non-convex polyhedron, which is contained in the jump relation of the
transition. The intended meaning is that the strategy restricts controllable transitions
so that they can be taken from a given subset of their original guard and they lead
to a given subset of their original set of destinations. In particular, non-determinism
in a controllable transition is resolved by the controller. This contrasts with other pa-
pers [Henzinger et al. 1999], in which non-determinism is always resolved in favor of
the environment (i.e., adversarial non-determinism). If the latter semantics is desired,
one can add for each controllable transition an intermediate location followed by an
uncontrollable transition that will be responsible for resolving the non-deterministic
choice. On the other hand, we conjecture that there is no uniform way to simulate our
semantics using adversarial non-determinism.

We stipulate below that when the system enters the “activated” region σ(e)�X (i.e.,
the projection of σ(e) on the variables X), some discrete transition (not necessarily e)
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must be taken before the system exits from that region. Without this assumption, a
strategy could only (de-)activate controllable transitions, but it would have no way of
actually forcing a controllable transition to happen. For instance, the joint steps in
Figures 3(a) and 3(b) are not valid because the system leaves the activated region of
transition e before taking a discrete transition. The joint step in Figure 3(c) instead is
valid.

In other works [Asarin et al. 2000], this effect is achieved by allowing the controller
to also restrict the invariant. In our framework that approach would be incorrect, as a
restricted invariant may force the environment to take more actions, possibly allowing
the controller to unduly win the game.

si s′i si+1
fi, δi e′

σ(e)�X σ(e′)�X

(a) An illegal joint step.

si s′i si+1
fi, δi e′

σ(e)�X
σ(e′)�X

(b) An illegal joint step.

si s′i si+1
fi, δi e′

σ(e)�X
σ(e′)�X

(c) A legal joint step.

Fig. 3. The semantics of strategies.

Following the intuition above, we say that a run like (1) is consistent with a strategy
σ if for all 0 ≤ i < len(r) the following conditions hold:

— if ei ∈ Edgc then val(s′i)⊗ val(si+1) ∈ σ(ei);
— if δi < ∞, then for all e = (loc(si), J, l

′) ∈ Edgc such that fi(δ) ∈ σ(e)�X , for some
δ ∈ [0, δi], it holds that fi(δ′) ∈ σ(e)�X , for all δ′ ∈ [δ, δi];

— if δi = ∞ then for all δ ≥ 0 and all e = (loc(si), J, l
′) ∈ Edgc, it holds that fi(δ) 6∈

σ(e)�X .

The first condition ensures that if the i-th transition is controllable, then it is taken
according to the prescriptions of the strategy. The second condition ensures that the
system does not exit from an activated region without taking an action, while the third
condition prevents the system to stay forever in an activated region without taking any
action. We denote by Runs(s, σ) the set of runs starting from the state s and consistent
with the strategy σ.

Reachability control problem. Given a hybrid automaton and a set of states T ⊆
InvS , the reachability control problem asks whether there exists a strategy σ such
that, for all initial states s ∈ InitS and all runs r ∈ Runs(s, σ) it holds States(r)∩T 6= ∅.
We call the above σ a winning strategy.

2.2. Undecidability
An LHG is deterministic if for all states s there exists a unique joint step starting
from s. A deterministic LHG induces a single run, where all discrete steps are uncon-
trollable. Indeed, if a controllable transition occurred, there would be another run in
which that transition would not be taken, contradicting the uniqueness of the run. As
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a consequence, removing all controllable transitions from a deterministic LHG leads
to an equivalent LHG, which admits a single vacuous strategy (i.e., a function with an
empty domain).

Recall that Henzinger et al. [1998], the authors prove that the reachability problem
for a restricted class of LHAs is undecidable, by reducing the halting problem for deter-
ministic 2-counter machines (2CMs), which is known to be undecidable [Minsky 1967].
It is easy to verify that the 4-variable LHA corresponding to a given 2CM is determin-
istic due to the following properties3: all flow constraints are of the type ẋi = ki ∈ R>0,
for all variables xi; all guards contain a constraint of the type xi = ci, for some variable
xi and constant ci ∈ R; the jump relation of all transitions constrains each variable to
either retain its old value or assume value zero; guards belonging to different transi-
tions do not overlap. Moreover, said LHA satisfies the minimum dwell time property,
since every transition leading from one location to another resets a clock a and is only
enabled when a = W , for a positive constantW . We can then prove the following result.

THEOREM 2.3. The reachability control problem is undecidable for deterministic
LHGs with minimum dwell time.

PROOF. We reduce the halting problem for 2CMs to the reachability control prob-
lem for deterministic LHGs with minimum dwell time. Given a 2CM, consider the
corresponding LHA and its target region T as defined by Henzinger et al. [1998] and
mentioned above. We trivially convert it into a determinisic LHG by stipulating that
all of its transitions are uncontrollable. As a consequence, the unique run of the 2CM
reaches a halting configuration if and only if the unique run in the LHG, resulting
from the vacuous strategy, reaches the target T .

As a consequence of the previous theorem, the reachability control problem is also
undecidable for the larger class of non-Zeno LHGs.

3. THE GLOBAL SEMI-ALGORITHM
The following theorem states the general procedure for solving the reachability con-
trol problem, based on the controllable predecessor operator for reachability CPreR(·),
defined as follows.

For a set of states A, the operator CPreR(A) returns the set of states from which
the controller can ensure that the system reaches A within the next joint step. This
can happen if there exists a strategy the controller can follow, all of whose consistent
runs satisfy the following two properties: (1) if the run ever takes a discrete transition,
either the first one leads to A or the run passes through A before taking it; and (2) if
the run follows an admissible trajectory forever, then it must eventually pass through
A. We then have:

CPreR(A) =
{
s = 〈l, u〉 ∈ InvS

∣∣∣ ∃σ∀r ∈ Runs(s, σ) :

if r = s
f,δ,e−−−→ s′ · · · then s′ ∈ A or ∃δ′ ∈ [0, δ] . 〈l, f(δ′)〉 ∈ A

and if r = s
f,∞−−→ then ∃δ′ ≥ 0 . 〈l, f(δ′)〉 ∈ A

}
.

In discrete games, the CPre operator used for solving reachability games is the same
as the one used for the safety goal [Maler 2002]. In both cases, when the operator
is applied to a set of states T , it returns the set of states from which Player 1 can
force the game into T in one step. In hybrid games, the situation is different: a joint

3We are referring to the first scenario in the proof of Theorem 4.1, addressing the case k1 > k2 > 0.
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step represents a complex behavior, extending over a (possibly) non-zero time interval.
While the CPre for reachability only requires T to be visited once during such interval,
CPre for safety requires that the entire behavior constantly remains in T . Hence, in
Section 3.1 we present a novel algorithm for computing CPreR.

The following theorem states that the least fixpoint of the operator τ(X) , T ∪
CPreR(X) provides a solution of the reachability control problem. Intuitively, each ap-
plication of the τ extends (backward), by adding a single joint step, all the runs com-
patible with some winning strategy for the controller, until a fixpoint is reached.

THEOREM 3.1. Let T be a polyhedron and W ∗ = µW . T ∪ CPreR(W ), where µ
denotes the least fixpoint. If the fixpoint is obtained in a finite number of iterations then
the answer to the reachability control problem for target set T is positive if and only if
InitS ⊆W ∗.

Since CPreR(·) is effectively computable on polyhedra (as we show in the following),
the results of Henzinger et al. [1995] imply that the above fixpoint may not be reached
within a finite number of iterations. However, experiments such as the ones we de-
scribe in Section 7 suggest that it may converge in cases of practical relevance.

Before proving Theorem 3.1, let us recall the following lemma, which is an adap-
tation of Lemma 4.1 in [Alur et al. 1996], and states that any point reached by an
admissible trajectory can be reached with a straight-line admissible trajectory as well.
Notice that the original version of the lemma applies to differentiable trajectories,
whereas our trajectories may not be differentiable in a finite set of time instants.

LEMMA 3.2. For all points p ∈ Inv(l), trajectories f ∈ Adm(〈l, p〉) and δ > 0, let
c = f(δ)−p

δ . Then, c ∈ Flow(l).

PROOF. We proceed by induction on the number of delays γ ∈ (0, δ) such that f is
not differentiable in γ. If such number is zero, then the thesis follows immediately from
Lemma 4.1 in [Alur et al. 1996]. Otherwise, by applying the inductive hypothesis to
the two intervals [0, γ], [γ, δ], we obtain that f(γ) = p+γc1 and f(δ) = p+γc1 +(δ−γ)c2,
where c1 = f(γ)−p

γ ∈ Flow(l) and c2 = f(δ)−f(γ)
δ−γ ∈ Flow(l). In other words, f(δ) = p+ δc,

where c = γ
δ c1 + δ−γ

δ c2. Since c is a convex combination of c1 and c2, we obtain that
c ∈ Flow(l), hence the thesis.

