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Abstract

We analyze the properties of smooth trajectories subject to a constant differential inclusion which constrains
the first derivative to belong to a given convex polyhedron. We present the first exact symbolic algorithm
that computes the set of points from which there is a trajectory that reaches a given polyhedron while
avoiding another (possibly non-convex) polyhedron. We prove that this set of points remains the same if the
smoothness constraint is replaced by a weaker differentiability constraint, but not if it is replaced by almost
everywhere differentiability. We discuss the connection with (Linear) Hybrid Automata and in particular
the relationship with the classical algorithm for reachability analysis for Linear Hybrid Automata.
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1. Introduction

Hybrid Automata are a mathematical abstraction of systems that feature both discrete and continuous
dynamics. Linear Hybrid Automata (LHAs) [1] were introduced as a computationally tractable model of
hybrid systems that still allows for non-trivial dynamics. In particular, LHAs can approximate complex
dynamics up to an arbitrary precision [2].

In an LHA, discrete dynamics is represented by a finite set of control modes called locations, while the
continuous dynamics is embodied by a finite set of real-valued variables. In each location, the continuous
dynamics is constrained by a differential inclusion of the type ẋ ∈ F , where ẋ is the vector of the time-
derivatives of all the variables in the system, and F ⊆ Rn is a convex polyhedron. The main decision
problem that was considered for LHAs is reachability, i.e., given two system configurations, say an initial
state and an error state, establish whether there is a system behavior that leads from the first to the second.
A more complex task consists in verifying whether a given LHA can be modified (i.e., controlled) in such a
way that a given error configuration (or region) is not reached by any behavior. This problem can be called
safety control and is analogous to a game with a safety objective. Both problems require an algorithm for the
following sub-problem, which applies to a single discrete location: given a region G (for goal) and a region
A (for avoid) of system configurations, find the set of points from which there is a trajectory that reaches
G while avoiding A at all times. We denote this set by RWA(G,A) for reach while avoiding. In reachability
problems, the goal region G can be thought of as comprising error states, and the avoidance region A is
the complement of the invariant of the automaton, which is the set of configurations that make physical
sense for the system. Hence, RWA(G,A) is the set of states that reach an error state while remaining in the
invariant. In a safety control problem, the goal region G is taken to be a set of uncontrollable states (such
as, states outside the safe region) and A is a set of controllable states (included in the invariant). Then,
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RWA(G,A) identifies the region in which the environment can reach an error state while avoiding the good,
controllable states.

The RWA operator is recognized as a central tool in the analysis of various kinds of hybrid systems: it
corresponds to the Reach operator in Tomlin et al. [3] and Unavoid Pre in Balluchi et al. [4]; it was also
used in the synthesis of controllers for reachability objectives [5, 6].

Computing reach-while-avoiding. The algorithmic computation of RWA(G,A) is simple when A is co-convex,
corresponding to the case of reachability analysis for LHAs with convex invariants. In that case, RWA can
be expressed in the first-order theory of reals and computed using a constant number of basic polyhedra
operations.
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Figure 1: Can the points in P reach the target
region G while remaining in P ∪ Q ∪ G? The flow
constraint F is shown on the r.h.s.

When A is not co-convex, one may adapt the procedure
that is presented in one of the early papers on LHAs, in the
context of reachability analysis in presence of non-convex in-
variants [1]. The idea of the algorithm is simple: consider
a partition of the non-convex invariant I into a finite set of
convex polyhedra P1, . . . , Pn; then, split the location with
invariant I into n different locations, each with convex in-
variant Pi; finally, connect these new locations with virtual
transitions corresponding to the boundaries between two ad-
jacent convex polyhedra Pi, Pj . Because of the added virtual
transitions, this approach naturally leads to trajectories that
are almost everywhere (a.e.) differentiable.

Consider for example the situation depicted in Figure 1.
Assume that the invariant for the current location is P∪Q∪G

and the goal is to reach G. Dashed lines identify topologically open sides of polyhedra. The flow constraint
F is also depicted in the figure: it allows trajectories to move in a range of directions going from straight
right to straight up, and it forbids stopping (i.e., it does not include the origin).

The above procedure splits the invariant into three convex polyhedra, and then performs a backward
reachability analysis which starts from the goal G and progressively enlarges the set of “good” states W by
including the states that can reach W while remaining in one of the convex parts of the invariant.

In our example, the points in the line segment Q can reach the target by moving straight to the right,
while remaining in one convex part of the invariant and, similarly, points in the line segment P can reach the
extreme point of Q by moving straight up. Hence, both Q and P end up on the final solution. On the other
hand, no differentiable trajectory can start in a point of P and reach G while remaining in P ∪Q ∪G. 1

In some scenarios, such as the one we describe below, restricting the system trajectories to be differ-
entiable, or even smooth (i.e., differentiable an arbitrary number of times at all times), may be desirable
to ensure that certain physical constraints are satisfied. In this paper, we present an exact algorithm for
computing RWA(G,A) for general polyhedra G and A with respect to smooth trajectories. Moreover, we
prove that differentiable and smooth trajectories lead to equivalent notions of RWA.

Applications. The difference between RWA under smooth trajectories and under a.e. differentiable ones for
LHAs only surfaces when the avoidance region A is not topologically closed. To see how this case may be
relevant to applications, consider the example in Figure 2(a), where multiple robots (such as Kiva Systems2)
must visit a target region G at the same time. The robots can move between two free roaming areas connected
by two linear, intersecting tracks, and, for safety reasons, must always keep a minimum distance between
each other. In this scenario, a topologically open avoidance region can be used to model the two intersecting
tracks, as shown in Figure 3. Requiring smoothness (or even plain differentiability) of the allowed trajectories

1By rotating the polyhedra in Figure 1 (including the flow constraint F ) by 45◦, it becomes apparent that the issue also
occurs with rectangular flow constraints. However, Rectangular Hybrid Automata and Games [7] do not exhibit the above issue,
due to the presence of multiple restrictions, such as the fact that guards and invariants are convex and topologically closed.

2A commercial robotic platform for warehouse automation: http://www.kivasystems.com.
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Figure 2: Two scenarios in which a target region G must be reached while moving in two free roaming areas connected by
narrow tracks (a) or channels (b).
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Figure 3: Target area G and avoidance region A =
⋃4
i=1 Ai for the two application scenarios depicted in Figure 2. The

polyhedra A1, . . . , A4 are weakly adjacent, i.e., their topological closures intersect.

ensures that robots cannot switch track at the intersection. The process of moving along a track could also
be abstracted away by a discrete mode change (i.e., robots would seem to jump from one end of the track
to the other end), but this prevents the explicit modeling of some phenomena, such as the possible collisions
between two robots traveling on different tracks.

Figure 2(b) shows a different interpretation of the same scenario, in which some ships have to reach
the target region G, using two narrow intersecting channels. The small width of the channels compared to
the size of the ships prevents the ships from turning at any point, including the point where the channels
intersect. Once again, the topologically open avoidance region shown in Figure 3 is a convenient modeling
technique for this scenario.

