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We consider the problem of computing the controllable
region of a Linear Hybrid Automaton with controllable and
uncontrollable transitions, w.r.t. a reachability objective.
We provide a semi-algorithm for the problem, by proposing
the first algorithm in the literature for computing the set
of states that must reach a given polyhedron while avoiding
another one, subject to a polyhedral constraint on the slope
of the trajectory. Experimental results are presented, based
on an implementation of the proposed algorithm on top of
the tool PHAVer.
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1. INTRODUCTION
Hybrid systems are an established formalism for model-

ing physical systems which interact with a digital controller.
From an abstract point of view, a hybrid system is a dy-
namic system whose state variables are partitioned into dis-
crete and continuous ones.

Hybrid automata [12] are the most common syntactic va-
riety of hybrid system: a finite set of locations, similar to
the states of a finite automaton, represents the value of the
discrete variables. The current location, together with the
current value of the (continuous) variables, form the instan-
taneous description of the system. Change of location hap-
pens via discrete transitions, and the evolution of the vari-
ables is governed by differential equations attached to each
location. In a Linear Hybrid Automaton (LHA), the allowed
differential equations are in fact differential inclusions of the
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type ẋ ∈ P , where ẋ is the vector of the first derivatives of
all variables and P ⊆ Rn is a convex polyhedron. Notice
that differential inclusions are non-deterministic, allowing
for infinitely many solutions.

We study LHAs whose discrete transitions are partitioned
into controllable and uncontrollable ones, and we wish to
compute the set of states from which the controller can en-
sure a given goal, regardless of the trajectory followed by
the continuous variables and despite the occurrence of un-
controllable discrete transitions. Hence, the problem can be
viewed as a two player game [19]: on one side the controller,
who can only issue controllable transitions, on the other side
the environment, who can choose the trajectory of the vari-
ables and can take uncontrollable transitions whenever they
are enabled.

As control goal, we consider reachability, i.e., the objec-
tive of reaching a given set T of target states. The problem
is known to be undecidable, being harder than the standard
reachability verification (i.e., 1-player reachability) for tri-
angular hybrid automata [14], a special case of LHAs. We
present a sound and complete semi-algorithm for the prob-
lem1, based on a novel algorithm for computing, within a
given location, the set of states that must reach a given
polyhedral region while avoiding another one.

We recently presented a semi-algorithm for the control
problem of LHAs with safety objectives [6, 5]. Although the
control goal we examine, as a language of infinite traces, is
the dual of safety, the corresponding synthesis problems are
not dual, because our game model is asymmetric (the con-
tinuous behavior is always uncontrollable). Hence, it is not
possible to solve the control problem with reachability goal
T by exchanging the roles of the two players and then solving
the safety control problem with goal T (i.e., the complement
of T ). To the best of our knowledge, the reachability goal
was never considered for LHAs.

We present an implementation of the proposed semi-algo-
rithm in a tool called PHAVer+, and a set of preliminary
experiments.

Related work. The idea of automatically synthesizing con-
trollers for dynamic systems arose in connection with dis-
crete systems [17]. Then, the same idea was applied to real-
time systems modeled by timed automata [16], thus coming
one step closer to the continuous systems that control the-
ory usually deals with. Finally, it was the turn of hybrid
systems [13, 10], and in particular of Linear Hybrid Au-

1In other words, a procedure that may or may not terminate,
and that provides the correct answer whenever it terminates.



tomata [20], the very model that we analyze in this paper.
Wong-Toi proposed a symbolic semi-algorithm to compute
the controllable region of a LHA w.r.t. a safety goal [20].
Our recent work [6] revisits the solution proposed by Wong-
Toi, identifying some inaccuracies which prevent complete-
ness of the procedure, and proposes a sound and complete
semi-algorithm for the problem.

Tomlin et al. [19] and Balluchi et al. [4] analyze much
more expressive models, with generality in mind rather than
automatic synthesis.

Asarin et al. [3] investigate the synthesis problem for hy-
brid systems where all discrete transitions are controllable
and the trajectories satisfy given linear differential equa-
tions of the type ẋ = Ax. The expressive power of these
constraints is incomparable with the one offered by LHAs.
In particular, linear differential equations give rise to deter-
ministic trajectories, while differential inclusions are non-
deterministic. In control theory terms, differential inclusions
can represent the presence of environmental disturbances.
Bouyer et al. [8] propose a general abstraction technique for
hybrid systems, and focus on decidable classes of o-minimal
automata.

The rest of the paper is organized as follows. Section 2
introduces and motivates the model. The proposed semi-
algorithm is presented as divided in two layers: Section 3
illustrates the outer layer, dealing with multiple locations
and discrete transitions, while Section 4 focuses on the geo-
metric problem arising from the analysis of a single location.
Finally, Section 5 reports some experiments performed on
our implementation of the procedure.

2. LINEAR HYBRID AUTOMATA
A convex polyhedron is a subset of Rn that is the inter-

section of a finite number of strict and non-strict affine half-
spaces. A polyhedron is a subset of Rn that is the union of
a finite number of convex polyhedra. For a general (i.e., not
necessarily convex) polyhedron G ⊆ Rn, we denote by cl(G)

its topological closure, and by [[G]] ⊆ 2Rn

its representation
as a finite set of convex polyhedra.

Given an ordered set X = {x1, . . . , xn} of variables, a
valuation is a function v : X → R. Let Val(X) denote
the set of valuations over X. There is an obvious bijection
between Val(X) and Rn, allowing us to extend the notion
of (convex) polyhedron to sets of valuations. We denote
by CPoly(X) (resp., Poly(X)) the set of convex polyhedra
(resp., polyhedra) on X. Let A be a set of valuations, states
or points in Rn, we denote by A its complement.

We use Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted vari-
ables, used to represent the first derivatives, and X ′ to de-
note the set {x′1, . . . , x′n} of primed variables, used to rep-
resent the new values of variables after a transition. Arith-
metic operations on valuations are defined in the straight-
forward way. An activity over X is a differentiable function
f : R≥0 → Val(X). Let Acts(X) denote the set of activities

over X. The derivative ḟ of an activity f is defined in the
standard way and it is an activity over Ẋ. A Linear Hybrid
Automaton H = (Loc, X,Edgc,Edgu,Flow , Inv , Init) con-
sists of the following:

• A finite set Loc of locations.

• A finite setX = {x1, . . . , xn} of continuous, real-valued
variables. A state is a pair 〈l, v〉 of a location l and a
valuation v ∈ Val(X).

• Two sets Edgc and Edgu of controllable and uncontrol-
lable transitions, respectively. They describe instanta-
neous changes of locations, in the course of which vari-
ables may change their value. Each transition (l, µ, l′) ∈
Edgc ∪Edgu consists of a source location l, a target lo-
cation l′, and a jump relation µ ∈ Poly(X ∪X ′), that
specifies how the variables may change their value dur-
ing the transition. The projection of µ on X describes
the valuations for which the transition is enabled; this
is often referred to as a guard.