Proof of Theorem 3.1: if. Assume that InitS ⊆ W ∗, we shall build a strategy that is
winning from all initial states. Let W0 = T and, for all n ≥ 0:

Wn+1 = Wn ∪ CPreR(Wn).

For e = (l, J, l′) ∈ Edg and A,B ⊆ InvS , define Jump(A, e,B) as the set of valuations
w ∈ J such that 〈l, w�X〉 ∈ A and 〈l′, w�X′〉 ∈ B. For all n ≥ 0, let σn be the strategy
defined as follows, for all controllable transitions e ∈ Edgc. Let σ0(e) = ∅, and

σn+1(e) = σn(e) ∪ Jump(Wn+1 \Wn, e,Wn).

We prove that, for all n, σn is a winning strategy from each state s ∈Wn. We shall need
the following lemma, whose proof is reported in the Appendix.

LEMMA 3.3. For all n ≥ 0 and states s ∈Wn, all runs starting from s and consistent
with σn reach T .

Using Lemma 3.3 it is now immediate to prove the if direction of Theorem 3.1.
Indeed, let σ∗ = σn, where n is such that Wn = W ∗. Then, Lemma 3.3 ensures that for
any state s ∈W ∗ and any run r ∈ Runs(s, σ∗), r eventually reaches a state in T .
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Proof of Theorem 3.1: only if. To prove the other direction, assume s0 6∈ W ∗ and let σ
be any strategy. We shall prove that there is a run r starting from s0 and consistent
with σ such that States(r) ∩ T = ∅. By definition of W ∗, s0 6∈ W ∗ implies that s 6∈
T ∪CPreR(W ∗). Therefore for all strategies, there exists a run from s0 consistent with
the strategy whose first joint step is completely contained in W ∗. Hence, there exists
a run r0 ∈ Runs(s0, σ) such that either r0 = s0

f0,∞−−−→ and f0(δ) ∈ W ∗ for all δ ≥ 0,
or r0 = s0

f0,δ0,e0−−−−−→ s1 · · · , 〈loc(s0), f0(δ′)〉 ∈ W ∗ for all δ′ ∈ [0, δ0], and s1 ∈ W ∗. In
the first case, we set r = r0 and we are done, since W ∗ ∩ T = ∅. In the second case,
since s1 6∈ W ∗, we can repeat the same reasoning starting from s1, and obtain a new
run r1 ∈ Runs(s1, σ) with the same properties as r0. Once again, if r1 = s1

f1,∞−−−→ and
f1(δ) ∈ W ∗ for all δ ≥ 0, we obtain the desired run r by concatenating the first joint
step of run r0 with r1, i.e., r = s0

f0,δ,e−−−→ s1
f1,∞−−−→. Otherwise, r1 = s1

f1,δ1,e1−−−−−→ s2 · · ·
and f1(δ′) ∈ W ∗, for all δ′ ∈ [0, δ1] and s2 ∈ W ∗. The concatenation of the first joint
step of r0 with r1 is a run s0

f0,δ0,e0−−−−−→ s′
f1,δ1,e1−−−−−→ s2 · · · , which is consistent with σ and

does not lead to T within the first two joint steps. By iterating the above reasoning
and concatenating the first joint steps of the runs ri, with i ≥ 0, we can form a run
r ∈ Runs(s0, σ) which is composed either of a finite number of joint steps ending with
an infinite time step (if there is an i such that ri = si

fi,∞−−−→), or of an infinite number of
joint steps. In either case, each joint step of the resulting run is completely contained
in W ∗, which in turn is disjoint from T , hence the conclusion follows.

3.1. Computing the Predecessor Operator
In order to compute the predecessor operator, we introduce the Must Reach While
Avoiding operator, denoted by RWAM. Given a location l and two sets of variable valu-
ations U and V , RWAM

l (U, V ) contains the set of valuations from which all continuous
trajectories of the system reach U while avoiding V 4. Formally, we have:

RWAM
l (U, V ) =

{
u ∈ Val(X)

∣∣∣∀f ∈ Adm(〈l, u〉)∃δ ≥ 0 :

f(δ) ∈ U and ∀ 0 ≤ δ′ ≤ δ : f(δ′) 6∈ V
}
. (2)

The definition requires trajectories to avoid V even in the time instant when U is
reached, i.e., reaching a point in U ∩V is not acceptable. Hence, it holds RWAM

l (U, V ) =

RWAM
l (U \ V, V ) and in the following we can assume w.l.o.g. that U and V are disjoint.

The operator CPreR(·) can now be reformulated, by means of the operator RWAM
l (·, ·),

based solely on the geometric properties of the admissible trajectories. Let Bl =
Preu(A)�l be the set of states of location l, where the environment can take a dis-
crete transition leading outside A and, similarly, Cl = Prec(A)�l be the set of states
of l, where the controller can take a discrete transition leading to A. According to the
defition, a state s of location l belongs to CPre(A) if the controller can force the system
into A within one joint step, no matter what the environment does. This occurs if, for
every possible trajectory chosen by the environment, one of the following conditions
holds: (i) the system reaches A�l while avoiding Bl \A�l, thus without giving the envi-
ronment any chance to take an action leading outside A; (ii) the system reaches a point
in Cl \Bl, from where the controller can force the system into A, while avoidingBl\A�l;
or (iii) the trajectory exits from the invariant Inv(l) meanwhile avoiding Bl\A�l, but no

4In the temporal logic CTL, we have RWAM(U, V ) ≡ ∀V U (U ∧ V ).
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point in A�l ∪ (Cl \Bl) is ever reached. In this last case, the well-formedness condition
ensures that, before the trajectory reaches Inv(l), the environment must take some
discrete transition, which can only lead to A.

The following lemma formalizes the above intuition. We say that a set of statesA ⊆ S
is polyhedral if for all l ∈ Loc, the projection A�l is a polyhedron.

LEMMA 3.4. For all polyhedral sets of states A ⊆ InvS , let Bl = Preu(A)�l and
Cl = Prec(A)�l. We, then, have:

CPreR(A) = InvS ∩
⋃
l∈Loc

{l} × RWAM
l

(
A�l ∪ Cl \Bl ∪ Inv(l), Bl \A�l

)
.

PROOF. [⊆] Let s = 〈l, u〉 and assume that u 6∈ RWAM
l

(
A�l∪Cl \Bl∪ Inv(l), Bl \A�l

)
,

then there exists a trajectory f ∈ Adm(s) such that for all δ ≥ 0, either f(δ) 6∈ A�l∪(Cl \
Bl) ∪ Inv(l) or there exists δ′ ∈ [0, δ] with f(δ′) ∈ Bl \A�l. We prove that s 6∈ CPreR(A).

Let us first consider the case where f(δ) 6∈ A�l ∪ (Cl \ Bl) ∪ Inv(l) for all δ ≥ 0.
In this case, span(f, l) = ∞, since f never exits from Inv(l). Let σ be any strategy,
if σ never prescribes any controllable transition along the trajectory f , then the run
s
f,∞−−→, which follows f forever, is consistent with σ. Our assumption ensures that this

run never reaches A�l, and hence s 6∈ CPreR(A).
If instead σ forces some discrete transition e ∈ Edgc to be taken along f , a run of the

type s f,δ−−→ s
e−→ s′ · · · is consistent with σ. Since, by assumption, f(δ) 6∈ Cl \ Bl, there

are two cases: either f(δ) 6∈ Cl, in which case s′ 6∈ A, or f(δ) ∈ Cl ∩ Bl. In the latter

case, however, the run s
f,δ−−→ s

e′−→ s′′ · · · , with e′ ∈ Edgu, is also consistent with σ and
s′′ 6∈ A since f(δ) ∈ Bl. In either case it follows that s 6∈ CPreR(A).

Let us now consider the case where there is a δ ≥ 0 with f(δ) ∈ A�l∪ (Cl \Bl)∪ Inv(l)
and for some δ′ ∈ [0, δ], f(δ′) ∈ Bl \ A�l. Observe that we can assume δ > 0. Otherwise
either u would trivially belong to RWAM

l

(
A�l ∪ Cl \ Bl ∪ Inv(l), Bl \ A�l

)
or it would

hold s 6∈ InvS , in which case s 6∈ CPreR(A) by definition. Let ∆f = {δ ≥ 0 | f(δ) ∈
A�l ∪ (Cl \Bl) ∪ Inv(l)} and δ̂ = inf ∆f .