Structure of the paper. The rest of the paper is organized as follows. Section 2 is devoted to preliminary
definitions, including the problem statement and the known algorithm for computing RWA with respect
to a.e. differentiable trajectories. In Section 3 we show that differentiable trajectories are equivalent to
smooth trajectories for our purposes. Sections 4 and 5 present the main result of the paper, namely a
procedure to compute the RWA operator for differentiable trajectories. This is done by first introducing in
Section 4 the notion of type of a trajectory as the sequence of polyhedra traversed by the trajectory in a
given time interval. Then, in Section 5, a recursive procedure to compute the points having a given type
is proposed, whose effective computability is relative to the computability of two operators, Ext2 and Ext3 .
Being the set of all types finite, this provides an algorithm for RWA. The rest of that section shows how
those two operators can effectively be computed by means of symbolic operations on polyhedra. While the
case of Ext2 is relatively simple, the computation of Ext3 is much more involved and requires non-trivial
sequence of polyhedra operations. Section 6 provides a alternative fixpoint characterization of the RWA,
based on the same operators Ext2 and Ext3 , that is more suitable to an implementation. The results of
experiments, comparing an implementation of the algorithm proposed in the paper with the one dealing with
a.e. differentiable trajectories, are described in Section 7. Finally, we provide some conclusions in Section 8.
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The present paper extends and improves a preliminary version [8], which did not take into account smooth
trajectories and did not contain detailed proofs of all claims. Moreover, here we develop the classification of
witnesses in types and propose and implement an algorithm for RWA based on it. The experiment section
is also novel.

2. Preliminaries and Problem Definition

Let R (respectively, R≥0) denote the set of real numbers (resp., non-negative real numbers). Throughout
the paper we consider a fixed ambient space Rn. A convex polyhedron is a subset of Rn that is the intersection
of a finite number of open and closed half-spaces. A polyhedron is a subset of Rn that is the union of a finite
number of convex polyhedra. For a general (i.e., not necessarily convex) polyhedron G ⊆ Rn, we denote by
cl(G) its topological closure, by G its complement, and by [[G]] ⊆ 2R

n

its representation as a finite set of
convex polyhedra. We assume w.l.o.g. that [[G]] contains mutually disjoint convex polyhedra, called patches
of G.

Let C ⊆ [R≥0 → Rn] be a class of functions from the time domain to our ambient space. Given a convex

polyhedron F , called the flow constraint, an (F, C)-trajectory is a function f ∈ C such that ḟ(t) ∈ F for
all t ≥ 0 such that f is differentiable in t. Given a point x ∈ Rn, let AdmCF (x) (for admissible) denote
the set of (F, C)-trajectories f starting from x (i.e., such that f(0) = x). We henceforth consider three
classes of functions: the class Cs of functions that are smooth everywhere, the class Cd of functions that are
continuous and differentiable everywhere, and the class Cae of functions that are continuous everywhere and
differentiable almost everywhere (i.e., always except for a finite set of time points). Notice that Cs corresponds
to the differentiability class C∞ of infinitely differentiable functions; however Cd does not coincide with C1,
as it admits continuous functions whose first derivatives are not continuous.

Given two disjoint polyhedra G (for goal) and A (for avoid), we denote by RWACF (G,A) (for reach while
avoiding) the set of points from which there is an (F, C)-trajectory that reaches G while avoiding A. Formally,
we have:

RWACF (G,A) =
{
x ∈ Rn

∣∣∃f ∈ AdmCF (x), δf ≥ 0 : f(δf ) ∈ G and ∀ δ ∈ [0, δf ] : f(δ) 6∈ A
}
.

For every x ∈ RWACF (G,A), any pair (f, δf ) satisfying the condition in the definition of RWACF will be
called an (F, C)-witness for x, when G and A are clear from the context. Since clearly Cs ⊆ Cd ⊆ Cae, we
immediately obtain that RWACsF (G,A) ⊆ RWACdF (G,A) ⊆ RWACaeF (G,A). We shall see in the following that
the first inclusion is in fact an equivalence, whereas the second inclusion is strict. Notice also that

RWACF (G1 ∪G2, A) = RWACF (G1, A) ∪ RWACF (G2, A),

whereas RWACF does not distribute over unions in the second argument (see [9]). Therefore, in the following
we assume w.l.o.g. that the goal G is a convex polyhedron.

We assume that we can compute the following basic operations on arbitrary convex polyhedra P and
P ′: the Boolean operations P ∪ P ′, P ∩ P ′, and P ; the topological closure cl(P ) of P ; finally, the pre- and
post-flows of P , defined as follows:

P↙ = {x− δc | x ∈ P, δ ≥ 0, c ∈ F} P↙>0 = {x− δc | x ∈ P, δ > 0, c ∈ F}
P↗ = {x+ δc | x ∈ P, δ ≥ 0, c ∈ F} P↗>0 = {x+ δc | x ∈ P, δ > 0, c ∈ F}.

Intuitively, the pre- and post-flow operators compute the pre- and post-image, respectively, of a convex
polyhedron with respect to the straight directions contained in F . The algorithm for P↙>0 and P↗>0 can
be found in [10].

It is well known that P↙ (resp., P↗) is not a convex polyhedron when F is non-necessarily closed.
The following example shows that the same is true even if both P and F are closed convex polyhedra. This
observation contradicts a claim made by Halbwachs et al. [11].

Theorem 1. Given two convex polyhedra P and F , the following hold:
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1. P↗ may not be a convex polyhedron, even if both P and F are closed;

2. P↗= P ∪ (P↗>0);

3. P↗ ∩cl(P ) is a convex polyhedron;

4. if P ⊆ P↗>0, then P↗ is a convex polyhedron.

Proof. To show that the first property holds it suffices to consider the closed convex polyhedra P = {(0, 0)}
and F = {(x, y) | x ≥ 1}. According to the definition, P↗= P ∪ {(x, y) | x > 0}, which is a convex set but
not a convex polyhedron. As to the second property, it is enough to observe that P = {x + δc | x ∈ P, δ =
0, c ∈ F}.

To prove the third property it suffices to show that given x ∈ P↗ ∩cl(P ) , P ′ and y ∈ cl(P ′) ⊆ cl(P ),
any strict convex combination of x and y belongs to P ′.

Since x ∈ P ′, then there must exist a point u ∈ P , a time δ ≥ 0

c
x

y

z
u u′

P

Figure 4: Proving that P↗ ∩cl(P ) is
a convex polyhedron (see Theorem 1).
The square P is topologically open, and
x, y, z lie on its boundary.

and a flow direction c ∈ F , such that x = u+ δ c. If δ = 0 then x ∈ P
and the thesis follows from the polyhedricity of P and the fact that
y ∈ cl(P ). Indeed, any strict convex combination of x and y belongs
to P . Assume δ > 0 and consider the triangle Q with vertices u ∈ P
and x, y ∈ cl(P ) (see Fig. 4). Clearly, all the points contained in the
relative interior of Q belong to P . Let z be a strict convex combination
of x and y, hence z ∈ cl(P ). It is easy to see that there exist a time
δ′ > 0 and a point u′ = z − δ′c such that u′ belongs to the relative
interior of Q and, therefore, it belongs to P as well.

For the final property, the assumption P ⊆ P↗>0 and Item 2 imply that P↗= P↗>0. Since, in addition,
P↗>0 is a convex polyhedron, the thesis follows.

2.1. The Existing Algorithm for Almost Everywhere Differentiable Trajectories

Starting from this section, we consider a fixed flow constraint F , and we omit the F parameter from all
notations.