• A mapping Flow : Loc → CPoly(Ẋ) attributes to each
location a set of valuations over the first derivatives
of the variables, which determines how variables can
change over time.

• A mapping Inv : Loc → Poly(X), called the invariant.

• A mapping Init : Loc → Poly(X), contained in the
invariant, defining the initial states of the automaton.

We use the abbreviations S = Loc × Val(X) for the set of
states and Edg = Edgc ∪ Edgu for the set of all transitions.
Moreover, we let InvS =

⋃
l∈Loc{l} × Inv(l) and InitS =⋃

l∈Loc{l} × Init(l). Notice that InvS and InitS are sets of
states. Given a set of states A and a location l, we denote by
A�l the projection of A on l, i.e. {v ∈ Val(X) | 〈l, v〉 ∈ A}.

2.1 Semantics
The behavior of a LHA is based on two types of transi-

tions: discrete transitions correspond to the Edg component,
and produce an instantaneous change in both the location
and the variable valuation; timed transitions describe the
change of the variables over time in accordance with the
Flow component.

Given a state s = 〈l, v〉, we set loc(s) = l and val(s) = v.
An activity f ∈ Acts(X) is called admissible from s if (i)

f(0) = v and (ii) for all δ ≥ 0 it holds ḟ(δ) ∈ Flow(l). We
denote by Adm(s) the set of activities that are admissible
from s. Additionally, for f ∈ Adm(s), the span of f in l,
denoted by span(f, l) is the set of all values δ ≥ 0 such that
〈l, f(δ′)〉 ∈ InvS for all 0 ≤ δ′ ≤ δ. Intuitively, δ is in the
span of f iff f never leaves the invariant in the first δ time
units. If all non-negative reals belong to span(f, l), we write
∞ ∈ span(f, l).

Runs. Given two states s, s′, and a transition e ∈ Edg ,
there is a discrete step s

e−→ s′ with source s and target
s′ iff: (i) s, s′ ∈ InvS , (ii) e = (loc(s), µ, loc(s′)), and (iii)
(val(s), val(s′)[X ′/X]) ∈ µ, where val(s′)[X/X ′] is the valu-
ation in Val(X ′) obtained from s′ by renaming the variables.

Whenever there is a discrete step s
e−→ s′, we say that e is

enabled in s.

There is a timed step s
δ,f−−→ s′ with duration δ ∈ R≥0 and

activity f ∈ Adm(s) iff: (i) s ∈ InvS , (ii) δ ∈ span(f, loc(s)),
and (iii) s′ = 〈loc(s), f(δ)〉. For technical convenience,
we admit timed steps of duration zero2. A special timed

step is denoted s
∞,f−−−→ and represents the case when the

system follows an activity forever. This is only allowed if

2Timed steps of duration zero can be disabled by adding a
clock variable t to the automaton and requesting that each
discrete transition happens when t > 0 and resets t to 0
when taken.



∞ ∈ span(f, loc(s)). Finally, a joint step s
δ,f,e−−−→ s′ rep-

resents the timed step s
δ,f−−→ 〈loc(s), f(δ)〉 followed by the

discrete step 〈loc(s), f(δ)〉 e−→ s′.
A run is a sequence

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 · · · sn · · · (1)

of alternating timed and discrete transitions, such that ei-
ther the sequence is infinite, or it ends with a timed tran-

sition of the type sn
∞,f−−−→. If the run r is finite, we define

len(r) = n to be the length of the run, otherwise we set
len(r) =∞. The above run is non-Zeno if for all δ ≥ 0 there

exists i ≥ 0 such that
∑i
j=0 δj > δ. We denote by States(r)

the set of all states visited by r. Formally, States(r) is the
set of all states 〈loc(si), fi(δ)〉, for all 0 ≤ i ≤ len(r) and
all 0 ≤ δ ≤ δi. Notice that the states from which discrete
transitions start (states s′i in (1)) appear in States(r). More-
over, if r contains a sequence of one or more zero-time timed
transitions, all intervening states appear in States(r).

Zenoness and well-formedness. A well-known problem
of real-time and hybrid systems is that definitions like the
above admit runs that take infinitely many discrete transi-
tions in a finite amount of time (i.e., Zeno runs), even if
such behaviors are physically meaningless. In this paper,
we assume that the hybrid automaton under consideration
generates no such runs. This is easily achieved by using an
extra variable, representing a clock, to ensure that the de-
lay between any two transitions is bounded from below by a
constant. We leave it to future work to combine our results
with the more sophisticated approaches to Zenoness known
in the literature [4, 9].

Moreover, we assume that the hybrid automaton under
consideration is non-blocking, i.e., before all system trajec-
tories leave the invariant, there must be an uncontrollable
transition enabled. Formally, for all states s in the invari-
ant, if all activities f ∈ Adm(s) eventually leave the in-
variant, there exists one such activity f and a time δ ∈
span(f, loc(s)) such that s′ = 〈loc(s), f(δ)〉 is in the invari-
ant and there is an uncontrollable transition e ∈ Edgu that
is enabled in s′.If a hybrid automaton is non-Zeno and non-
blocking, we say that it is well-formed. In the following, all
hybrid automata are assumed to be well-formed.

Example 1. Consider the LHAs in Figure 1, in which
locations contain the invariant (first line) and the flow con-
straint (second line). Solid (resp., dashed) edges represent
controllable (resp., uncontrollable) transitions, and guards
are true. The fragment in Figure 1(a) is well-formed, be-
cause the system may choose derivative ẋ = 0 and remain
indefinitely in location l. The fragment in Figure 1(b) is
also well-formed, because the system cannot remain in l for-
ever, but an uncontrollable transition leading outside is al-
ways enabled. Finally, the fragment in Figure 1(c) is not
well-formed, because the system cannot remain in l forever,
and no uncontrollable transition is enabled.

Strategies. We consider non-deterministic and memoryless
(or positional) strategies. Let ⊥ denotes the null action.

A strategy is a function σ : S → 2Edgc∪{⊥} \ ∅ such that:

(a) for all s ∈ S, if e ∈ σ(s)∩Edgc, then there exists s′ ∈ S
such that s

e−→ s′;

x ∈ [0, 1]
ẋ ∈ [−1, 1]

l

(a) Well-formed.

x ∈ [0, 1]
ẋ ∈ [1, 2]

l

...u

(b) Well-formed.

x ∈ [0, 1]
ẋ ∈ [1, 2]

l

...c

(c) Not well-formed.

Figure 1: Three LHA fragments.

(b) if ⊥ ∈ σ(s), for all f ∈ Adm(s) there exists δ > 0 such
that for all 0 < δ′ < δ it holds δ′ 6∈ span(f, loc(s)) or
⊥ ∈ σ(〈loc(s), f(δ′)〉).