If δ̂ ∈ ∆f , then δ̂ > 0 by the observation above. Moreover, for all δ ∈ [0, δ̂), f(δ) 6∈
A�l ∪ (Cl \ Bl) ∪ Inv(l) and f(δ′) ∈ Bl \ A�l for some δ′ ∈ [0, δ̂). Therefore, given an
arbitrary strategy σ, if σ does not prescribe any controllable transition along f in the
interval [0, δ̂), then there is a run of the form s

f,δ′−−→ s′
e−→ s′′ · · · with e ∈ Edgu and

consistent with σ. Since f(δ′) ∈ Bl \ A�l, s′′ 6∈ A as desired. If, on the other hand, σ
forces a controllable transition along f in the interval [0, δ̂), then it is either taken
from a point belonging to Cl, hence leading to A, or it must be taken from a point v
belonging to Cl∩Bl and the environment can always take an uncontrollable transition
from state v ∈ Bl which leads to A.

Finally, consider the case where δ̂ 6∈ ∆f . Then for all δ ∈ [0, δ̂], f(δ) 6∈ A�l ∪ (Cl \Bl)∪
Inv(l) and f(δ′) ∈ Bl \ A�l for some δ′ ∈ [0, δ̂]. By a reasoning similar to the previous
case, for any strategy σ we can build a run from s consistent with σ which takes an
uncontrollable transition leading to A in the interval [0, δ̂]. Again, we can conclude that
s 6∈ CPreR(A).

[⊇] Assume that u ∈ RWAM
l

(
A�l ∪ Cl \ Bl ∪ Inv(l), Bl \ A�l

)
and let s = 〈l, u〉. Define

σ so that, for every e ∈ Edgc, σ(e) = Jump({l} × Cl \ {l} × Bl, e, A). We shall show that
every run consistent with σ leads to A within one joint step. Let r ∈ Runs(s, σ) and let
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f be the trajectory followed by r before the first discrete step, if r ever takes a discrete
step. There are two cases: either (i) r = s

f,∞−−→ or (ii) r = s
f,δ,e−−−→ s′ · · · . In case (i),

f eventually reaches A as desired. Indeed, f cannot reach Inv(l), since r is a single
infinite time step along f which must then satisfy span(f, loc(s)) = ∞. Moreover, by
consistency of r w.r.t. σ, f cannot reach Cl \ Bl either, otherwise σ would eventually
force a discrete transition.

Then, consider case (ii). If s′ ∈ A then we are done. Assume that s′ 6∈ A, then, by
consistency of r w.r.t. σ, e ∈ Edgu and f(δ) ∈ Bl. Consistency w.r.t. σ also ensures that
for all δ′ ∈ [0, δ], f(δ′) 6∈ Cl \ Bl, otherwise a controllable transition would necessarily
have been taken before reaching 〈loc(s), f(δ)〉. Moreover, since δ ∈ span(f, loc(s)), for
all δ′ ∈ [0, δ], f(δ′) ∈ Inv(l). Therefore, since u ∈ RWAM

l

(
A�l ∪ Cl \ Bl ∪ Inv(l), Bl \ A�l

)
,

there must be a δ′ ∈ [0, δ] with f(δ′) ∈ A�l, hence the conclusion.

4. THE LOCAL ALGORITHM
The previous section reduces the reachability control problem to the computation of
the operator RWAM. Let us start by examining the basic properties of RWAM.

Example 4.1. As witnessed by Figure 4(a), the first argument of RWAM does
not distribute over union; in other words RWAM

l (U1 ∪ U2, V ) 6= RWAM
l (U1, V ) ∪

RWAM
l (U2, V ). In particular, for the polyhedra in Figure 4(a), with the flow constraint

F = Flow(l) shown in the left-hand side box, we have that the area called R3 belongs
to RWAM

l (U1 ∪ U2, V ) but it does not belong to either RWAM
l (U1, V ) or RWAM

l (U2, V ).
Hence, computing RWAM

l (U, V ) for convex U (a relatively simple task) does not extend
easily to general polyhedra.

On the other hand, the following proposition allows us to restrict the second argu-
ment of RWAM to being a convex polyhedron.

PROPOSITION 4.2. For all polyhedra U , V1, and V2 it holds that

RWAM
l (U, V1 ∪ V2) = RWAM

l (U, V1) ∩ RWAM
l (U, V2).

Indeed, all trajectories from a given point avoid the union of two polyhedra if and only
if those same trajectories avoid each of them.

Example 4.3. It is easy to see that it is not possible to restrict the analysis from
arbitrary trajectories to straight-line trajectories. In Figure 4(b), the dotted area con-
tains the set of points that must reach U1 ∪ U2 following straight-line trajectories. On
the other hand, RWAM

l (U1 ∪ U2, ∅) = U1 ∪ U2, because all other points (including those
in the dotted area) can avoid U1 ∪ U2 by passing through the gap between U1 and U2.

Here, we show how to compute RWAM based on the operator which is used to solve
safety control problems: the May Reach While Avoiding operator RWAm

l (U, V ), return-
ing the set of states from which there exists a trajectory that reaches U while avoiding
V . Formally:

RWAm
l (U, V ) =

{
u ∈ Val(X)

∣∣∣∃f ∈ Adm(〈l, u〉), δ ≥ 0 :

f(δ) ∈ U and ∀ 0 ≤ δ′ < δ : f(δ′) ∈ V ∪ U
}
.

In safety control problems, RWAm is used to compute the states from which the envi-
ronment may reach an unsafe state (in U ) while avoiding the states from which the
controller can take a transition to a safe state (in V ). Notice that RWAm is a classi-
cal operator, known under different names such as Reach [Tomlin et al. 2000], Un-
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V U1 U2

R1 R2

R3

F

(a) RWAM
l (U1 ∪ U2, V ) 6= RWAM

l (U1, V ) ∪
RWAM

l (U2, V ).

U1

U2F

(b) Straight-line trajectories are not suffi-
cient to avoid U1 ∪ U2.

Fig. 4. Basic properties of RWAM. The boxes on the left represent the convex polyhedron F = Flow(l) in
the (ẋ, ẏ) plane. Thick arrows represent the extremal directions of flow.

avoid Pre [Balluchi et al. 2003], and flow avoid [Wong-Toi 1997]. We recently gave the
first sound and complete algorithm for computing it on LHGs [Benerecetti et al. 2013].

In the rest of this section, we consider a fixed location l ∈ Loc and we omit the l
subscript whenever possible. For a polyhedron G and p ∈ G, we say that p is t-bounded
in G if all admissible trajectories starting from p eventually exit from G. Formally, p is
t-bounded if for all f ∈ Adm(〈l, p〉) there exists δ ≥ 0 such that f(δ) 6∈ G. We denote by
t-bnd(G) the set of points of G that are t-bounded in it, and we say that G is t-bounded
if all points p ∈ G are t-bounded in G.

Example 4.4. Consider the L-shaped polyhedron G depicted in Figure 5, where the
only flow direction is upwards. Point p1 is not t-bounded in G, because G extends indef-
initely upwards from p1. Point p2 is t-bounded because it sits on the upper boundary
of G, and finally p3 is t-bounded in G, as the trajectory that starts from p3 eventually
(but not immediately) exits from G. The gray region of G is t-bnd(G).

p3

p2

p1

G

F

Fig. 5. A non-convex polyhedron containing t-bounded and non-t-bounded points.

We now show how to relate RWAM and RWAm, by exploiting the following idea.
First, notice that all points in U belong to RWAM(U, V ) by definition. Now, the content
of RWAM(U, V ) can be partitioned into two regions: the first region is U ; the second
region must be t-bounded, because each point in the second region must eventually
reach U . If we can find a polyhedron Over that over-approximates RWAM(U, V ) and
such that Over \ U is t-bounded, we can use RWAm to refine it. Precisely, we can use
RWAm to identify and remove the points of Over that may leave Over without hitting
U first.

If Over \ U is not t-bounded, the above technique does not work, because RWAm

cannot identify (and remove) the points that may remain forever in Over without ever
reaching U . This idea is formalized by the following result.

THEOREM 4.5. For all disjoint polyhedra U and V , such that V is convex, let Over
be a polyhedron such that: (i) RWAM(U, V ) ⊆ Over ⊆ V and (ii) Over \ U is t-bounded.
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Then,

RWAM(U, V ) = Over \ RWAm(Over , U). (3)

PROOF. [⊆] Let u ∈ RWAM(U, V ). By assumption (i), it holds u ∈ Over . We prove
that u 6∈ RWAm(Over , U). Assume the contrary; according to the definition of RWAm,
there exist a trajectory f ∈ Adm(〈l, u〉) and a delay δ ≥ 0 such that f(δ) ∈ Over and
f(δ′) ∈ U ∪ Over for all 0 ≤ δ′ < δ. Again by assumption (i), it holds U ⊆ Over and
hence f(δ′) ∈ U for all 0 ≤ δ′ ≤ δ. Since Over ⊆ RWAM(U, V ), the trajectory f leads
from u to a point outside RWAM(U, V ), without passing through U .