Let us briefly recall the previous approach to the problem, which can be used to compute RWA, assuming
that trajectories are differentiable everywhere except for a finite set of time points. Given two convex
polyhedra P, P ′, let Reach(P, P ′) be the set of points in P that can reach P ′ via a trajectory that remains
within P ∪ P ′ at all times (until P ′ is reached). Formally,

Reach(P, P ′) =
{
x ∈ P

∣∣∃f ∈ AdmCae(x), δ ≥ 0 : f(δ) ∈ P ′ and ∀δ′ ∈ [0, δ) : f(δ′) ∈ P ∪ P ′
}
.

It can be shown that Reach(P, P ′) is a convex polyhedron which can be computed from P, P ′, and F
using basic operations on polyhedra [12, 9]. Then, Theorem 2 shows how RWACae can be computed by
iterative application of Reach.

Theorem 2. [12, 9] For all disjoint polyhedra G and A, and for all polyhedra W , let

τae(G,A,W ) = G ∪
⋃

P∈[[A]]

⋃
P ′∈[[W ]]

Reach(P, P ′).

We have RWACae(G,A) = µW . τae(G,A,W ), where µW denotes the least fixed point. Moreover, the fixed
point is reached within a finite number of iterations.

By Knaster-Tarski fixed point theorem, the fixed point equation in Theorem 2 suggests the semi-algorithm
consisting in repeated applications of τae(G,A,W ), starting from W = ∅, i.e.: W0 = ∅ and Wi+1 =
τae(G,A,Wi) for all i ≥ 0. Theorem 2 states that there exists k > 0 such that Wk = Wk+1 = RWACae(G,A).
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The Reach and τae operators, together with Theorem 2, represent a reformulation of the original algorithm
for reachability analysis of LHAs under non-convex invariants, which was expressed in terms of locations of
a hybrid automaton. Notice that both ourselves (in [12], later corrected by [9]) and Alur et al. (in [13, 1])
have claimed that τae (or very similar variations thereof) can be used to compute RWACd . Those claims are
incorrect, as shown in the Introduction and again below.

Adapting the known algorithm for RWACae to differentiable trajectories is not a trivial task, as the
following observations show. Indeed, one may try to modify the definition of Reach, by simply replacing
AdmCae with AdmCd . However, this replacement is not sufficient to solve the problem with the example in
Figure 1: it would still hold Reach(P,Q) = P , because the points in P can reach Q along a straight-line
trajectory, which is both in Cae and in Cd. A somewhat deeper modification might be attempted, after
noticing that all trajectories going from P to Q lie within P at all times, except for the final point, which
belongs to Q. Hence, one could modify the definition of Reach(P, P ′), by requiring not only that there exists
a (differentiable) trajectory from P to P ′ contained in P ∪P ′, but also that this trajectory spends a positive
amount of time in P ′:

Reach ′(P, P ′) =
{
x ∈ P

∣∣ ∃f ∈ AdmCd(x), 0 ≤ δ1 < δ2 :

∀δ ∈ (0, δ1] : f(δ) ∈ P ∪ P ′ and ∀δ ∈ (δ1, δ2] : f(δ) ∈ P ′
}
.

Unfortunately, Reach ′ still suffers from a shortcoming. Consider again the example in Figure 1, but this
time let the avoidance region be A = A1. Notice that the status of the immediate neighborhood of P is
identical to the previous case: Q is still a “good” neighbor (w.r.t. reaching G while avoiding A) and A1 is
still a “bad” neighbor. However, we have P ⊆ RWACd(G,A), because a differentiable trajectory can start
from P , pass instantaneously through the left vertex of Q, then curve into A2 and finally reach G. The fact
that P is a set of good points is essentially due to A2, which is not an immediate neighbor of P (we may
call it a weak neighbor, since its topological closure intersects the one of P , i.e., cl(P ) ∩ cl(A2) 6= ∅).

Therefore, we realize that Reach ′ cannot solve this example because it is constrained to consider pairs
of adjacent convex polyhedra. In particular, it holds Reach ′(P,A2) = ∅ because P and A2 are not adjacent,
and Reach ′(P,Q) = ∅ because differentiable trajectories cannot start from P and spend a positive amount
of time in Q while remaining in P ∪Q.

In the rest of the paper we show that significant new developments are required to correctly compute
RWACd and RWACs .

3. Equivalence of Differentiable and Smooth Trajectories

The examples discussed above imply that the inclusion between RWACd(G,A) and RWACae(G,A) is
strict in general, i.e., RWACd(G,A) ( RWACae(G,A). On the contrary, we can show that RWACd(G,A) and
RWACs(G,A) coincide for all G and A. To do so, we shall need to prove two technical lemmas first. Consider
a differentiable trajectory lying within a convex polyhedron P . Along any tangent to the curve one can find
a point that is still in the closure of P (if not in P itself) and that is reachable from the initial point of the
curve. The following lemma formalizes this property and is proved in the Appendix.

Lemma 1 (Tangent). Let P be a convex polyhedron, x a point, f ∈ AdmCd(x) a trajectory, and δ̂ > 0 a

delay such that in all non-empty intervals (δ, δ̂) there is a time γ such that f(γ) ∈ P . Then, there exists

δ∗ > 0 such that f(δ̂)− δ∗ḟ(δ̂) ∈ cl(P ) ∩ {x}↗>0.

The following lemma, illustrated in Figure 5, shows how to connect, in an admissible and smooth fashion,
two points which can be connected by the concatenation of two straight-line admissible trajectories.

Lemma 2 (Smooth Interpolation). Given three points x0, x1, x2 ∈ Rn, two directions c0, c1 ∈ F and
two delays δ0, δ1 ≥ 0 such that: x1 = x0 + δ0c0 and x2 = x1 + δ1c1, there exists a trajectory f ∈ AdmCd(x0)
such that f(δ0 + δ1) = x2 and:

(i) f is smooth in the interval [0, δ0 + δ1];
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(ii) ḟ(0) = c0 and ḟ(δ0 + δ1) = c1;

(iii) all higher-order derivatives f (k), with k > 1, are such that f (k)(0) = 0 and f (k)(δ0 + δ1) = 0;

(iv) f(δ) is a strict convex combination of x0, x1, x2 for all δ ∈ (0, δ0 + δ1).

Proof. We assume for simplicity that x0, x1, x2 are not collinear and hence identify a unique plane. The
argument for collinear points requires only minor modifications.

First, we make sure that the first derivative of f is admissible (i.e., it lies in F ), by stipulating that it is
a convex combination of c0 and c1. Let δ̄ = δ0 + δ1, we set:

ḟ(δ) = (1− g(δ))c0 + g(δ)c1 for all δ ∈ [0, δ̄],

for a suitable function g : [0, δ̄]→ [0, 1]. As a consequence, we obtain that:

f(δ) =

∫ δ

0

g(γ)c1 +
(
1− g(γ)

)
c0dγ + C

=

∫ δ

0

g(γ)c1 + c0 − g(γ)c0dγ + C

= δc0 + (c1 − c0)

∫ δ

0

g(γ)dγ + C.

Recall that our thesis requires the following constraints to be true.

c0

c1

x0

x1

x2

Figure 5: Connecting two intersecting lines in an admissible and differentiable way (see Lemma 2).

f(0) = x0 f(δ̄) = x2 = x0 + δ0c0 + δ1c1

ḟ(0) = c0 ḟ(δ̄) = c1

f (k)(0) = f (k)(δ̄) = 0 for all k > 1.