Condition (a) ensures that a strategy can only choose transi-
tions allowed by the automaton. Condition (b) requires that
if a strategy chooses the null action, then it must continue
to do so for a positive amount of time along each activity
that remains in the invariant. This ensures that the null
action is enabled in right-open regions, so that there is an
earliest instant in which a controllable transition becomes
mandatory.

Notice that a strategy can always choose the null action.
The well-formedness condition ensures that the system can
always evolve in some way, be it a timed step or an un-
controllable transition. In particular, even if we are on the
boundary of the invariant we allow the controller to choose
the null action, because, in our interpretation, it is not the
responsibility of the controller to ensure that the invariant
is not violated.

We say that a run like (1) is consistent with a strategy σ
if for all 0 ≤ i < len(r) the following conditions hold:

• for all δ ≥ 0 such that
∑i−1
j=0 δj ≤ δ <

∑i
j=0 δj , we

have ⊥ ∈ σ(〈loc(si), fi(δ −
∑i−1
j=0 δj)〉);

• if ei ∈ Edgc then ei ∈ σ(s′i).

We denote by Runs(s, σ) the set of runs starting from the
state s and consistent with the strategy σ.

Reachability control problem. Given a hybrid automaton
and a set of states T ⊆ InvS , the reachability control prob-
lem asks whether there exists a strategy σ such that, for all
initial states s ∈ InitS and all runs r ∈ Runs(s, σ) it holds
States(r) ∩ T 6= ∅. We call the above σ a winning strategy.

3. THE GLOBAL SEMI-ALGORITHM
The semi-algorithm for solving the reachability control

problem is based on the so-called controllable predecessor
operator CPreR(·). For a set of states A, the operator
CPreR(A) returns the set of states from which the controller
can ensure that the system reaches A within the next joint
step. Based on the activity chosen by the environment, this
may happen for three reasons: (1) at some point during the
activity a controllable transition is enabled that leads into
A, and all uncontrollable transitions enabled in the mean-
while also lead to A; (2) the activity naturally enters A,
and all uncontrollable transitions enabled in the meanwhile



also lead to A; (3) the activity eventually leaves the invari-
ant, and all uncontrollable transitions that are ever enabled
along the activity lead to A. Notice that in case (3) the
system is forced to reach A because, by well-formedness, an
uncontrollable transition must be enabled before the activity
leaves the invariant.

The three cases can be formalized as the following predi-
cates Φi, on an activity f , location l, and target set A. For
a set of states A and x ∈ {u, c}, let Prex(A) be the set of
states in InvS where some discrete transition belonging to
Edgx is enabled, which leads to A.

Φ1(f, l, A) = ∃δ ∈ span(f, l) : 〈l, f(δ)〉 ∈ Prec(A) and

∀0 ≤ δ′ ≤ δ : 〈l, f(δ′)〉 6∈ Preu(A)

Φ2(f, l, A) = ∃δ ∈ span(f, l) : 〈l, f(δ)〉 ∈ A and

∀0 ≤ δ′ < δ : 〈l, f(δ′)〉 6∈ Preu(A)

Φ3(f, l, A) =∞ 6∈ span(f, l) and

∀δ ∈ span(f, l) : 〈l, f(δ)〉 6∈ Preu(A)

We then have:

CPreR(A) =
{
〈l, u〉 ∈ InvS

∣∣∣∀f ∈ Adm(〈l, u〉) :

Φ1(f, l, A) or Φ2(f, l, A) or Φ3(f, l, A)
}
.

In discrete games, the CPre operator used for solving
reachability games is the same as the one used for the safety
goal [15]. In both cases, when the operator is applied to
a set of states T , it returns the set of states from which
Player 1 can force the game into T in one step. In hybrid
games, the situation is different: a joint step represents a
possibly complex behavior, extending over a (possibly) non-
zero time interval. While the CPre for reachability only
requires T to be visited once during such interval, CPre for
safety requires that the entire behavior constantly remains
in T . Hence, in Section 3.1 we present a novel algorithm for
computing CPreR.

The following theorem states the general procedure for
solving the reachability control problem. Due to space con-
straints, we only provide a proof sketch for one direction of
the theorem.

Theorem 1. The answer to the reachability control prob-
lem for target set T ⊆ InvS is positive if and only if

InitS ⊆ µW . T ∪ CPreR(W ), (2)

where µW denotes the least fixpoint.

Proof sketch. [if ] Assume equation 2 holds, we shall
build a winning strategy in two steps. Let

• W0 = T ,

• Wα = T ∪ CPreR(Wα−1), for a successor ordinal α,
and

• Wα =
⋃
β<αWβ for a limit ordinal α.

Moreover, let W ∗ = µW .T ∪CPreR(W ). By Knaster-Tarski
theorem and the well-ordering of ordinals, if s ∈ W ∗ then
there exists the smallest ordinal α such that s ∈Wα. If α is
a limit ordinal, by definition of Wα there exists β < α such

that s ∈Wβ , which contradicts minimality of α. Hence α is
either 0 or a successor ordinal.

Let σ be a strategy defined as follows, for all states s:

• ⊥ ∈ σ(s) and

• for all s ∈W ∗ \T , let α = β+1 be the smallest ordinal
such that s ∈ Wα; for all e ∈ Edgc, we have e ∈ σ(s)

if and only if s
e−→ s′ and s′ ∈Wβ .

While σ is clearly a strategy, it is not necessarily a winning
strategy, as it may admit consistent runs which delay a con-
trollable action either beyond the winning set W ∗ or beyond
its availability. We can, however, recover a winning strategy
by removing the null action ⊥ from certain states. Let σ′ be
any strategy which coincides with σ on all the states, except
for the states s ∈W ∗ with σ(s)∩Edgc 6= ∅, where it satisfies
σ′(s)∩Edgc = σ(s)∩Edgc and the following two conditions
(a) and (b). For all f ∈ Adm(s), let Df,s = {δ > 0 | ∀0 ≤
δ′ ≤ δ : 〈loc(s), f(δ′)〉 ∈ Wα and σ(〈loc(s), f(δ′)〉) ∩ Edgc 6=
∅}:

(a) If there is f ∈ Adm(s) such that Df,s = ∅ then ⊥ 6∈
σ′(s);

(b) For all f ∈ Adm(s), if Df,s 6= ∅ then there exists
δ ∈ Df,s such that ⊥ 6∈ σ′(〈loc(s), f(δ)〉) and ⊥ ∈
σ′(〈loc(s), f(δ′)〉) for all 0 ≤ δ′ < δ.

Intuitively, the new strategy σ′ ensures that following any
activity from a state s ∈ W ∗ in which some controllable
action is enabled, such an action will always be taken before
none of them is available and before leaving W ∗. It can be
proved that σ′ is a winning strategy.