Let f ′ be a trajectory witnessing the fact that f(δ) 6∈ RWAM(U, V ). The trajectory
obtained by concatenating f at time δ and f ′ is a witness for u 6∈ RWAM(U, V ), which
is a contradiction.

V

U

Over

u1

f1

u2

f3 f2

δU

δU

δV δV δ′

F

Fig. 6. Different ways of not belonging to RWAM(U, V ).

[⊇] Let u 6∈ RWAM(U, V ). It is immediate that u 6∈ U . We prove that u 6∈ Over \
RWAm(Over , U). If u 6∈ Over , we are done. Hence, assume that u ∈ Over . Since u 6∈
RWAM(U, V ), by definition there is a trajectory f ∈ Adm(〈l, u〉) such that for all δ ≥ 0,
if f(δ) ∈ U the there is a previous time δ′ ≤ δ such that f(δ′) ∈ V . We distinguish two
cases:

— First, assume that the trajectory f never reaches U (see trajectory f1 in Figure 6).
By assumption (ii), there exists δ′ ≥ 0 such that f(δ′) 6∈ Over \U . Since f(δ′) 6∈ U , we
conclude f(δ′) 6∈ Over . As a consequence, it holds u ∈ RWAm(Over , U), and we are
done.

— Otherwise, let DU = {δ ≥ 0 | f(δ) ∈ U} 6= ∅ and δU = inf DU . There are two cases:
first assume δU ∈ DU (as in trajectory f2 in Figure 6). Since f(δU ) ∈ U , there exists
a previous time δ′ ≤ δU with f(δ′) ∈ V . This implies that f reaches V (and hence
Over ) at time δ′ while remaining outside U up until δ′ (included). As a consequence,
u ∈ RWAm(Over , U) and we are done.
Next, assume δU 6∈ DU (as in trajectory f3 in Figure 6). Let DV = {δ ≥ 0 | f(δ) ∈ V }.
Since DU is not empty, neither is DV . Let δV = inf DV . If δV < δU , there exists a
time between δV and δU when f reaches V (and hence Over ). Since f remains in U
until δU , we can conclude that u ∈ RWAm(Over , U).
Otherwise, δV ≥ δU . However, assuming δV strictly larger than δU leads to an im-
mediate contradiction, so in fact δV = δU . Now, if δV ∈ DV , then it immediately
follows that u ∈ RWAm(Over , U). Otherwise, there are elements of DV arbitrarily
close to δV . Hence, f(δV ) ∈ cl(V ). Let δ̂ ∈ DV , define a trajectory f ′ as follows: f ′
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coincides with f up to time δV ; then, f ′ proceeds along a straight line from f(δV ) to
f(δ̂); finally, it continues as f after time δ̂. By Lemma 3.2, f ′ ∈ Adm(〈l, u〉). Since
f(δV ) ∈ cl(V ) and f(δ̂) ∈ V , by the convexity of V it holds that f ′(δ) ∈ V for all
δV < δ ≤ δ̂. Therefore, at all times up to δ̂ (included), f ′ remains in U ∪ Over . Once
again we obtain that u ∈ RWAm(Over , U).

Example 4.6. An example of the application of Theorem 4.5 is depicted in Figure 7,
where U and V are the gray boxes and Over is the outer box, excluding V . The set
RWAm(Over , U) can be divided in two areas: area X1 contains the points that may
reach V (which is a part of Over ) while avoiding U , and area X2 contains the points
that may exit Over through its top and right sides. Following Equation 3, we remove
X1 and X2 from Over , and we are left with the region U \V and the two regions R1 and
R2, whose points are forced to enter U while avoiding V , as requested by RWAM(U, V ).

R1

R2

X1 X2

V

U

Over

F

Fig. 7. Relationship between RWAM and RWAm.

The results above ensure that, if
we can effectively compute the opera-
tor RWAm on polyhedra and we start
from a suitable over-approximation for
RWAM(U, V ), then we can also effec-
tively compute RWAM(U, V ), by apply-
ing Equation 3. The operator RWAm

is shown to be computable by Benere-
cetti et al. [2013], whereas Sections 5
and 6 describe techniques for comput-
ing the desired over-approximation. By
Lemma 3.4 this, in turn, allows us to compute CPreR, leading to the following theorem.

THEOREM 4.7. For all polyhedral sets of states A, CPreR(A) is computable.

Notice that the above result provides no guarantee of termination for the global fix-
point in Theorem 3.1. In particular, it does not imply semi-decidability of the reacha-
bility control problem, as the fixpoint may not be reached within ω iterations of CPreR.

5. ON BOUNDED POLYHEDRA
In order to apply Theorem 4.5, we must be able to compute a suitable polyhedron t-
bounded w.r.t. some convex (and bounded) polyhedron F . Since, however, boundedness
w.r.t. arbitrary trajectories is hard to directly reason about, we shall relate it to geo-
metric boundedness, i.e., boundedness w.r.t. straight-line trajectories. The objective of
this section is, therefore, to provide properties connecting these two notions.

For a (possibly non-convex) polyhedron G and a convex polyhedron F , we say that G
is bounded w.r.t. F if for all p ∈ G and all c ∈ F there exists a constant δ ≥ 0 such that
p + δc 6∈ G. Intuitively, G is bounded w.r.t. F if all straight lines starting from G and
whose slope belongs to F eventually exit from G. Clearly, if the origin is contained in
F , then F admits stationary trajectories and the following observation follows.

PROPOSITION 5.1. If F is a convex polyhedron containing the origin, then no poly-
hedron is bounded w.r.t. F .

The following necessary condition for t-boundedness is immediate, since straight
lines are a special case of trajectories.

PROPOSITION 5.2. If a polyhedron is t-bounded w.r.t F , then it is bounded w.r.t. F .
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We now turn our attention to sufficient conditions for t-boundedness w.r.t. a closed
and convex polyhedron F . We can prove that, when an admissible trajectory lies in P
in an infinite sequence of diverging time instants, there is a straight trajectory that
always lies in P .

Given two convex polyhedra P and F , and a point x, for all c ∈ F , define reachPx (c)
as the infimum of the delays δ ≥ 0 such that x + δc ∈ P , or ∞ if no such δ exists.
Intuitively, reachPx (c) is the minimum time needed to reach P from x along direction c.
Clearly, if P is a hyperplane of equation ax = b, then reachPx (c) = b−ax

ac .

LEMMA 5.3. Let F be a closed and bounded convex polyhedron, P a convex polyhe-
dron, x ∈ P , and f ∈ Adm(x, F ). In addition, let {δi}i∈N be a diverging sequence of time
instants. If f(δi) ∈ P for all i ∈ N then there exists c ∈ F such that x + δc ∈ P for all
δ ≥ 0.

PROOF. For all δ ≥ 0, let g(δ) = f(δ)−x
δ . By Lemma 3.2, it holds that g(δ) ∈ F . The

infinite sequence {g(δi)}i∈N takes value in the compact set F . Let ci = g(δi), by Bolzano-
Weierstrass there exists a subsequence {cij}j∈N that converges to a point ĉ ∈ F . Let
exitx(c) = sup{δ ≥ 0 | x + δc ∈ P} be the time needed to exit from P following the
direction c. To obtain our thesis it suffices to show that exitx(ĉ) = ∞. Notice that for
all i ≥ 0 it holds that exitx(ci) > δi. Let P1, . . . , Pm be the supporting hyperplanes of
P , where Ph is defined by ahx = bh for all h = 1, . . . ,m. When exitx(c) < ∞ we have
that: (i) exitx(c) = min{reachPhx (c) | h = 1, . . . ,m and reachPhx (c) > 0}, where min ∅ = 0;
(ii) since reachPhx (c) is continuous in c, so is exitx(c). Notice that if reachx(ci) = ∞ for
some i, then the thesis follows immediately. Otherwise, continuity of exitx implies the
following:

exitx(ĉ) = exitx(lim
j
cij ) = lim

j
exitx(cij ) ≥ lim

j
δij =∞.

Lemma 5.3 allows us to state a sufficient condition for being t-bounded w.r.t. F .

LEMMA 5.4. If a convex polyhedron is bounded w.r.t. a closed convex F then it is
t-bounded w.r.t. F .

PROOF. Assume P is a convex polyhedron not t-bounded w.r.t F . Then there exist
a point p ∈ P and an admissible trajectory f ∈ Adm(p, F ), such that f(δ) ∈ P , for
all δ ≥ 0. Clearly, f ∈ Adm(p, F ) as well. Then, for any strictly increasing diverging
sequence of (non negative) time instants {δi}i∈N, it holds f(δi) ∈ P . Lemma 5.3 applied
to F , P , p, f and {δi}i∈N gives us a c ∈ F such that p + δc ∈ P , for all δ ≥ 0. As a
consequence, P is not bounded w.r.t. F , hence the thesis.