As a consequence, we obtain that C = x0 and the function g must satisfy the following conditions:

g(0) = 0 (1)

g(δ̄) = 1 (2)

g(δ) ∈ [0, 1] for all δ ∈ [0, δ̄] (3)

g(k)(0) = g(k)(δ̄) = 0 for all k ≥ 1 (4)∫ δ̄

0

g(γ)dγ = δ1. (5)
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Consider the logistic function LF (δ), defined as: 1
1+e−δ

. As function g(δ), we choose the following:

g(δ) =


0 if δ = 0

LF (h(δ)) if δ ∈ (0, δ̄)

1 if δ = δ̄,

(6)

where

h(δ) =
δ

α(δ̄ − δ)
− α(δ̄ − δ)

δ
,

and α > 0 is a parameter dependent on δ1. The smoothness of f in the interval of interest follows from
the smoothness of g, which in turn can be inferred from the smoothness of LF and h. The following claim,
whose proof is reported in the Appendix, ensures that g satisfies all the required properties.

Claim 1. Given the interval [0, δ] and δ1 ≥ 0, there exists an α > 0 such that the function g, defined by
equation (6), with parameter α satisfies all the conditions (1)–(5).

In order to conclude the proof of the lemma, we need to make sure that f(δ) is a strict convex combination
of x0, x1, x2 or, equivalently, that it is contained in the interior of the triangle having vertices x0, x1, x2.
First, consider the line r01 passing through x0 and x1. For all δ ∈ [0, δ̄], the point f(δ) can be in one of three
positions relative to r01: it can be in the open half-plane delimited by r01 and containing x2; it can be in the
opposite open half-plane; or it can lie on r01 itself. By construction, f(0) = x0 ∈ r01. For i = 0, 1, decompose
ci as c01

i + c⊥01
i , where c01

i is the projection of ci on the direction of r01 and c⊥01
i is the projection on the

direction that is orthogonal to r01 and lies in the plane identified by x0, x1, x2. Clearly, it holds c⊥01
0 = 0

(c0 is parallel to r01). Hence, only the vector c⊥01
1 is responsible for changing the position of f(δ) w.r.t. r01.

Since f starts on r01, ends up in x2, and uses only convex combinations of c0 and c1, it follows that f lies
entirely in the half-plane delimited by r01 and containing x2.

Next, consider the line r12 passing through x1 and x2. Similarly to the previous case, decompose c0 and
c1 w.r.t. r12. Now, we have c⊥12

1 = 0 because c1 is parallel to r12, and only the vector c⊥12
0 is responsible

for changing the position of f(δ) w.r.t. r12. Since f starts in the semi-plane delimited by r12 and containing
x0 and ends up on r12, it cannot reach the opposite semi-plane in the meanwhile, otherwise it would not be
able to go back to r12.

Finally, consider the line r02 passing through x0 and x2. In this case, both vectors c⊥02
0 and c⊥02

1 can
modify the position of f w.r.t. r02. Since f starts in x0 ∈ r02 and ends up in x2 ∈ r02, the (parallel) vectors
c⊥02
0 and c⊥02

1 point in opposite directions. Then, notice that the function g(δ), which regulates the convex
combination between c0 and c1, is strictly monotonic. Hence, as long as (1−g(δ))c⊥02

0 prevails over g(δ)c⊥02
1 ,

the trajectory moves away from r02 in the direction of x1. After that, the trajectory goes back to r02 and
eventually reaches it in x2. Being g(δ) monotonic, it is not possible for f to go beyond r02 and then go back
to x2.

Given a (Cd- or Cs-) witness ξ = (f, δf ) and a convex polyhedron P , let ∆P
ξ be the set of delays δ ≤ δf

such that f lies in P in an open interval around δ. Formally,

∆P
ξ =

{
0 ≤ δ ≤ δf

∣∣∃γ > 0 ∀δ′ ∈ (δ − γ, δ + γ) ∩ [0, δf ] : f(δ′) ∈ P
}
.

We say that ξ is P -canonical if either ∆P
ξ = ∅ or f(δ) ∈ P for all δ ∈ (inf ∆P

ξ , sup ∆P
ξ ). The definition

implies that once a P -canonical witness spends a positive amount of time in P and then exits from it, it can
only return to P for instantaneous visits (i.e., in isolated time points). The following example justifies this
definition, showing that witnesses may need to make multiple instantaneous visits to the same polyhedron.

Example 1. Consider the scenario in Figure 6, where all polyhedra called A must be avoided and the flow
constraint F is shown on the right-hand side. The A-polyhedra are topologically open and adjacent to P .
Moreover, A1 is weakly adjacent to A3 and A4 (i.e., their closures intersect), and so on for the other A-
polyhedra.
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In order to go from x to G while avoiding A, a witness must cross the line P (which could be one of the
patches of A) multiple times. Notice that it is not possible for the differentiable witness to follow the line P
and then reach G, because to do so it would either pass through some A-polyhedron or be non-differentiable
when leaving P .

A1

A2

A4

A3

A6

A5
P

G

x

F

Figure 6: Witnesses may need to traverse the same convex polyhedron P multiple times. Polyhedra A2, A4, and A6 are drawn
truncated.

For a non-convex polyhedron B, we say that the witness ξ is B-canonical if it is P -canonical for all
P ∈ [[B]]. The following lemma ensures that smooth canonical witnesses are sufficient to determine which
points belong to RWACd .

Lemma 3 (Canonicity). For all polyhedra H, trajectories f , and times δf ≥ 0, such that f lies in H in
[0, δf ], there exists an H-canonical smooth trajectory g and a time δg such that: f(0) = g(0), f(δf ) = g(δg),

ḟ(0) = ġ(0), and g lies in H until time δg.

Proof. Let ξ = (f, δf ) and P ∈ [[H]], we first prove that ξ can be modified to become P -canonical. If
∆P
ξ = ∅, ξ is already P -canonical. Otherwise, we prove the following claim.

Claim 2. There exists a pair ζ = (g, δg), where g is an admissible trajectory starting from f(0) and δg ≥ 0,
such that:

(i) ζ is P -canonical;

(ii) ∆P
ζ 6= ∅ and inf ∆P

ζ = inf ∆P
ξ ;

(iii) g(δ) = f(δ), for all delays δ ∈ [0, δP ];

(iv) g(δ) = f(δ + sup ∆P
ξ − sup ∆P

ζ ), for all delays δ ∈ [sup ∆P
ζ , δg];

(v) g is smooth in the interval (inf ∆P
ζ , sup ∆P

ζ ), it holds ġ(inf ∆P
ζ ) = ḟ(inf ∆P

ζ ) and ġ(sup ∆P
ζ ) = ḟ(sup ∆P

ξ ),

and g has all the higher-order derivatives equal to 0 in (inf ∆P
ζ )+ and (sup ∆P

ζ )−.

Proof of Claim 2. Let γ0 = inf ∆P
ξ and γ2 = sup ∆P

ξ . By definition, γ0 < γ2. Let γ1 be a delay such that
γ0 < γ1 < γ2, with f(γ1) ∈ P . For all k = 0, . . . , 2, let yk = f(γk). The situation is depicted in Figure 7.

By definition of ∆P
ξ , in all right-neighborhoods of γ0 there is a time when f is in P . Hence, by applying

Lemma 1 “backwards” from y1 to y0 we obtain a delay δ∗ > 0 such that u , y0 + δ∗ḟ(γ0) ∈ cl(P )∩{y1}↙>0.
Let t be an intermediate point on the line segment connecting u and y1. Similarly, by applying Lemma 1
again from y1 to y2, we obtain a delay δ̄ > 0 such that u′ , y2 − δ̄ḟ(γ2) ∈ cl(P ) ∩ {y1}↗>0. Let t′ be an
intermediate point on the line segment connecting u′ and y1.