3.1 Computing the Predecessor Operator
In order to compute the predecessor operator, we intro-

duce the Must Reach While Avoiding operator, denoted by
RWAM. Given a location l and two sets of variable valua-
tions U and V , RWAM

l (U, V ) contains the set of valuations
from which all continuous trajectories of the system reach
U while avoiding V 3. Formally, we have:

RWAM
l (U, V ) =

{
u ∈ Val(X)

∣∣∣ ∀f ∈ Adm(〈l, u〉) ∃δ ≥ 0 :

f(δ) ∈ U and ∀ 0 ≤ δ′ ≤ δ : f(δ′) 6∈ V
}
. (3)

By rephrasing the definition of CPreR, we observe that
s = 〈l, u〉 ∈ CPreR(A) iff all activities f starting from u
reach a set of “good” points while avoiding a set of “bad”
points. Good points include Cl = Prec(A)�l according to

Φ1(f, l, A), A�l according to Φ2(f, l, A), and Inv(l) accord-
ing to Φ3(f, l, A). As to the bad points, all predicates Φi
require that the activity avoids Bl = Preu(A)�l, with sub-
tle distinctions at the instant when a good point is reached.
According to Φ1, Bl must be avoided also in that instant
(when Cl is reached), while Φ2 permits the activity f to
reach Bl at the same time as A�l. Since satisfaction of one
Φi is enough for an activity to comply with the requirements
of CPreR, the least restrictive avoidance condition prevails,
namely, Bl \A�l. The following lemma formalizes the above
argument. We say that a set of states A ⊆ S is polyhedral if
for all l ∈ Loc, the projection A�l is a polyhedron.

3In Atl notation [2], we have RWAM(U, V ) ≡ 〈〈ctr〉〉V U (U∧
V ), where ctr is the player representing the controller.



Lemma 1. For all polyhedral sets of states A ⊆ InvS, we
have

CPreR(A) =InvS∩⋃
l∈Loc

{l} × RWAM
l

(
A�l ∪Cl ∪ Inv(l), Bl \A�l

)
,

where Bl = Preu(A)�l and Cl = Prec(A)�l.

Proof. [⊆] Let s = 〈l, u〉 ∈ CPreR(A) and let f ∈
Adm(s). If Φ1(f, l, A) holds, there is δ ∈ span(f, l) such
that f(δ) ∈ Cl and for all 0 ≤ δ′ ≤ δ it holds f(δ′) 6∈ Bl and
hence f(δ′) 6∈ Bl \A�l, satisfying the requirements of (3).
If Φ2(f, l, A) holds, there is δ ∈ span(f, l) such that f(δ) ∈
A �l and for all 0 ≤ δ′ < δ it holds f(δ′) 6∈ Bl. Since
f(δ) 6∈ Bl \A�l, the requirements of (3) are satisfied again.
Finally, if Φ3(f, l, A) holds, we have ∞ 6∈ span(f, l) and
〈l, f(δ)〉 6∈ Bl for all δ ∈ span(f, l). Pick a time δ∗ when f
has left Inv(l) and it has never re-entered it. Formally, we
have δ∗ 6∈ span(f, l), f(δ∗) 6∈ Inv(l), and f(δ) ∈ span(f, l) ∪
Inv(l) for all δ ≤ δ∗. We obtain f(δ∗) ∈ Inv(l) and f(δ) 6∈ Bl
for all 0 ≤ δ ≤ δ∗, satisfying (3) once again.

[⊇] Let l ∈ Loc and u ∈ RWAM
l (A�l ∪Cl∪Inv(l), Bl \A�l).

For all f ∈ Adm(〈l, u〉), let Df be the set of all δ ≥ 0 such

that f(δ) ∈ A�l ∪Cl ∪ Inv(l) and for all 0 ≤ δ′ ≤ δ it holds
f(δ′) 6∈ Bl \ A�l. By definition of RWAM

l , we have Df 6= ∅.
Let δ∗ = inf Df and assume for simplicity that δ∗ ∈ Df , as
the other case can be treated similarly.

For all 0 ≤ δ′ < δ∗ we have both f(δ′) ∈ (A�l∩Cl∩Inv(l))
since δ′ 6∈ Df , and f(δ′) ∈ (Bl ∪ A �l) since δ′ < δ∗ and
δ∗ ∈ Df . Moreover, (A�l ∩ Cl ∩ Inv(l)) ∩ (Bl ∪ A �l) =
Bl ∩ A�l ∩ Cl ∩ Inv(l), and we can conclude that f(δ′) ∈
Bl∩A�l∩Cl∩ Inv(l). If f(δ∗) ∈ A�l, we have δ∗ ∈ span(f, l)
and Φ2(f, l, A). If f(δ∗) ∈ Cl, we have δ∗ ∈ span(f, l) again

and Φ1(f, l, A). Finally, if f(δ∗) ∈ Inv(l) we have Φ3(f, l, A).
Therefore, it holds 〈l, u〉 ∈ CPreR(A).

4. THE LOCAL ALGORITHM
The previous section reduces the solution of the reacha-

bility control problem to the computation of the operator
RWAM. Let us start by examining the basic properties of
RWAM.

Example 2. As witnessed by Figure 2(a), the first ar-
gument of RWAM does not distribute over union, in other
words RWAM

l (U1∪U2, V ) 6= RWAM
l (U1, V )∪RWAM

l (U2, V ).
In particular, in Figure 2(a) we have RWAM

l (U1, V ) = U1 ∪
R1, RWAM

l (U2, V ) = U2 ∪ R2, and RWAM
l (U1 ∪ U2, V ) =

U1 ∪ U2 ∪ R1 ∪ R2 ∪ R3. Hence, computing RWAM
l (U, V )

for convex U (a relatively simple task) does not extend to
general polyhedra.

Additionally, it is not possible to restrict the analysis from
arbitrary activities (i.e., any differentiable function which
stays in the invariant and whose slope belongs to Flow(l))
to straight-line activities. In Figure 2(b), the dotted area
contains the set of points that must reach U1 ∪ U2 follow-
ing straight-line activities. On the other hand, RWAM

l (U1 ∪
U2, ∅) = U1 ∪ U2, because all other points (including those
in the dotted area) can avoid U1 ∪U2 by passing through the
gap between U1 and U2.

Here, we show how to compute RWAM based on the op-
erator which is used to solve safety control problems: the

V U1 U2

R1 R2

R3

F

(a) RWAM
l (U1 ∪ U2, V ) 6=

RWAM
l (U1, V ) ∪ RWAM

l (U2, V ).

U1

U2F

(b) Straight-line activities are not suf-
ficient to avoid U1 ∪ U2.

Figure 2: Basic properties of RWAM. The boxes on
the left represent the convex polyhedron F = Flow(l)
in the (ẋ, ẏ) plane. Thick arrows represent the ex-
tremal directions of flow.