Note that, when F is not closed, being bounded w.r.t. F is no longer sufficient for a
polyhedron to be t-bounded w.r.t F , as shown by the following example.

F

Fig. 8. On the right, a polyhedron which is bounded w.r.t. F but not t-bounded w.r.t F , and a trajectory that
remains forever in it (see Example 5.5).

Example 5.5. Consider the unbounded polyhedron P shown on the r.h.s. of Fig-
ure 8. The dashed contour of F (on the l.h.s. of the figure) indicates that F is topolog-
ically open, so that its extremal directions (1, 0) and (0, 1) are not proper (i.e., they do
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not belong to F ). It turns out that P is bounded w.r.t. F , because all straight lines whose
slope belongs to F eventually exit from it, but it is not t-bounded w.r.t. F . The figure
shows a trajectory that remains forever in P . Its slope approaches asymptotically the
extremal direction (1, 0).

Lemma 5.4, together with Proposition 5.2, shows that t-boundedness is in fact equiv-
alent to geometric boundedness, in case F is closed and convex.

COROLLARY 5.6. A convex polyhedron is t-bounded w.r.t a closed convex F if and
only if it is bounded w.r.t. F .

We conclude the section with the following theorem, which lifts the necessary and
sufficient condition for t-boundedness from convex polyhedra to general polyhedra.

THEOREM 5.7. A polyhedron G is t-bounded w.r.t. a closed convex F if and only if
each convex polyhedron P ∈ [[G]] is t-bounded w.r.t. F .

PROOF. [only if ] Clearly, if from every point in G each trajectory admissible w.r.t.
F eventually leaves G, then each trajectory admissible w.r.t. F starting from a convex
polyhedron P ∈ [[G]] also leaves P . Hence the thesis.
[if ] If G is empty, the result is trivially true. Assuming 0 ∈ F leads to a contradiction.
Indeed, if this were the case, by Proposition 5.1, no polyhedron could be bounded w.r.t.
F and, by Lemma 5.4, each convex polyhedron in P ∈ [[G]] would not be t-bounded w.r.t.
F , contradicting the hypothesis. Therefore, we can assume that 0 6∈ F .

We now proceed by induction on the cardinality of [[G]]. If the cardinality is 1, the
thesis immediately follows.

Let |[[G]]| > 1 and pick an arbitrary P ∈ [[G]]. By inductive hypothesis, G \ P is t-
bounded w.r.t. F . By contradiction, assume that G is not t-bounded w.r.t. F , and let
p ∈ G and f ∈ Adm(p, F ) be such that f(δ) ∈ G for all δ ≥ 0. If f eventually remains
forever in G \ P (i.e., there is δ ≥ 0 such that for all δ′ ≥ δ it holds f(δ′) ∈ G \ P ), we
conclude that G \P is not t-bounded w.r.t. F , contradicting the inductive hypothesis. If
f eventually remains forever in P , the contradiction follows form the assumption that
P is t-bounded w.r.t. F . Therefore, f enters and exits from P infinitely often. Formally,
for all δ ≥ 0 there exist δ′, δ′′ ≥ δ such that f(δ′) ∈ P and f(δ′′) ∈ G\P . Since [[G\P ]] is a
finite set of convex polyhedra, there must be a convex polyhedron P ′ ∈ [[G\P ]] which is
adjacent to P and such that f crosses the boundary between P and P ′ infinitely often.

For any two polyhedra A and B, we define their boundary to be

bndry(A,B) = (cl(A) ∩B) ∪ (A ∩ cl(B)).

It is not hard to see that, if both A and B are convex polyhedra, then so is bndry(A,B).
Let, now, b = bndry(P, P ′) be the boundary between P and P ′, such that f crosses b
infinitely often, i.e., for all δ ≥ 0 there is δ′ > δ such that f(δ′) ∈ b. Since both P
and P ′ are convex and bounded w.r.t. F by assumption, then b is both convex and t-
bounded w.r.t. F . Let {δi}i∈N be a sequence of time instants such that (i) f(δi) ∈ b and
(ii) δi+1 ≥ δi + 1.

By Corollary 5.6, b must be bounded w.r.t. F . Since, however, {δi}i∈N is an increasing
diverging sequence and f(δi) ∈ b, for all i ∈ N, Lemma 5.3 gives us a straight direction
c belonging to F with f(δ0) + δ c ∈ b, for all δ ≥ 0. This contradicts the fact that b is
bounded w.r.t. F . Hence, we conclude the thesis.

5.1. Computing Boundedness For Convex Polyhedra
We conclude this section by providing effective ways to test for boundedness of a convex
polyhedron P and to compute the set of points of a convex polyhedron which are not
t-bounded.
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We say that a vector r is a ray (a.k.a. direction of unboundedness) of a polyhedron G
if there exists a point x ∈ G such that for all δ ≥ 0 it holds x + δr ∈ G. We denote by
Rays(G) the set of rays of G.

Convex polyhedra admit two finite representations, in terms of constraints or gen-
erators. Libraries like PPL [Bagnara et al. 2008] maintain both representations for
each convex polyhedron and efficient algorithms exist for keeping them synchronized
[Chernikova 1968; Verge 1992]. The constraint representation refers to the set of linear
inequalities whose solutions are the points of the polyhedron. The generator represen-
tation consists in three finite sets of points, closure points, and rays, that generate all
points in the polyhedron by linear combination. More precisely, for each convex poly-
hedron P ⊆ Rn there exists a triple (V,C,R) such that V , C, and R are finite sets of
points in Rn, and x ∈ P if and only if it can be written as∑

v∈V
αv · v +

∑
c∈C

βc · c+
∑
r∈R

γr · r, (4)

where all coefficients αv, βc and γr are non-negative reals,
∑
v∈V αv+

∑
c∈C βc = 1, and

there exists v ∈ V such that αv > 0. We call the triple (V,C,R) a generator system for
P .
Intuitively, the elements of V are the proper vertices of the polyhedron P , the elements
of C are vertices of the topological closure of P that do not belong to P , and each
element of R represents a direction of unboundedness of P . In the following, we tacitly
assume that generator systems are minimal, in the sense that no element from V , C,
or R can be removed without affecting the corresponding polyhedron. Moreover, we
assume w.l.o.g. that the sets V , C, and R are mutually disjoint.5

For a convex polyhedron P , let OP denote its characteristic cone, i.e., the closed poly-
hedron generated by the origin 0 and all the rays of P . If (VP , CP , RP ) is the generator
system for P , then ({0}, ∅, RP ) is the generator system for OP . The following theorem
shows how we can effectively and efficiently test whether P is bounded w.r.t. F . For
two sets of points A and B, the Minkowski sum A⊕B is {a+ b | a ∈ A, b ∈ B}.

THEOREM 5.8. For all convex polyhedra P and F , P is bounded w.r.t. F iff OP ∩F =
∅.

PROOF. [⇒] By hypothesis, for all p ∈ P and for all c ∈ F there exists δ ≥ 0 such
that p+δ ·c /∈ P . By Proposition 5.1 we have that 0 /∈ F . Let c ∈ F , we show that c /∈ OP .
Assume by contradiction that c ∈ OP , we can write c = 1 · 0 +

∑
r∈Rp βrr =

∑
r∈Rp βrr.

Now, let x ∈ Vp be a vertex of P , we show that for all γ ≥ 0 the point x′ = x+γc belongs
to P . Indeed, we have

x′ = x+ γc = 1 · x+ γ
∑
r∈Rp

βrr = 1 · x+
∑
r∈Rp

γβrr.

Therefore, x′ ∈ P , i.e. P is not bounded w.r.t. F , contradicting the hypothesis.
[⇐] Assume by contradiction that c ∈ F ∩ OP . By the decomposition theorem for

convex polyhedra [Schrijver 1986], since OP is the characteristic cone of P , there exists
a non-empty convex polyhedron P ′ such that P = P ′⊕OP . In particular, as 0 ∈ OP , we
have that P ′ is a subset of P . Moreover, since c ∈ OP , also δc ∈ OP for all δ ≥ 0. We can
then conclude that for all p′ ∈ P ′, it holds p′ + δc ∈ P for all δ ≥ 0. Therefore, P is not
bounded w.r.t. {c} and a fortiori w.r.t. F .

5To ensure this condition, a duplicate generator x ∈ V ∩ C can be removed from C, while a duplicate
generator x ∈ R ∩ (V ∪ C) can be replaced in R by a scalar multiple δx, for δ > 0, that does not belong to
V ∪ C.
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6. COMPUTING A SUITABLE OVER-APPROXIMATION
Theorem 4.5 leaves us with one problem: We need to compute a polyhedron Over satis-
fying the assumptions of the theorem. As before, if not explicitly stated, we consider a
fixed location l with a closed and bounded convex polyhedron F representing the flow
constraint, and we omit the notations l and F whenever possible.