We apply Lemma 2 three times: first, to points y0, u, and t; then, to points t, y1, and t′, and, finally, to
points t′, u′, and y2. We thus obtain three admissible trajectories which can be differentiably connected at t′

and t forming an admissible trajectory f ′ with derivative ḟ ′(0) = ḟ(γ0) and ḟ ′(γ′2) = ḟ(γ2), for some γ′2 > 0
with f ′(γ′2) = y2. By connecting f ′ with f at points y0 and y2, we finally obtain the pair ζ = (g, δg), where
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y0

y1

y2

u

u′

t

t′

f ′

f

P

Figure 7: Witness trajectories do not need to spend a positive amount of time twice in the same convex polyhedron P (see
Lemma 3).

g is a differentiable trajectory and δg = δf + γ2 − γ′2, satisfying inf ∆P
ζ = inf ∆P

ξ = γ0 and sup ∆P
ζ = γ′2.

Moreover, by Lemma 2, g is smooth in the interval (γ0, γ
′
2) and all its higher-order derivatives at both γ+

0

and (γ′2)− are equal to 0 (end of claim proof).

The properties stated by the claim above imply that one can apply the construction twice, to two
disjoint convex polyhedra P1 and P2, in order to obtain a trajectory that is {P1, P2}-canonical. Therefore,
by repeatedly applying Claim 2 to all polyhedra in [[H]], we obtain an H-canonical pair η = (g, δg). Moreover,
this construction ensures the stronger property that g is smooth in the whole interval [0, δg]. Indeed, by the
repeated construction above, η can spend a positive amount of time in each patch of H only once. So, let
P1, . . . , Pn be the sequence of patches in [[H]] visited, in that order, by g in the interval [0, δg] and such that

∆Pi
η 6= ∅ (i.e., for a positive amount of time). Let, in addition, γ0 = 0, γn = δg and γi , sup ∆Pi

η = inf ∆
Pi+1
η ,

for i ∈ [1, n − 1], be the time delay when g crosses from Pi to Pi+1 (notice that g(γi) may belong neither
to Pi nor to Pi+1, but to some other patch which is visited instantaneously at that time instant). From
condition (v) of Claim 2, it follows that g is smooth in the interval (γi, γi+1), for all i ∈ [0, n− 1]. Moreover,
all the higher-order derivatives of g at γ−i and at γ+

i , for i ∈ [1, n − 1], are equal to 0. Since the left and
right derivatives of any order coincide at every crossing points, g is infinitely differentiable in [0, δg] and the
conclusion follows.

By applying the above lemma to Cd-witnesses w.r.t. the polyhedron A, we obtain the following.

Corollary 1. For all disjoint polyhedra G and A, and for all points x ∈ RWACd(G,A), there exists a Cs–
witness for x that is A-canonical.

The above corollary implies that the differentiable and the smooth versions of RWA coincide.

Theorem 3. For all disjoint polyhedra G and A, it holds RWACs(G,A) = RWACd(G,A).

4. Computing Reach-While-Avoiding

Thanks to Theorem 3, we can restrict our attention to differentiable trajectories. Hence, we shall drop
the corresponding superscript and write Adm for AdmCd and RWA for RWACd . In this section we show how
the results obtained so far can be used to define an exact symbolic algorithm for computing RWA(G,A). In
particular, we proceed by collecting Cd-witnesses (in the following, simply “witnesses”) into classes, called
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types, based on the sequence of polyhedra that they traverse before reaching the target region. We then
show how to compute the set of points that have a canonical witness of a specific type. Since the possible
types of canonical witnesses form a finite set, we obtain an algorithm for RWA.

A type is a finite sequence of (possibly non-convex) polyhedra, each annotated with a 0 superscript or a
> superscript, in an alternating fashion. For example, if P,Q,R are polyhedra, P 0Q>R0R> and P>Q0R>

are legitimate types, whereas P 0Q>R> and P 0Q0R> are not. We shall refer to types beginning with a P 0

set as 0-types and to the ones beginning with a P> set as non-0-types.
We use types to represent the sequence of convex polyhedra traversed by a trajectory. Given a type

T = P �00 P �11 . . . P �ll (�i ∈ {0, >}), we say that a Cd-trajectory (in the following, simply “trajectory”) f has
type T if there exists a time δf ≥ 0 and a partition of the interval [0, δf ] in a finite sequence of intervals
I0, I1, . . . , Il such that f lies in Pi during each interval Ii and, moreover, Ii is a singular interval iff �i = 0.

For example, a trajectory f of type P 0Q>R0R> starts in P , immediately enters Q and spends some time
in it, then reaches R and stays in it for a while. A trajectory g of type P 0Q>Q0R> is similar to f , except
for the fact that f has a first time instant in which it lies in R, whereas g has a last time instant in which
it lies in Q before entering R. Let Ext(T) (for extension) denote the set of points from which at least one
trajectory of type T starts. We denote the empty type by ε and we set Ext(ε) = Rn (the whole ambient
space). A convex type is a type T that only contains convex polyhedra.

As before, we fix the target convex polyhedron G and the avoidance polyhedron A, and we assume w.l.o.g.
that G is one of the patches of A. Recall that a witness for a point x is a pair ξ = (f, δf ), such that f is an
admissible trajectory that starts from x, reaches G at time δf , and avoids A at all intermediate times. A
A-canonical witness does not return to a patch of A once it has spent a positive amount of time there.

We denote by CTypes (for canonical types) the set of all types containing only convex polyhedra in [[A]]
and such that: no polyhedron P appears twice as P> and the last polyhedron in the sequence is G. Formally,
CTypes is the smallest set of types satisfying the following:

• {G0, G>} ⊆ CTypes;

• if T ∈ CTypes is a non-0-type and P ∈ [[A]], then P 0T ∈ CTypes;

• if T ∈ CTypes is a 0-type, P ∈ [[A]] and P> does not occur in T, then P>T ∈ CTypes.

Notice that the length of the types in CTypes is bounded by 2k+ 1, where k is the number of patches in A.
Therefore, CTypes is a finite set. In addition, every canonical type is also a convex type.

It is easy to verify that all A-canonical witnesses have a type in CTypes, whereas not all types in CTypes
correspond to actual witnesses. The following result formalizes the relation between RWA(G,A) and CTypes.

Theorem 4. It holds that
RWACd(G,A) =

⋃
T∈CTypes

Ext(T).

Proof. The direction
⋃

T∈CTypes Ext(T) ⊆ RWA(G,A) follows immediately from the definitions of the
operators involved. For the other direction, assume x ∈ RWA(G,A). Then there exists a trajectory f ∈
Adm(x) reaching G while always avoiding A. By Lemma 3 there is a witness ξ from x which is A-canonical
and ends in G. Since ξ is A-canonical, there is a type T ∈ CTypes such that ξ is of type T, and therefore
x ∈ Ext(T). The conclusion follows.

As a consequence of the above theorem, in order to compute RWA we only need to be able to compute
extensions of convex types.

5. Computing Ext of a Convex Type

In this section, we show how to reduce Ext(T) to a sequence of steps involving at most 3 polyhedra at a
time. To this aim, define the following abbreviations:

Ext2 (P,Q) = Ext(P 0Q>), Ext3 (P,Q,R) = Ext(P>Q0R>).
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We start with two technical lemmas. The first one shows that Ext3 distributes over unions of polyhedra
in its third argument.