May Reach While Avoiding operator RWAm
l (U, V ), return-

ing the set of states from which there exists a trajectory that
reaches U while avoiding V . Formally,

RWAm
l (U, V ) =

{
u ∈ Val(X)

∣∣∣ ∃f ∈ Adm(〈l, u〉), δ ≥ 0 :

f(δ) ∈ U and ∀ 0 ≤ δ′ < δ : f(δ′) ∈ V ∪ U
}
.

In safety control problems, RWAm is used to compute the
states from which the environment may reach an unsafe state
(in U) while avoiding the states from which the controller
can take a transition to a safe state (in V ). Notice that
RWAm is a classical operator, known under different names
such as Reach [19], Unavoid Pre [4], and flow avoid [20].
We recently gave the first sound and complete algorithm for
computing it on LHAs in [6, 5].

In this section, we consider a fixed location l ∈ Loc. For
a polyhedron G and p ∈ G, we say that p is l-bounded in G
(resp., l-thin in G) if all admissible activities starting from p
eventually (resp., immediately) exit from G. Formally, p is
l-bounded if for all f ∈ Adm(〈l, p〉) there exists δ ≥ 0 such
that f(δ) 6∈ G; p is l-thin if for all f ∈ Adm(〈l, p〉) and all
δ > 0, it holds f(δ) 6∈ G. We denote by bounded l(G) the set
of points of G that are l-bounded in it, and we say that G
is l-bounded (resp., l-thin) if all points p ∈ G are l-bounded
(resp., l-thin) in G.

Example 3. Consider the L-shaped polyhedron G depicted
in Figure 3, where the only flow direction is upwards. Point
p1 is not l-bounded in G, because G extends indefinitely up-
wards from p1. Point p2 is l-thin (and hence l-bounded)
because it sits on the upper boundary of G, and finally p3 is
l-bounded (but not l-thin) in G, as the activity that starts
from p3 eventually (but not immediately) exits from G. The
gray region of G is bounded l(G).

The following result connects RWAM to RWAm, by ex-
ploiting the following idea. All points in U \ V belong to
RWAM

l (U, V ) by definition. Accordingly, let us set Under =
U \ V , for under-approximation.



p3

p2
p1

G

F

Figure 3: A non-convex polyhedron containing l-
thin, l-bounded and non-l-bounded points.

Now, the content of RWAM
l (U, V ) can be partitioned into

two regions: the first region is Under ; the second region must
be l-bounded, because each point in the second region must
eventually reach Under . If we can find a polyhedron Over
that over-approximates RWAM

l (U, V ) and such that Over \
Under is l-bounded, we can use RWAm to refine it. Precisely,
we can use RWAm to identify and remove the points of Over
that may leave Over without hitting U first.

If Over \ Under was not l-bounded, the above technique
would not work, because RWAm cannot identify (and re-
move) the points that may remain forever in Over without
ever reaching Under .

Theorem 2. For all polyhedra U and V , let Under = U \
V and let Over be a polyhedron such that: (i) RWAM

l (U, V ) ⊆
Over ⊆ V and (ii) Over \Under is l-bounded. Then,

RWAM
l (U, V ) = Over \ RWAm

l (Over , U). (4)

Proof. [⊆] Let u ∈ RWAM
l (U, V ). By assumption (i),

it holds u ∈ Over . We prove that u 6∈ RWAm
l (Over , U).

Assume the contrary; according to the definition of RWAm
l ,

there exist an activity f ∈ Adm(〈l, u〉) and a delay δ ≥ 0
such that f(δ) ∈ Over and f(δ′) ∈ U ∪Over for all 0 ≤ δ′ <
δ. Since Over ⊆ RWAM

l (U, V ), the activity f leads from u

to a point in RWAM
l (U, V ), without passing through Under .

Let f ′ be an activity witnessing the fact that f(δ) 6∈
RWAM

l (U, V ). If U is never reached by f before time δ,
the activity obtained by starting with f and then switching
to f ′ from time δ is a witness for u 6∈ RWAM

l (U, V ) (con-
tradiction). If instead f reaches U at time δ′ < δ, it also
holds f(δ′) ∈ V . Then, let D = {δ′ | f(δ′) ∈ V } 6= ∅
and let δ∗ = inf D. For all δ′ < δ∗, it holds f(δ′) ∈ U . If
δ∗ ∈ D then f(δ∗) ∈ V , and f is a witness to the fact that
u 6∈ RWAM

l (U, V ) (contradiction).
Finally, if δ∗ 6∈ D, let δ̄ be any time when f visits U . This

time must be strictly greater than δ∗. By definition of δ∗,
there exists another time between δ∗ and δ̄ where f visits V ,
proving once again that u 6∈ RWAM

l (U, V ) (contradiction).
We conclude that u 6∈ RWAm

l (Over , U), and the thesis.
[⊇] Let u 6∈ RWAM

l (U, V ). It is immediate that u 6∈
Under . We prove that u 6∈ Over \ RWAm

l (Over , U). If
u 6∈ Over , we are done. Hence, assume that u ∈ Over .
Since u 6∈ RWAM

l (U, V ), there is an activity f ∈ Adm(〈l, u〉)
such that for all δ ≥ 0 either (a) f(δ) 6∈ U , or (b) there
exists δ′ ≤ δ such that f(δ′) ∈ V . We distinguish two cases:

• First, assume that the activity f never reaches U (and
hence, Under). By assumption (ii), there exists δ′ ≥ 0
such that f(δ′) 6∈ Over \ Under . Since f(δ′) 6∈ Under ,
we conclude f(δ′) 6∈ Over . As a consequence, it holds
u ∈ RWAm

l (Over , U), and we are done.

• Otherwise, let DU = {δ ≥ 0 | f(δ) ∈ U} 6= ∅ and
δU = inf DU . There can be two cases: first assume
δU ∈ DU ; by (b) there exists δ′ ≤ δU with f(δ′) ∈ V .
This implies that f reaches V (and hence Over) at
time δ′ while remaining in U up until δ′ (included).
As a consequence, u ∈ RWAm

l (Over , U) and we are
done.

Next, assume δU 6∈ DU . Let DV = {δ | f(δ) ∈ V }.
We have DV 6= ∅ due to DU 6= ∅ and property (b)
above. Let δV = inf DV . If δV < δU , there exists a
time between δV and δU when f reaches V (and hence
Over). Since f remains in U until δU , we can conclude
that u ∈ RWAm

l (Over , U).

Otherwise, δV ≥ δU . For all δ′ such that f(δ′) ∈ U ,
δV ≤ δ′ by (b) and the fact that δV = inf DV . As
a consequence, since all possible intermediate points
between δU and δV cannot belong to U , and δU =
inf DU , no such point exists, i.e., δV = δU .