The first result states that the set t-bnd(G) of points that are t-bounded in G can
easily be computed by collecting those polyhedra in [[G]] that are bounded w.r.t. F .

THEOREM 6.1. Given a polyhedron G, let B be the subset of [[G]] containing the
convex polyhedra that are bounded w.r.t. F . Then, t-bnd(G) =

⋃
P∈B P .

PROOF. Let us consider the two inclusions separately.
(⊇) This is immediate by observing that any polyhedron in B is bounded w.r.t. F and,
by Corollary 5.6, t-bounded w.r.t. F as well. Hence, if p ∈

⋃
P∈B P then p ∈ t-bnd(G).

(⊆) Let p ∈ t-bnd(G). Then there must be at least one convex polyhedron P ∈ [[G]] with
p ∈ P . If P is bounded w.r.t. F , then P ∈ B and the thesis follows.

If, on the other hand, P is not bounded w.r.t. F , then there exists a point p′ ∈ P and
a slope c ∈ F such that p′ + c δ ∈ P , for all δ ≥ 0. Hence, c is a direction of infinity of
P and, being P a convex polyhedron, the same property holds for all the points in P
including p, therefore p + δc ∈ P , for all δ ≥ 0. This contradicts the hypothesis that
p ∈ t-bnd(G). Hence the conclusion.

The effective computation of the operator t-bnd(G) is, then, ensured by Theorem 5.8.
In the following, we present two different over-approximations that satisfy the as-
sumptions of Theorem 4.5.

The first over-approximation. Given two disjoint polyhedra U and V , let

Over1 = U ∪ t-bnd(U ∩ V ).

We prove that Over1 satisfies the two assumptions of Theorem 4.5. Theorem 6.1 en-
sures that Over1 \ U is t-bounded. The following lemma proves the other assumption.

LEMMA 6.2. It holds RWAM(U, V ) ⊆ Over1 ⊆ V .

PROOF. For the first inclusion, let u ∈ RWAM(U, V ). If u ∈ U , the thesis is obvious.
Otherwise, u ∈ U and, by definition of RWAM, u ∈ V : hence, u ∈ U ∩V . Moreover, for all
trajectories f ∈ Adm(〈l, u〉) there exists δ ≥ 0 such that f(δ) ∈ U . Hence, u is t-bounded
in U ∩ V . By Item (ii) of Theorem 6.1, u ∈ t-bnd(U ∩ V ) ⊆ Over1.

For the second inclusion, let u ∈ Over1. If u ∈ U , clearly u 6∈ V . Otherwise, u ∈
t-bnd(U ∩ V ) ⊆ U ∩ V ⊆ V , and we are done.

The second over-approximation. We propose an alternative over-approximation
Over2, which significantly improves the performance of computing RWAM, as shown
in Section 7. To this end, let us first introduce the following operator. Given a polyhe-
dron G and a convex polyhedron F , the positive pre-flow operator G↙∃>0F is defined as
follows:

G↙∃>0F = {u− δc | u ∈ G, c ∈ F, δ > 0}.

Intuitively, G↙∃>0 F contains the points that may reach G via a straight trajectory of
non-zero length whose slope is in F . Notice that, for a convex polyhedron P , P↙∃>0F is
also a convex polyhedron. We write G↙∃>0 as an abbreviation for G↙∃>0F .

The following recent result shows how to efficiently compute, for convex polyhedra
P and F , the forward version P ↗>0 F of the operator above, called positive post-flow,
by using the generator representation.
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THEOREM 6.3. [Benerecetti et al. 2011b] Given two convex polyhedra P and F , let
(VP , CP , RP ) (resp., (VF , CF , RF )) be a generator system for P (resp., F ). The triple (VP ⊕
VF , CP ∪ VP , RP ∪ VF ∪ CF ∪RF ) is a generator system for P↗>0F .

By observing that P↙∃>0 F = P↗>0−F and that the operator distributes over unions in
its first argument, operator G↙∃>0 F , for a general polyhedron G and a convex F , can
easily be computed by exploiting the above theorem.

Let, now, (VF , ∅, ∅) be a generator system for F (being closed and bounded, F has no
closure points and no rays), we define the following operator:

G↙genF
∆
= G ∪

⋂
g∈VF

(
G↙∃>0 {g}

)
.

Intuitively, G↙genF contains the set of points from which the system reaches G along
all the directions corresponding to the generators of F . The second over-approximation
for RWAM can then be defined as follows:

Over2 =
(
U ∪ t-bnd

(
(U↙genF ) \ U

))
\ V.

Example 6.4. Consider the situation in Figure 9, where U and V are the two shaded

U

V

Z1Z1 Z1

Z2

O2

O1

F

Fig. 9. An example showing the two over-approximations. Polyhedra U , O1, Z1, and Z2 are unbounded and
drawn truncated. It holds Over1 = U ∪O1 and Over2 = U ∪O2.

areas. In particular, U is an unbounded U-shaped non-convex polyhedron (drawn trun-
cated). The first over-approximation consists in the points in U , plus the result of ap-
plying t-bnd to U ∩ V . The t-bnd operator removes from its argument the three un-
bounded convex polyhedra denoted by Z1. The result is Over1 = U ∪ O1, where O1 is
the half-plane below the dashed line, excluding V .

For the second over-approximation, we first compute (U↙gen F ) \ U , which is the
union of O2 and Z2. Then, the t-bnd operator removes the polyhedron Z2, because it is
not bounded w.r.t. F (notice that Z2↙∃>0= Z2). Hence, we obtain that Over2 = U ∪O2.

Once again, we prove that Over2 satisfies the two assumptions of Theorem 4.5. The-
orem 6.1 ensures that Over2 \ U is t-bounded. The following lemma proves the other
assumption.

LEMMA 6.5. It holds RWAM(U, V ) ⊆ Over2 ⊆ V .

PROOF. The fact that Over2 ⊆ V is obvious by definition. Regarding the other inclu-
sion, let x ∈ RWAM(U, V ). By definition, x 6∈ V , so we are left to prove that

x ∈ U ∪ t-bnd
(
(U↙genF ) \ U

)
.

If x ∈ U , the thesis is trivially true. Otherwise, we prove that x ∈ t-bnd
(
(U↙genF )\U

)
.

To this purpose, we prove that x ∈ (U↙gen F ) \ U and that x is t-bounded in it. By
Item (ii) of Theorem 6.1, this implies the thesis.
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Let g ∈ VF ⊆ F be any point of F . Since x 6∈ U and g ∈ F , by definition of RWAM

it holds x ∈ U ↙∃>0 {g}. Finally, from x ∈ (U↙gen F ) \ U and x ∈ RWAM(U, V ), we
immediately obtain that for every f ∈ Adm(x, F ), there is δ > 0 such that f(δ) ∈ U .
Since, however, U and (U↙genF )\U are disjoint, we conclude that f(δ) 6∈ (U↙genF )\U .
Hence, x is t-bounded in (U↙genF ) \ U .

7. EXPERIMENTS WITH SPACEEX+
We implemented the algorithms described in the previous sections on top of the open-
source tool SpaceEx [Frehse et al. 2011] 6. In this section we show some results ob-
tained by running the package against the maze example introduced in Section 2. The
experiments were performed on an Intel Core i5-2400 (3.10GHz) PC.

We consider three versions of the maze example, which differ in their dynamics. In
the first version, called Det and depicted in Figure 2, the vehicle follows exactly the
current direction at constant speed, with no disturbances. Moreover, the vehicle speed
combined with the mandatory delay between changes of direction ensure that U-turns
are impossible. In the second version, called Cyclic, we decrease the mandatory delay
to 1

3 , so that the vehicle is able to perform U-turns. Finally, in the third version, called
Non-Det, the vehicle is subject to disturbances both in the direction of movement and
laterally; U-turns are disabled.

The dynamics of the North direction in the three scenarios is described by the fol-
lowing table:

Version ẋ ẏ ṫ

Det 0 2 1
Non-det [-0.02, 0.02] [1.95, 2.05] 1
Cyclic 0 2 3

We tested our implementation on progressively more complex mazes, by increasing
the number of corridors. Figure 10 shows the shape of the longest maze (9 corridors)
and the section of the winning regions for t = 0. The target is denoted by T and areas
filled with the same color represent the winning region for a specific initial direction.
Shorter mazes are obtained by progressively removing those corridors that are further
away from the target.

Consider Figure 10(b), which represents the winning region for the direction South.
The first corridor on the left is split into three vertical stripes, of which only the middle
one is not winning. Indeed, if the vehicle is moving down in the middle of the corridor,
it is not able to perform a full U-turn without hitting the walls. On the contrary, the
dashed trajectory on the bottom left corner of Figure 10(b) demonstrates a legal U-
turn.