Lemma 4. For all convex polyhedra P,Q, and polyhedra B, we have Ext3 (P,Q,B) =
⋃
R∈[[B]] Ext3 (P,Q,R)

and Ext2 (P,B) =
⋃
R∈[[B]] Ext2 (P,R).

Proof. We prove the thesis for Ext3 , as the one for Ext2 is analogous. The ⊇ inclusion being obvious,
let us focus on the other direction. Let x ∈ Ext3 (P,Q,B) and let f be a Cd-trajectory of type P>Q0B>.
Let δ1 > 0 be the time instant when f reaches Q. Define g as the suffix of f starting from time δ1, i.e.,
g(δ) = f(δ + δ1), for all δ ≥ 0. Notice that g is a trajectory of type Q0B>. By Lemma 3, there exists a
Cs-trajectory g′ that is B-canonical. Moreover, g and g′ have the same value and first derivative at 0, which
are equal to f(δ1) and ḟ(δ1), respectively. Hence, we can append g′ to the prefix of f up to time δ1, thus
obtaining a differentiable B-canonical trajectory f ′ of type P>Q0B>. By B-canonicity, there exists a first
patch R ∈ [[B]] in which f ′ spends a positive amount of time. As a consequence, f ′ is also of type P>Q0R>,
as required.

The following technical lemma, proved in the Appendix, states that each trajectory can be modified in such
a way that it starts with a straight segment of positive duration, while retaining its type. This is needed in
Lemma 6 to perform the composition of trajectories depicted in Figure 8.

Lemma 5. For all types T and x ∈ Ext(T) there exist a trajectory f ∈ Adm(x) of type T, a positive delay
δ∗, and a slope c ∈ F such that ḟ(δ) = c for all δ ∈ [0, δ∗).

We now show that the extension of a type T remains unchanged if a proper suffix of T is replaced with
its extension. This property provides the inductive step for the computation of Ext(T), for all types T. In
particular, there is a way to partition any type T into a sequence of two types T′T′′, so that the extension
of T coincides with the extension of type T′Ext(T′′)>. The crucial observation is that Lemma 2 allows us to
connect in a differentiable way a trajectory of type T′Ext(T′′)> with a trajectory of type T′′, thus providing
a trajectory of type T.

Given a set P ⊆ Rn, we say that a trajectory f lingers in P if there exists δ > 0 such that f(δ′) ∈ P , for
all δ′ ∈ (0, δ).

Lemma 6. Assume that Ext(T) is a polyhedron for every convex type T. Then, for all non-empty convex
types T the following holds:

Ext(T) =


P if T = P 0,

P ∩ P↙>0 if T = P>,

Ext3 (P,Q,Ext(T′)) if T = P>Q0T′,

Ext2 (P,Ext(Q>T′)) if T = P 0Q>T′.

(7)

Proof. The first case is immediate, as for any x ∈ P , any f ∈ Adm(x) is a trajectory of type P 0. For the
second case, the left-hand side asks for an admissible trajectory f lying within P for a positive amount of
time. This corresponds to the definition of the convex polyhedron P ∩ P↙>0, hence the conclusion.

Third case. Assume that T = P>Q0T′ and let x ∈ Ext(T). Then there is a trajectory f , which is of
type T in some interval [0, δf ], such that x = f(0) ∈ P and either T′ is empty or T′ has the form R>T′′, for
some convex polyhedron R and type T′′. In the former case, it holds that Ext(T′) = Rn, and we immediately
obtain x ∈ Ext3 (P,Q,Ext(T′)). In the latter case, for some 0 < δ1 < δ2 ≤ δf , it holds that f(δ′) ∈ P for
all δ′ ∈ [0, δ1), f(δ1) ∈ Q and f(δ′) ∈ R for all δ′ ∈ (δ1, δ2]. Since, however, T = P>Q0R>T′′, for each
δ′ ∈ (δ1, δ2), f(δ′) ∈ Ext(R>T′′) ⊆ R. Hence we obtain that x ∈ Ext3 (P,Q,Ext(T′)).

For the other direction, suppose x ∈ Ext3 (P,Q,Ext(T′)). Let us consider the case T′ = R>T′′ (see
Figure 8), since the case T′ = ε is trivial. Notice that Ext(T′) ⊆ R. By assumption, Ext(T′) is a polyhedron,
and by Lemma 4 there is a patch E of Ext(T′) such that x ∈ Ext3 (P,Q,E). Let f be a trajectory of type

12



x

y

z

w

w′

u

f

h2

h1

g

P

R

Q

c

Figure 8: Connecting two witnesses (the dashed line f starting from x and the dotted line g starting from z) into a single one
(Lemma 6).

P>Q0E> in some interval [0, δf ]. Moreover, let δ1, δ2 be two delays such that f(δ) ∈ P for all δ ∈ [0, δ1),

f(δ1) ∈ Q, and f(δ) ∈ E for all δ ∈ (δ1, δ2]. Let us set y = f(δ1), z = f(δ2), and c = ḟ(δ1). Since
z ∈ E ⊆ Ext(T′), by Lemma 5 there exists a trajectory g from z which: (i) is of type T′, (ii) starts with a
straight line segment. Since f is of type T′, it also lingers in R. Let δ∗ > 0 be such that u = g(δ∗) still lies
within R and along the initial straight line segment of g with slope c′.

By applying Lemma 1 backwards from z (i.e., taking z as the point x of the statement of the lemma and

y as the point f(δ̂)) and the convex polyhedron R, we obtain a delay δ̂ > 0 such that the point w , y + δ̂c
belongs to cl(R) and can reach z along an admissible straight trajectory of positive duration. In addition, let
w′ be the midpoint between w ∈ cl(R) and z ∈ R, hence w′ ∈ R as well. We can now apply Lemma 2 twice:
first, to the points y, w and w′; then, to the points w′, z, u. We thus obtain two admissible trajectories, h1

and h2, both contained in R and that can be differentiably connected in w′ (having the same first derivative
at w′). Their concatenation gives us a trajectory h having first derivative equal to c in y and c′ in u. Finally,
by connecting f with h at y and h with g at u we obtain a trajectory of type P>Q0T′ starting from x. We
can then conclude that Ext(P>Q0T′) = Ext3 (P,Q,Ext(T′)).

Fourth case. Assume that T = P 0Q>T′ and let x ∈ Ext(T). Then there is a trajectory f of type T
starting from x. By construction, there exists δ1 > 0 such that f(δ) ∈ Q, for all δ ∈ (0, δ1]. Let δ ∈ (0, δ1]
and y = f(δ). The suffix of f starting from time δ proves that y belongs to Ext(Q>T′). As a consequence,
f starts in P , immediately enters Ext(Q>T′), and lingers in it for a non-empty time interval. Therefore, we
obtain that x ∈ Ext2 (P,Ext(Q>T′)).

For the other direction, notice first that the assumption ensures that Ext(Q>T′) is a polyhedron. Let
x ∈ Ext2 (P,Ext(Q>T′)), there exists a trajectory f starting from x ∈ P that lingers in Ext(Q>T′) for a
non-empty time interval (0, δ), i.e. f(δ′) ∈ Ext(Q>T′) for all δ′ ∈ (0, δ). By considering again Figure 8
and taking x = y in the figure, we can apply the same construction as in the previous case and obtain
a trajectory starting from x and of type P 0Q>T′. Hence, we conclude that x ∈ Ext(P 0Q>T′). As a
consequence, Ext(P 0Q>T′) = Ext2 (P,Ext(Q>T′)).