Now, if δV ∈ DV , then it immediately follows that
u ∈ RWAm

l (Over , U). Otherwise, there are elements
of DV arbitrarily close to δV . Since V is a polyhedron
and f is differentiable, there exists δ′ > δV such that
f(δ) ∈ V ⊆ Over for all δV < δ ≤ δ′. Therefore, at all
times up to δ′ (included), f remains in U ∪Over , once
again we obtain that u ∈ RWAm

l (Over , U).

R1

R2

X1 X2

V

U

Over

F

Figure 4: Relationship between RWAM and RWAm.

Example 4. An example of the application of Theorem 2
is depicted in Figure 4, where U and V are the gray boxes and
Over is the outer box, excluding V . The set RWAm

l (Over , U)
can be divided in two areas: area X1 contains the points that
may reach V (which is a part of Over) while avoiding U , and
area X2 contains the points that may exit Over through its
top and right sides. Following Equation 4, we remove X1

and X2 from Over, and we are left with the region U \ V
and the two regions R1 and R2, whose points are forced to
enter U while avoiding V , as requested by RWAM

l (U, V ).

4.1 Computing a Suitable
Over-Approximation

Theorem 2 leaves us with one problem: We need to com-
pute a polyhedron Over satisfying the assumptions of the
theorem. To this purpose, we introduce the following no-
tions.

Given a polyhedron G and a convex polyhedron F , the
positive pre-flow operator G↙>0F is defined as follows:

G↙>0F = {u− δc | u ∈ G, c ∈ F, δ > 0}.



Intuitively, G↙>0 F contains the points that may reach G
via a straight trajectory of non-zero length whose slope is in
F . We write G↙>0 as an abbreviation for G↙>0 Flow(l).

For a (not necessarily convex) polyhedron G and a convex
polyhedron F , we say that G is bounded w.r.t. F if for all
p ∈ G and all c ∈ F there exists a constant δ ≥ 0 such
that p + δc 6∈ G. Intuitively, G is bounded w.r.t. F if all
straight lines starting from G and whose slope belongs to
F eventually exit from G. The relationship between this
definition of boundedness and the notion of l-boundedness
is explored in Section 4.2.

We define the operator RU (for Remove Unbounded) that,
given a polyhedron G, removes some convex regions of G
that are not l-bounded, in such a way that the resulting set is
l-bounded, and every point that was l-bounded in G belongs
to the resulting set. Let B be the subset of [[G]] containing
the convex polyhedra that are bounded w.r.t. cl(Flow(l)).
We set

RU(G) =
⋃
P∈B

P ∪
⋃

P∈[[G]]\B

(
P \ P↙>0

)
. (5)

The following result summarizes the main properties of the
RU operator and it is proved in Section 4.2.

Theorem 3. For all polyhedra G, the following hold: (i)
RU(G) is l-bounded, and (ii) bounded l(G) ⊆ RU(G).

Given two polyhedra U and V , define Under = U \ V and

Over = Under ∪ RU(U ∩ V ).

We prove that Under and Over satisfy the two assumptions
of Theorem 2. Theorem 3 ensures that Over \ Under is l-
bounded. The following lemma proves the other assumption.

Lemma 2. It holds RWAM
l (U, V ) ⊆ Over ⊆ V .

Proof. For the first inclusion, let u ∈ RWAM
l (U, V ). If

u ∈ Under = U \ V , we are done. Otherwise, u ∈ U ∪ V .
Moreover, by definition of RWAM, u ∈ V (and hence u ∈
U ∩ V ) and for all activities f ∈ Adm(〈l, u〉) there exists
δ ≥ 0 such that f(δ) ∈ U . Hence, u is l-bounded in U ∩ V .
By property (ii) of Theorem 3, u ∈ RU(U ∩ V ) ⊆ Over .

For the second inclusion, let u ∈ Over . If u ∈ Under = U\
V , clearly u 6∈ V . Otherwise, u ∈ RU(U ∩ V ) ⊆ U ∩ V ⊆ V ,
and we are done.

Section 4.3 shows how to effectively compute RU(·), and
hence Over , using basic operations on polyhedra. Moreover,
RWAm

l (·, ·) is shown to be computable in [6, 5]. Therefore,
we can compute RWAM

l (U, V ) using equation (4). In turn,
this allows us to compute CPreR(·) using Lemma 1.

Theorem 4. For all polyhedral sets of states A, CPreR(A)
is computable.

Notice that the above result provides no guarantee of termi-
nation for the global fixpoint (2). In particular, it does not
imply semi-decidability of the reachability control problem,
as fixpoint (2) may not be reached within ω iterations of
CPreR.

4.2 On Bounded and Thin Polyhedra
The objective of this section is to prove the properties

of the RU(·) operator pertaining l-boundedness, which are
stated by Theorem 3. Since l-boundedness is hard to directly

reason about, we relate it to geometric boundedness, i.e.,
boundedness w.r.t. straight-line activities.

Let us first recall the following lemma, which is an adap-
tation of Lemma 4.1 in [1], and states that any point reached
by an admissible trajectory can be reached with a straight-
line admissible trajectory as well.

Lemma 3 ([1]). For all points p ∈ Inv(l), activities f ∈
Adm(〈l, p〉) and δ > 0, there exists c ∈ Flow(l) such that
f(δ) = p+ δc.

The following is a trivial observation.

Proposition 1. If F is a convex polyhedron containing
the origin, then no polyhedron is bounded w.r.t. F .

We say that a polyhedron G is thin w.r.t. F if for all
p ∈ G, c ∈ F , and δ > 0, it holds p + δc 6∈ G. Intuitively,
G is bounded (resp., thin) w.r.t. F if all straight lines start-
ing from G and whose slope belongs to F eventually (resp.,
immediately) exit from G. The relationships between the
geometric concepts defined in this section and the notions
of l-thin and l-bounded are summarized in Figure 5.

Obviously, being thin w.r.t. F implies being bounded w.r.t.
F . Moreover, being l-thin implies being thin w.r.t. Flow(l),
since straight-line activities are a special case of general ac-
tivities. The following lemma shows that the converse also
holds.

Lemma 4. For all convex polyhedra P , if P is thin w.r.t.
Flow(l) then P is l-thin.

Proof. Assume that P is not l-thin. Then, there exists
a point p ∈ P , an activity f ∈ Adm(〈l, p〉) and a time δ > 0
such that f(δ) ∈ P . By Lemma 3, there exists c ∈ Flow(l)
such that f(δ) = p + δc ∈ P . Hence, P is not thin w.r.t.
Flow(l).

We shall now show with the following lemma that all
points of G that are removed by RU(G) are not l-bounded
in G (i.e., RU(G) does not “remove too much”).

Lemma 5. If a convex polyhedron P is not bounded w.r.t.
cl(Flow(l)) then each point in P ∩P↙>0 is not l-bounded in
P .

Next, we show that the result of RU(G) is l-bounded (i.e.,
RU(G) does not “remove too little”). In order to obtain
this result (stated as Lemma 8), we need a few preliminary
lemmata.