Next, let us focus on the 5 areas corresponding to location East in Figure 10(c),
denoted by E1, . . . , E5. Notice that the area labeled E4 covers only half the width of the
horizontal corridor. Indeed, if the vehicle is located in the other half of the corridor,
when turning north it will be too close to the target and will not be able to take the
second turn towards the target in time. The area E3 ends 2 meters before the east
wall, as beyond that the vehicle cannot avoid hitting the wall before being able to turn
south. Finally, the points in the area E5 are trivially winning, as they can reach the
target by simply proceeding east. All areas Ei become gradually smaller as we move
away from the target, due to the lateral uncertainty.

6A pre-release of our implementation, called SpaceEx+, can be downloaded at
http://wpage.unina.it/m.faella/spaceexplus.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 M. Benerecetti and M. Faella
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(a) Det. The winning region for the direction West coincides with the target.

T

(b) Cyclic, direction South.
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(c) Non-Det. The winning region for the direction West coincides with the target.

Fig. 10. Winning regions for the three scenarios, when t = 0.

Number of corridors
Version 2 3 4 5 6 7 8 9

Det (O1) 0.40 0.45 0.72 1.05 2.10 2.62 3.84 5.65
Det (O2) 0.28 0.35 0.55 0.83 1.65 2.21 3.05 4.25

Cyclic (O1) 1.30 2.11 3.82 6.45 9.12 16.02 23.17 31.37
Cyclic (O2) 1.23 2.40 4.21 7.05 12.10 16.61 23.06 27.50

Non-Det (O1) 1.81 5.02 8.83 23.05 41.16 83.50 100.26 375.05
Non-Det (O2) 0.55 3.46 4.61 15.14 23.45 40.14 50.48 102.50

Fig. 11. Performances in seconds for the three scenarios, using the two overapproximations.

The table in Figure 11 shows the run time in seconds for the three different versions
and an increasing number of corridors. As anticipated in the previous section, the re-
sults confirm that the second overapproximation Over2 (indicated by O2 in the figure)
improves the performances of the synthesis procedure in most cases, especially when
complex dynamics is involved. Although still limited in scope, the results show that
the proposed approach is practical, at least for relatively small problems.
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8. CONCLUSIONS
In this paper we considered the problem of automatically synthesizing a switching
controller for Linear Hybrid Games with respect to reachability objectives. The prob-
lem was considered in the literature only for decidable subclasses, such as Initialized
Rectangular Hybrid Games [Henzinger et al. 1999]. We present a sound and complete
symbolic algorithm for the finite-horizon case, based on the RWAM operator. The main
technical insight is that the related RWAm operator can be used to compute RWAM, by
refining a suitable over-approximation.

We implemented the procedure in the tool SpaceEx and performed some preliminary
experiments, showing that the procedure converges in non-trivial cases and that the
approach is practical, at least for relatively small case studies.

The work presented in this paper paves the way for some interesting future work.
For instance, we are currently investigating the problem of automatically constructing
a concrete control strategy, which, coupled with the hybrid system, would result in
a closed system, amenable to automatic verification by state-of-the-art analysis tools.
The obtained closed system might be verified w.r.t. other properties of interest, such as
stability, performance, etc.

Another interesting line of future investigation lies in selecting specific control
strategies according to some optimality measure, such as reaching in minimum time
or cost.

A. ADDITIONAL PROOFS FROM SECTION 3
We provide a proof of Lemma 3.3. Let {Wi}i≥0 and {σi}i≥0 be the sequence of winning
regions and strategies defined in the proof of Theorem 3.1. The following Lemma holds.

LEMMA A.1. For all n ≥ 0, s ∈ Wn if and only if for all runs r ∈ Runs(s, σn), r
reaches Wn−1 within the first joint step.

PROOF. [if ] The thesis follows immediately from the definition of CPreR(·), as σn
serves as a witness to s ∈ CPreR(Wn−1) ⊆Wn.

[only if ] If s ∈Wn−1 the thesis is obviously true. Otherwise, s ∈Wn\Wn−1 and hence
s ∈ CPreR(Wn−1). Assume by contradiction that there exists a run r ∈ Runs(s, σn) such
that its first joint step s f,δ−−→ s′

e−→ s′′ does not visit any state in Wn−1. Formally, for all
δ′ ∈ [0, δ] we have 〈loc(s), f(δ′)〉 6∈ Wn−1 and moreover s′′ 6∈ Wn−1 (Point (i)). We shall
consider finite-duration joint steps, as infinite-duration steps can be treated similarly.

If e ∈ Edgc, by definition of consistency we have that val(s′) ⊗ val(s′′) ∈ σn(e). Since
s′ 6∈ Wn−1 and by the definition of σn, we have that val(s′) ⊗ val(s′′) ∈ Jump(Wn \
Wn−1, e,Wn−1). On the other hand, s′′ 6∈Wn−1, which is a contradiction.

Hence, it must be e ∈ Edgu. Since, however, s′′ 6∈ Wn−1 by Point (i), we derive that
s′ 6∈ CPreR(Wn−1) and s′ 6∈Wn (Point (ii)). We now distinguish two cases.
Case 1. No controllable transition leading to Wn−1 is enabled during the timed step
from s to s′. Then, for all strategies σ, either the joint step above is consistent with σ or
the strategy interrupts the trajectory f before time δ, obtaining a different joint step
of the form s

f,δ′−−→ t
e′−→ t′, where e′ ∈ Edgc and t′ 6∈ Wn−1. In both cases, Wn−1 is not

reached within one joint step, contradicting s ∈ CPreR(Wn−1).
Case 2. Let l = loc(s) and assume that there exists a delay δ′ ∈ [0, δ] such that in
〈l, f(δ′)〉 there is an enabled controllable transition that may lead to Wn−1. Let ∆ be
the set of all such δ′ and let δ̂ = inf ∆. Notice that t , 〈l, f(δ̂)〉 6∈Wn−1 by Point (i).

Assume first that δ̂ ∈ ∆. It follows that the joint step of the form r′ = s
f,δ̂−−→ t

e′−→ t′,
with e′ ∈ Edgc and t′ ∈ Wn−1, is possible. If t ∈ Wn \ Wn−1, then val(t) ⊗ val(t′) ∈
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P , Jump(Wn \Wn−1, e
′,Wn−1) ⊆ σn(e′). Then, by definition of consistency, f cannot

exit from the activated region P�X without the system taking some discrete transition.
Hence, for all δ′′ ∈ [δ̂, δ], it holds that f(δ′′) ∈ P�X ⊆ σn(e′)�X and, therefore, 〈l, f(δ′′)〉 ∈
Wn. In particular, s′ ∈Wn, which contradicts Point (ii). Hence, t 6∈Wn (Point (iii)), and,
in general, it holds that 〈l, f(γ)〉 6∈Wn, for all delays γ ∈ ∆.

We can show that, for all strategies σ, there is a run from state t compatible with
σ that does not reach Wn−1 within the first joint step. Let σ be an arbitrary strategy.
If σ allows some controllable transition to be taken before time δ̂, then by definition
of δ̂, the transition leads outside Wn−1, contradicting s ∈ CPreR(Wn−1). If instead σ

does not prescribe any controllable transition before time δ̂, the timed step s
f,δ̂−−→ t is

consistent with σ. Since t 6∈ Wn, by Point (iii), and the discrete step t
e′−→ t′ (i.e., the

second step of r′) leads to Wn−1, there must be another discrete step t e′′−→ t′′ such that

e′′ ∈ Edgu and t′′ 6∈ Wn−1. Hence, the sequence s f,δ̂−−→ t
e′′−→ t′′ is consistent with σ and

contradicts s ∈ CPreR(Wn−1).
Next, assume δ̂ 6∈ ∆. For all ε > 0 there exists ε′ ∈ [0, ε) s.t. δ̂ + ε′ ∈ ∆ and, hence,

〈l, f(δ̂+ε′)〉 e1−→ t1, with e1 ∈ Edgc and t1 ∈Wn−1. We proved above that 〈l, f(δ̂+ε′)〉 6∈Wn

and, as a consequence, the steps 〈l, f(δ̂ + ε′)〉 e2−→ t2, where e2 ∈ Edgu and t2 6∈ Wn−1,
are also possible. Since there are only finitely many uncontrollable transitions, there
exists an uncontrollable transition eu leading outside Wn−1 that is enabled along f in
infinitely many points, arbitrarily close to f(δ̂). Formally, for all ε > 0, there exists
γε ∈ [0, ε) s.t. δ̂ + γε ∈ ∆ and 〈l, f(δ̂ + γε)〉

eu−→ tu, where tu 6∈ Wn−1. Then, there exists a
convex polyhedron B ∈ [[Pre (eu,Wn−1)]] that is adjacent to the point f(δ̂) and contains
the points f(δ̂ + γε), for infinitely many values of ε. Let s̄ be a point in B such that
s̄ = 〈l, f(δ̂ + ε̄)〉 for some ε̄ > 0. Let f ′ be the straight-line trajectory going from f(δ̂)

to f(δ̂ + ε̄) in time ε̄. Formally, f ′(δ′) = f(δ̂) + f(δ̂+ε̄)−f(δ̂)
ε̄ · δ′ for all δ′ ∈ [0, ε̄], which is

admissible by Lemma 3.2. Since f(δ̂) ∈ cl(B) and f(δ̂ + ε̄) ∈ B, then the straight line
f ′ is completely contained in B, by convexity of B. Let σ be an arbitrary strategy and