Assuming we can compute Ext2 and Ext3 , and that their results are polyhedra, this section provides all
the tools to compute RWA(G,A). By Theorem 4, it is sufficient to compute Ext(T) for all types T ∈ CTypes.
Each such T is a finite sequence of patches of A, with the last patch being G (annotated as G0 or G>).
Then, we iteratively compute Ext(T), starting from the last patch and going backwards, according to the
prescriptions of Lemma 6. Specifically, the algorithm proceeds by computing the extensions of non-zero
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suffixes of T. Assume that we have computed the extension of a proper non-zero suffix T′ of T. If there are
at least two more patches in T (i.e., T = . . . P>Q0T′), then

Ext(P>Q0T′) = Ext3 (P,Q,Ext(T′)).

Otherwise, T = P 0T′. In this case,

Ext(P 0T′) = Ext2 (P,Ext(T′)).

Depending on how type T ends, the algorithm starts with one of the following:

Ext(G>) = G ∩G↙>0, Ext(P>G0) = Ext3 (P,G,Rn),

and, in case T = G0, we simply have Ext(G0) = G. The following two sections deal with the computation
of the operators Ext2 and Ext3 applied to polyhedra.

5.1. Computing Ext2 on Polyhedra

We now show how to reformulate the computation of the operator Ext2 in terms of straight trajectories
only. The main results of this section and the next one are summarized in Figure 11.

We recall the following result from the literature, which guarantees that every point reachable from a
point x along an admissible and differentiable trajectory can also be reached from x along an admissible
straight trajectory.

Proposition 1. [1] For all points x ∈ Rn, if there is a trajectory f ∈ Adm(x) and a time δ > 0 such that
f(δ) = y, then there is a slope c ∈ F such that y = x+ δc.

Notice that the proof of Proposition 1 only requires that f be continuous, therefore the result holds of
all the classes of trajectories considered in the present paper.

The following result shows that Ext2 can be expressed in terms of straight directions and then easily
computed with basic polyhedral operations.

Theorem 5. For all disjoint convex polyhedra P and Q, it holds Ext2 (P,Q) = P∩cl(Q)∩Q↙. In particular,
Ext2 (P,Q) is a convex polyhedron.

Proof. First, notice that, by definition, we have the following:

Ext(P 0Q>) =
{
x ∈ P

∣∣ ∃f ∈ Adm(x), δ > 0 ∀δ′ ∈ (0, δ] : f(δ′) ∈ Q
}
. (8)

Now, we can prove the two sides of the equivalence.
(⊆) Let x ∈ Ext(P 0Q>) and let f ∈ Adm(x) be the trajectory, whose existence is postulated in (8). Since
f lingers in Q, in each neighborhood of x there is a point in Q. Hence, x ∈ cl(Q). Moreover, Proposition 1
implies that x ∈ Q↙.

(⊇) Let x ∈ P ∩ cl(Q) ∩ Q↙ and let y ∈ Q such that y = x + δ̄c, for suitable δ̄ ≥ 0 and c ∈ F . Since
P and Q are disjoint, it holds δ̄ > 0. Then, the trajectory f(δ) = x + δc lingers in Q and proves that
x ∈ Ext(P 0Q>).

5.2. Computing Ext3 on Polyhedra

In words, Ext3 (P, P̂ , P ′) contains the points of P that can reach and spend a positive amount of time in
P ′, via a trajectory that remains within P ∪ P ′ at all times, except for an intermediate time instant δ1 in
which the trajectory is in P̂ . Notice that the conditions above imply that f(δ1) ∈ cl(P ) ∩ cl(P ′). Hence,

Ext3 (P, P̂ , P ′) = Ext3 (P, P̂ ∩ cl(P ) ∩ cl(P ′), P ′),

and we can assume w.l.o.g. that P̂ is included in cl(P ) ∩ cl(P ′).
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5.2.1. From Trajectories to Straight Trajectories: First Attempt

In order to compute Ext3 , we try to reformulate it in terms of straight trajectories. If we simply replace
the arbitrary trajectory f ∈ Adm(x) in the definition of Ext3 with a straight trajectory of slope c, we obtain
the following operator:

SExt3 (P, P̂ , P ′) =
{
x ∈ P

∣∣∃c ∈ F, δ1 > 0, δ2 > δ1 :

∀δ ∈ (0, δ1) : x+ δc ∈ P and x+ δ1c ∈ P̂ and ∀δ ∈ (δ1, δ2] : x+ δc ∈ P ′
}
.

Intuitively, these are the points of P that can reach a point in P ′ following a straight direction while remaining
in P ∪P ′ at all times, except for a single point in P̂ . Clearly, SExt3 (P, P̂ , P ′) ⊆ Ext3 (P, P̂ , P ′). In addition,
any point in P that can reach SExt3 (P, P̂ , P ′) also belongs to Ext3 (P, P̂ , P ′):

Lemma 7. For all convex polyhedra P , P̂ and P ′ the following holds:

P ∩ SExt3 (P, P̂ , P ′)↙⊆ Ext3 (P, P̂ , P ′).

Proof. The proof is illustrated in Figure 9. Let x ∈ P ∩

x y

z
P

P ′

Figure 9: When a point x ∈ P
can reach another point y which is
in SExt3 (P, P̂ , P ′), x can differentiably
cross into P ′ (see Lemma 7). Here,

P̂ = {z}.

SExt3 (P, P̂ , P ′)↙ and let y ∈ SExt3 (P, P̂ , P ′) be such that x ∈ {y}↙.
There exist c ∈ F and 0 < δ1 < δ2 satisfying the definition of

SExt3 (P, P̂ , P ′) for y. Let z = y + δ1c, by construction it holds

z ∈ P̂ ∩ cl(P ) ∩ cl(P ′). By applying Lemma 2 with x0 = x, x1 = y,
and x2 = z, we get a differentiable trajectory f in Adm(x) from x to
z whose derivative in z is c. Moreover, f is contained in P , with the

possible exception of z ∈ P̂ . Therefore, the concatenation of f and
the straight trajectory g(δ) = z + δc is everywhere differentiable and

crosses into P ′. As a consequence, x ∈ Ext3 (P, P̂ , P ′).

Lemma 7, albeit providing a sound approximation of Ext3 in terms of straight trajectories, does not,
unfortunately, ensure completeness. Indeed, there may be points that belong to Ext3 (P, P̂ , P ′) but not to
SExt3 (P, P̂ , P ′)↙.

Example 2. Consider the scenario depicted in Figure 10, where P and P ′ are open convex polyhedra, P̂
contains a single point z (the upper right corner of the closure of P ), and the line segment A (which does
not include P̂ ) is a region to avoid. Given the flow constraint depicted on the right-hand side of the figure,
it holds SExt3 (P, P̂ , P ′) = ∅, as no straight trajectory leads from P to P ′ passing through P̂ .

P P ′

P̂

A

x y

z1 z2

F

Figure 10: Reaching points in SExt3 is not necessary to be in Ext3 .