First, we show that if the origin does not belong to the
topological closure of the flow, then there is a flow direction
u such that all possible flows advance in the direction u by
at least |u| for each time unit. We denote by 0 the origin,
i.e., the point whose coordinates are 0.

Lemma 6. Assume 0 6∈ cl(Flow(l)). Then there exists
u ∈ cl(Flow(l)) such that for all v ∈ Flow(l) the scalar
projection of v onto u is at least |u| (i.e., u·v

|u| ≥ |u|, where ·
denotes the inner product).

The following fact is obvious, since straight lines are a special
case of activities.

Proposition 2. If a polyhedron is l-bounded, then it is
bounded w.r.t. Flow(l).
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Figure 5: Relationships between properties of con-
vex polyhedra. Arrows represent implications and
F = Flow(l).

Being bounded w.r.t. Flow(l) is necessary but not sufficient
for a polyhedron to be l-bounded, as shown by the following
example.

Example 5. Consider the unbounded polyhedron P shown
on the r.h.s. of Figure 6. The dashed contour of F (on the
l.h.s. of the figure) indicates that F (i.e., Flow(l)) is topo-
logically open, so that its extremal directions (1, 0) and (0, 1)
are not proper (i.e., they do not belong to F ). It turns out
that P is bounded w.r.t. Flow(l), because all straight lines
whose slope belongs to F eventually exit from it, but it is not
l-bounded. The figure shows an activity that remains forever
in P . Its slope approaches asymptotically the extremal di-
rection (1, 0).

Lemma 7 presents a sufficient condition for being l-bounded.

F

Figure 6: On the right, a polyhedron which is
bounded w.r.t. Flow(l) but not l-bounded, and an
activity that remains forever in it.

Lemma 7. If a polyhedron is bounded w.r.t. cl(Flow(l))
then it is l-bounded.

Proof. Let F = cl(Flow(l)). By Proposition 1, F does
not contain the origin. By Lemma 6, there exists u ∈ F
such that for all v ∈ Flow(l) it holds u · v ≥ |u|2.

Let G be a polyhedron which is bounded w.r.t. F , and let
p ∈ G and f ∈ Adm(〈l, p〉). For all δ ≥ 0, it holds ḟ(δ) ∈
Flow(l). From the above argument, the vector projection of

ḟ(δ) on the direction u has length at least |u|. Hence, for
each time unit, the activity f advances in the direction u by
at least |u|. Since G is bounded w.r.t. {u}, we obtain the
thesis.

The following lemma lifts l-boundedness from convex poly-
hedra to general polyhedra.

Lemma 8. Let G be a polyhedron such that each P ∈ [[G]]
is l-bounded. Then, G is l-bounded.

Proof of Theorem 3. (i) RU(G) is l-bounded. For a con-
vex polyhedron P , the set P \ (P ↙>0) is l-thin, as may
be easily verified from the definitions. Hence, each convex
polyhedron in [[RU(G)]] is either bounded w.r.t. cl(Flow(l))
or l-thin. Since each l-thin polyhedron is l-bounded by def-
inition, and by Lemma 7, we obtain that each convex poly-
hedron in [[RU(G)]] is l-bounded. By Lemma 8, RU(G) is
l-bounded.

(ii) bounded l(G) ⊆ RU(G). Let p ∈ bounded l(G). Then
there must be at least one convex polyhedron P ∈ [[G]] with
p ∈ P . If P is bounded w.r.t. cl(Flow(l)) then, by equation
(5), p ∈ RU(G). If, on the other hand, P is not bounded
w.r.t. cl(Flow(l)), by Lemma 5 we have that P ∩ P ↙>0 is
not l-bounded in P and, a fortiori, not l-bounded in G .
Therefore, p ∈ P \ P↙>0 and, by equation (5), p ∈ RU(G).
Hence the conclusion.

4.3 Computing the RU Operator
As shown in the previous section, the operator RWAM

requires the computation of the operator RU (Remove Un-
bounded) defined by equation (5). In order to compute the
operator RU, we must be able to (i) compute the positive-
preflow P ↙>0 F of a convex polyhedron P w.r.t. another
convex polyhedron F , and (ii) collect, for any polyhedron
G, the convex polyhedra P ∈ [[G]] which are bounded w.r.t.
the convex polyhedron F . In the remainder of the section we
shall show how these two operations can be efficiently im-
plemented employing a canonical representation of convex
polyhedra.

Any convex polyhedron admits a finite representation, in
terms of generators. The generator representation consists
in three finite sets of points, closure points, and rays, that
generate all points in the polyhedron by linear combination.
More precisely, for each convex polyhedron P ⊆ Rn there
exists a triple (VP , CP , RP ) such that VP , CP , and RP are
finite sets of vectors in Rn, and x ∈ P if and only if it can
be written as∑

v∈VP

αv · v +
∑
c∈CP

βc · c+
∑
r∈RP

γr · r, (6)

where all coefficients αv, βc and γr are non-negative reals,∑
v∈VP

αv +
∑
c∈CP

βc = 1, and there exists v ∈ VP such

that αv > 0. We call the triple (VP , CP , RP ) a generator
system for P .
Intuitively, the elements of VP are the proper vertices of
the polyhedron P , the elements of CP are vertices of the
topological closure of P that do not belong to P , and each
element of RP represents a direction of unboundedness (or
infinity) of P .

4.3.1 Computing the Pre-Flow operator
Notice first that the positive pre-flow of P w.r.t. F is

equivalent to the positive post-flow of P w.r.t. −F :

P↙>0 F = P↗>0−F = {x+ δ · y | x ∈ P, y ∈ −F, δ > 0}.

The following recent result shows how to efficiently compute
the positive post-flow P↗>0F of a convex polyedron P w.r.t.
another convex polyhedron F , using the generator represen-
tation. For two sets of points A and B, the Minkowski sum
A⊕B is {a+ b | a ∈ A, b ∈ B}.



Theorem 5. [7] Given two convex polyhedra P and F ,
let (VP , CP , RP ) (resp., (VF , CF , RF )) be a generator system
for P (resp., F ). The triple (VP ⊕ VF , CP ∪ VP , RP ∪ VF ∪
CF ∪RF ) is a generator system for P↗>0F .

4.3.2 Testing for boundedness w.r.t. the flow
For a convex polyhedron P , let OP = ({0}, ∅, RP ) denote

its characteristic cone, i.e., the closed polyhedron generated
by the origin 0 and all the rays of P . The following theorem
shows how we can effectively and efficiently test whether P
is bounded w.r.t. F .

Theorem 6. For all convex polyhedra P and F , P is
bounded w.r.t. F iff OP ∩ F = ∅.