Ef ′ = {e ∈ Edgc | ∀δ′ > 0 ∃δ′′ ∈ [0, δ′) . f ′(δ′′) ∈ σ(e)�X}
be the set of controllable transitions enabled by σ at times arbitrarily close to 0 along
f ′. Consider the case where Ef ′ is not empty. Since, for every e ∈ Edgc, σ(e) is a polyhe-
dron, then for each e ∈ Ef ′ there must be a convex polyhedron Pe ∈ [[σ(e)�X ]] adjacent to
f ′(0) and some γe ∈ (0, ε] such that f ′(γ) ∈ Pe, for all γ ∈ (0, γe). Let Y =

⋂
e∈Ef′

Pe and
Γ = {γ ∈ (0, ε̄] | f ′(γ) ∈ Y }. Since f ′ is a straight-line trajectory and Y is a non-empty
convex polyhedron adjacent to f ′(0) containing an initial segment of f ′ (excluding the
point f ′(0)), Γ contains a left-open interval with infimum 0 and a positive supremum

γ∗. Therefore, the sequence of steps r′′ = s
f,δ̂−−→ t

f ′,γ∗/2−−−−→ t′
e−→ t′′, where e ∈ Edgu and

t′′ 6∈Wn−1, is consistent with σ and contradicts s ∈ CPreR(Wn−1).
Finally, assume that Ef ′ = ∅ and let Γ′ be the set of time instants γ′ such that no

controllable transition is enabled by σ in f ′(γ′). Since Ef ′ = ∅, Γ′ is not empty and
contains an interval with infimum 0 and positive supremum γ∗. Then, a sequence of
steps of the same form as r′′ is consistent with σ, contradicting s ∈ CPreR(Wn−1).
Hence, all runs consistent with σn reach Wn−1 in a single joint step.

LEMMA A.2. For all n ≥ 0, states s ∈ Wn, and timed steps s f,δ−−→ s′ consistent with
σn, either s′ ∈Wn or the timed step encounters T .
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PROOF. We proceed by induction on n, with the case n = 0 being trivial. By con-
tradiction, assume that s′ 6∈ Wn and T is not encountered during the timed step. By
Lemma A.1 (only if ), each run starting from s and consistent with σn reaches Wn−1

within the first joint step. We distinguish two cases, both leading to contradictions.
Case 1. Wn−1 is reached during the above timed step, i.e., s̄ = 〈loc(s), f(δ̄)〉 ∈ Wn−1

for some δ̄ ∈ [0, δ]. By the induction hypothesis applied to the residual timed step

s̄
f̄ ,δ−δ̄−−−−→ s′ (where f̄(γ) = f(δ̄ + γ)), either s′ ∈ Wn−1 ⊆ Wn or T is encountered during

the residual timed step. Both conclusions contradict our previous assumptions.
Case 2. Wn−1 is not reached during the above timed step. Then, each joint step start-
ing from s′ and consistent with σn will reach Wn−1, because such step can be appended
to s

f,δ−−→ s′, giving rise to a joint step starting from s. By Lemma A.1 (if ), we have
s′ ∈Wn, which is a contradiction.

LEMMA A.3. For all n ≥ 0 and s ∈Wn, each joint step starting from s and consistent
with σn+1 is consistent with σn until it (possibly) reaches T .

PROOF. Let s δ,f−−→ s′
e−→ s′′ be a joint step consistent with σn+1 (the case of an infinite-

duration step is analogous). The timed step from s to s′ is consistent with σn because
σn by definition contains fewer activation regions than σn+1, i.e., σn activates each
controllable transition in a smaller region of the state-space. If the timed step from s
to s′ encounters T , we are done. Otherwise, by Lemma A.2 we have that s′ ∈ Wn. If
e ∈ Edgc, we have that val(s′) ⊗ val(s′′) ∈ P for some P ∈ σn+1(e). As by definition
σn+1(e) = σn(e) ∪ {Q}, where Q ⊆ (Wn+1 \Wn)⊗Wn, it follows that P 6= Q and hence
P ∈ σn(e) and the step s′

e−→ s′′ is consistent with σn. Finally, assume that e ∈ Edgu.
Then, the step s′

e−→ s′′ is obviously consistent with σn because σn cannot prevent the
occurrence of uncontrollable transitions.

LEMMA 3.3. For all n ≥ 0 and states s ∈Wn, all runs starting from s and consistent
with σn reach T .

PROOF. The proof is by induction on n. The thesis is trivial for n = 0, since W0 = T .
Let n > 0 and r ∈ Runs(s, σn). By Lemma A.1, r reaches a state s′ ∈ Wn−1 within the
first joint step. By Lemma A.3, the suffix of r starting from s′ is consistent with σn−1

until it (possibly) reaches T . By inductive hypothesis, every run starting from s′ and
consistent with σn−1 eventually reaches T . So, r reaches T as required.
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G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and
O. Maler. 2011. SpaceEx: Scalable Verification of Hybrid Systems. In CAV 11: Proc. of 23rd Conf. on
Computer Aided Verification. 379–395.

L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen. 2006. Reachability and control synthesis for
piecewise-affine hybrid systems on simplices. IEEE Trans. on Automatic Control 51, 6 (June 2006),
938–948. DOI:http://dx.doi.org/10.1109/TAC.2006.876952

T.A. Henzinger. 1996. The Theory of Hybrid Automata. In 11th IEEE Symp. Logic in Comp. Sci. 278–292.
DOI:http://dx.doi.org/0.1109/LICS.1996.561342

T.A. Henzinger, B. Horowitz, and R. Majumdar. 1999. Rectangular Hybrid Games. In CONCUR 99:
Concurrency Theory. 10th Int. Conf. (Lect. Notes in Comp. Sci.), Vol. 1664. Springer, 320–335.
DOI:http://dx.doi.org/10.1007/3-540-48320-9\ 23

T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. 1995. What’s decidable about hybrid automata?. In
Proc. of the 27th annual ACM symposium on Theory of computing (STOC ’95). ACM, 373–382.

T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. 1998. What’s Decidable about Hybrid Automata? J. of
Computer and System Sciences 57, 1 (1998), 94 – 124. DOI:http://dx.doi.org/10.1006/jcss.1998.1581

Z. Lin and M.E. Broucke. 2006. Resolving Control to Facet Problems for Affine Hypersurface
Systems on Simplices. In Decision and Control, 2006 45th IEEE Conference on. 2625–2630.
DOI:http://dx.doi.org/10.1109/CDC.2006.377067

J. Lygeros, C. Tomlin, and S. Sastry. 1999. Controllers for reachability specifications for hybrid systems.
Automatica 35, 3 (1999), 349 – 370. DOI:http://dx.doi.org/10.1016/S0005-1098(98)00193-9

O. Maler. 2002. Control from computer science. Annual Reviews in Control 26, 2 (2002), 175–187.
DOI:http://dx.doi.org/10.1016/S1367-5788(02)00030-5

O. Maler, A. Pnueli, and J. Sifakis. 1995. On the Synthesis of Discrete Controllers for Timed Systems.
In 12th Annual Symp. on Theor. Asp. of Comp. Sci. (Lect. Notes in Comp. Sci.), Vol. 900. Springer.
DOI:http://dx.doi.org/10.1007/3-540-59042-0\ 76

M.L. Minsky. 1967. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

P.J. Ramadge and W.M. Wonham. 1987. Supervisory Control of a Class of Discrete-Event Processes. SIAM
Journal of Control and Optimization 25 (1987), 206–230. DOI:http://dx.doi.org/10.1137/0325013

A. Schrijver. 1986. Theory of linear and integer programming. John Wiley and Sons.
C.J. Tomlin, J. Lygeros, and S. Shankar Sastry. 2000. A game theoretic approach to controller design for

hybrid systems. Proc. of the IEEE 88, 7 (2000), 949–970.
H. Le Verge. 1992. A note on Chernikova’s Algorithm. Technical Report 635. IRISA, Rennes.
H. Wong-Toi. 1997. The synthesis of controllers for linear hybrid automata. In 36th IEEE Conf. on Decision

and Control. IEEE, San Diego, CA, 4607 – 4612. DOI:http://dx.doi.org/10.1109/CDC.1997.649708

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