Proof. [⇒] By hypothesis, for all p ∈ P and for all c ∈ F
there exists δ ≥ 0 such that p + δ · c /∈ P . By Proposition
1 we have that 0 /∈ F . Let c ∈ F , we show that c /∈ OP .
Assume by contradiction that c ∈ OP , we can write c =
1 ·0+

∑
r∈Rp

βrr =
∑
r∈Rp

βrr. Now, let x ∈ Vp be a vertex

of P , we show that for all γ ≥ 0 the point x′ = x+γc belongs
to P . Indeed, we have

x′ = x+ γc = 1 · x+ γ
∑
r∈Rp

βrr = 1 · x+
∑
r∈Rp

γβrr.

Therefore, x′ ∈ P , i.e. P is not bounded w.r.t. F , contra-
dicting the hypothesis.

[⇐] Assume by contradiction that c ∈ F ∩ OP . By the
decomposition theorem for convex polyhedra [18], since OP
is the characteristic cone of P , there exists a non-empty
convex polyhedron P ′ such that P = P ′ ⊕ OP . Moreover,
since c ∈ OP , also δc ∈ OP for all δ ≥ 0. We can then
conclude that for all p′ ∈ P ′, it holds p′ + δc ∈ P for all
δ ≥ 0. Therefore, P is not bounded w.r.t. {c} and a fortiori
w.r.t. F .

5. EXPERIMENTS WITH PHAVER+
We implemented the algorithms described in the previ-

ous sections on top of the open-source tool PHAVer4 [11].
The following experiments were performed on an Intel Xeon
(2.80GHz) PC.

The maze example. A vehicle navigates in an environment
whose shape is depicted in Figure 8(a), by taking 90-degree
left or right turns: the possible directions are thus North
(N), South (S), West (W) and East (E). One time unit (say,
second) must pass between two changes of direction, while
the vehicle speed is 2 unit of length per second. The corri-
dors of the maze are 1 unit wide, so that the vehicle can never
u-turn without hitting a wall. The goal consists in reaching a
target area positioned along the topmost corridor. We tested
our implementation on progressively more complex mazes,
by increasing downwards the number of corridors (the angle
between consecutive corridors is 90-degrees). For instance,
Figure 8(a) shows the shape of the maze with 5 corridors.

The LHA modeling the system with two corridors has one
location for each direction, where the derivative of the posi-
tion variables (x and y) are set according to the correspond-
ing direction. Figure 7 shows the LHA fragment related to

4A binary pre-release of our implementa-
tion, called PHAVer+, can be downloaded at
http://people.na.infn.it/mfaella/phaverplus.

the N location. The variable t represents a clock (ṫ = 1),
used to enforce a one-time-unit delay between turns. Each
change of direction is modeled by a controllable transition
(solid arrows in Figure 7) enabled when t ≥ 1. The maze
walls are modeled by uncontrollable transitions (dashed ar-
rows in Figure 7). They are enabled when the variables x
and y identify an invalid position (i.e., when the vehicle hits
a wall) and lead to the special Abort location.

N
−0.05 ≤ ẋ ≤ 0.05
1.95 ≤ ẏ ≤ 2.05

ṫ = 1

W
−2.05 ≤ ẋ ≤ −1.95
−0.05 ≤ ẏ ≤ 0.05

ṫ = 1

E
1.95 ≤ ẋ ≤ 2.05
−0.05 ≤ ẏ ≤ 0.05

ṫ = 1

Abort
ẋ = 0
ẏ = 0
ṫ = 0

t ≥ 1, t := 0

t ≥ 1, t := 0

x ≤ 0

y ≥ 17

x ≥ 1 and y ≤ 16

Figure 7: Fragment of the LHA modeling the maze
with two corridors. The goal consists in reaching
{2 ≤ x ≤ 2.5, y = 17}.

The maze example described above features a non-deter-
ministic flow, allowing some uncertainity on the exact di-
rection taken by the vehicle. A deterministic version has
also been considered, where environmental disturbances are
disallowed. This version can be obtained by, e.g., replacing
the differential equations for x and y in location N with the
differential constraints ẋ = 0 and ẏ = 2.

Figure 8(a) shows the cross-section of the solution for t =
0, in the case of a maze with two corridors and the vehicle
initially going along the North direction: the gray areas A
and B in the l.h.s. of the figure contain the points that can
reach the target T in the case of deterministic flow. If the
vehicle is located in A, it can reach the target by turning
East and then North again. Notice that the area A covers
only half the width of the vertical corridor. In fact, if the
vehicle is located in the other half of the corridor, when
turning East it will be too close to the target and it will not
be able to take the second turn towards the target in time.
The area A ends 2 units of length before the north wall, as
beyond that the vehicle cannot avoid hitting the wall before
being able to turn East. Finally, the points in the area B are
trivially winning, as they can reach the target by proceeding
North.

The solution in the corresponding non-deterministic case
is shown in the r.h.s. of Figure 8(a). Notice that the win-
ning region A′ is contained in the region A and similarly
B′ is contained in B. Due to the uncertainty in the vehicle
direction, both winning regions become gradually smaller as
we move away from the target T .

We also experimented with a three-dimensional version of
the maze. In addition to the vehicle directions of the 2D
case, in the 3D version the vehicle can perform 90-degree
turns upwards (U) and downwards (D). The resulting LHA



includes two additional locations to move up or down, and
one additional continuous variable z for the position of the
vehicle along the third dimension, for a total of four vari-
ables. The flows associated to each location in the non-
deterministic case are shown in Table 1.

N W E
−0.05 ≤ ẋ ≤ 0.05
1.95 ≤ ẏ ≤ 2.05

ż = 0

−2.05 ≤ ẋ ≤ −1.95
−0.05 ≤ ẏ ≤ 0.05

ż = 0

1.95 ≤ ẋ ≤ 2.05
−0.05 ≤ ẏ ≤ 0.05

ż = 0
S U D

−0.05 ≤ ẋ ≤ 0.05
−2.05 ≤ ẏ ≤ −1.95

ż = 0

−0.05 ≤ ẋ ≤ 0.05
−0.05 ≤ ẋ ≤ 0.05

ż = 2

−0.05 ≤ ẋ ≤ 0.05
−0.05 ≤ ẏ ≤ 0.05

ż = −2

Table 1: Flows associated to each location in the 3D
version of maze. In all locations it holds ṫ = 1.

The table in Figure 8(b) shows the run time in seconds for
the four different versions of the maze of increasing size, in
terms of number of corridors. Although still limited in scope,
the results show that the proposed approach is practical, at
least for relatively small problems.

TT

A

B

T

A′

B′

(a) Structure of the maze and controllable region for the
deterministic (left) and non-deterministic (right) case.

# of corridors 2D 2D NDet 3D 3D NDet

2 0.4 1.1 1.3 4.2
3 0.8 9.6 2.1 25.4
4 1.3 15.5 3.6 47.7
5 3.4 149.5 8.9 337.0
6 5.1 216.2 13.1 394.9

(b) Performance in seconds.

Figure 8: The maze example.
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