Notice, however, that the point z1, lying in the closure of P , is reachable from x by following a straight
trajectory which always remains in the closure of P . Then, a straight trajectory, with derivative c, leads
from z1 to a point z2, which lies in the closure of P ′, without ever leaving the closures of the two polyhedra.
Finally, z2 can reach y in P ′, following a straight trajectory that never leaves the closure of P ′. Therefore,
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Lemma 2 applied with x0 = x, x1 = z1 and x2 = z gives a differentiable trajectory from x to z, which never
leaves P except for the end point z ∈ P̂ and whose derivative in z is c (the straight direction from z1 to z2).
Similarly, another application of Lemma 2, this time to x0 = z, x1 = z2 and x2 = y, gives a differentiable
trajectory from z to y, which never leaves P ′ except for the starting point z ∈ P̂ and whose derivative in z
is, again, c. The concatenation of these two trajectories in z is depicted in Figure 10 and is a differentiable
trajectory from x to y which never leaves P ∪ P ′ except for the single point z ∈ P̂ . Hence, we have that
x ∈ Ext3 (P, P̂ , P ′).

5.2.2. From Trajectories to Straight Trajectories: Second Attempt

The previous example suggests that the straight trajectory reformulation of Lemma 7, though not com-
plete, can be extended, exploiting Lemma 2, by also allowing certain straight trajectories lying in the closures
of P and P ′. We therefore obtain the following operator:

CExt3 (P, P̂ , P ′) =
{
x ∈ cl(P ) ∩ P↗

∣∣∃c ∈ F, 0<δ1<δ2 :

∀δ ∈ (0, δ1) : x+ δc ∈ cl(P ) and x+ δ1c ∈ P̂ and

∀δ ∈ (δ1, δ2) : x+ δc ∈ cl(P ′) and x+ δ2c ∈ cl(P ′) ∩ P ′↙
}
.

We can simplify the above definition and remove the universal quantifications. Indeed, if x ∈ cl(P ) and
x+ δ1 c ∈ P̂ ⊆ cl(P ), by convexity x+ δc is also in cl(P ), for all intermediate times δ. A similar argument
holds for membership in cl(P ′). As a consequence, by letting Cross(Q,R) denote the set of points that can
reach Q and then R along the same straight direction, i.e.,

Cross(Q,R) =
{
x
∣∣ ∃c ∈ F, 0<δ1<δ2 : x+ δ1c ∈ Q and x+ δ2c ∈ R

}
,

we obtain the following equation:

CExt3 (P, P̂ , P ′) = cl(P ) ∩ P↗ ∩ Cross
(
P̂ , cl(P ′) ∩ P ′↙

)
. (9)

We can prove that CExt3 applied to convex polyhedra is a convex set.

Lemma 8. For all convex polyhedra P , P̂ and P ′, CExt3 (P, P̂ , P ′) is a convex set.

Proof. Let x, x′ ∈ CExt3 (P, P̂ , P ′). By definition, there exist directions c, c′ ∈ F , and positive reals
δ1, δ2, δ

′
1, δ
′
2, such that y , x+δ1c ∈ P̂ , x+δ2c ∈ cl(P ′)∩P ′↙, y′ , x′+δ′1c

′ ∈ P̂ , and x′+δ′2c
′ ∈ cl(P ′)∩P ′↙.

Let x′′ = a x+ (1− a)x′, for some a ∈ (0, 1); we identify a convex combination of c and c′ that, starting
from x′′, reaches P̂ and then spends a positive amount of time in cl(P ′) ∩ P ′↙. To this aim, we set
c′′ = bc+ (1− b)c′. To find the unknown b, we require that the the half-line starting from x′′ with direction
c′′ reaches the appropriate convex combination of y and y′: x′′ + δ′′1 c

′′ = a y + (1 − a) y′. A solution to the
above equation is the following:

b =
δ1 a

δ′′1
, where δ′′1 = aδ1 + (1− a)δ′1.

The point a y+(1−a) y′ belongs to P̂ because it is a convex combination of two points in P̂ , and by convexity
of P̂ . A similar argument shows that there is a time δ′′2 > δ′2 such that the points of the type x′′+γc′′ belong
to cl(P ′) ∩ P ′↙, for all γ ∈ (δ′′1 , δ

′′
2 ). This proves that x′′ ∈ CExt3 (P, P̂ , P ′), and our thesis.

The following theorem, whose proof can be found in the Appendix, shows that CExt3 enables a sound and
complete reformulation of Ext3 in terms of straight trajectories.

Theorem 6. For all convex polyhedra P , P̂ and P ′ the following holds:

Ext3 (P, P̂ , P ′) = P ∩ CExt3 (P, P̂ , P ′)↙ .

In conclusion, Theorems 5 and 6 allow us to compute Ext3 (P, P̂ , P ′) provided we can compute CExt3 (P, P̂ , P ′),
and in particular Cross(P̂ , cl(P ′) ∩ P ′↙). Indeed, that is the subject of the following two sections.
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Ext(T)

Ext2 (P,Q) Ext3 (P, P̂ , P ′)

P ∩ cl(Q) ∩Q↙ CExt3 (P, P̂ , P ′)

Cross(Q,R)

wedgeQ(R)

Lemma 6

Theorem 5 Theorem 6

by (9)

Lemma 10

Figure 11: The main steps required for computing the extension of a convex type.

5.2.3. Geometric Primitives

An affine combination of two points x and y is any point z = ax+ (1− a)y, for a ∈ R. An affine set is
any set of points closed under affine combinations. The empty set, a single point, a line, a hyperplane, and
the whole ambient space are all examples of affine sets. Given a convex polyhedron P , the affine hull of P ,
denoted ahull(P ), is the smallest affine set containing P .

Given a polyhedron P ⊆ Rn, the affine dimension of P is the natural number k ≤ n, such that the
maximum number of affinely independent points in P is k+ 1. The relative interior of a convex polyhedron
P , denoted rint(P ), is the interior of P , relative to its affine hull. More formally, x ∈ rint(P ) if and only
if there is a ball Nε(x) of radius ε > 0 centered in x, such that Nε(x) ∩ ahull(P ) ⊆ P . Similarly, given a
polyhedron P , we call the set N a relative neighborhood of a point x ∈ P , if there is a ball Nε(x) of radius
ε > 0, such that N = Nε(x) ∩ ahull(P ). Intuitively, a relative neighborhood of x is a neighborhood of x
relative to the the affine hull of P . Finally, we say that P is relatively open if it is open relative to its affine
hull.

The point reflection of a point y w.r.t. a point x, in symbols mirrorx(y), is the point y′, beyond x along
the line connecting x and y, such that ‖y−x‖ = ‖y′−x‖. Similarly, one can define the reflection mirrorQ(y)
of y w.r.t. an affine set Q, as the point reflection of y w.r.t. the orthogonal projection of y on Q. The above
definitions can be extended to sets of points P , giving rise to the reflections mirrorx(P ) and mirrorQ(P ).
For a convex polyhedron Q which is not necessarily an affine set, we will abuse the notation and write
mirrorQ(P ) when we mean mirrorahull(Q)(P ).

The affine hull and the relative interior can be easily computed using the standard “double description”
of convex polyhedra via constraints and generators [14]. Moreover, it is well known that the reflection of a
point w.r.t. a given affine set is a linear transformation, and as such it is exactly computable starting from
a representation of the affine set. The details are beyond the scope of the present paper.

5.2.4. Computing Cross

The main difficulty we have to face in order to compute Cross(Q,R) is to ensure that the points collected
in the set can reach Q and then R following a single admissible straight direction. Assume first that Q
contains a single point x; this case is illustrated in Figure 12. In order to compute the set of points that
can reach a given polyhedron R along a single admissible direction that passes through x, we can proceed as
follows. We first compute the set W of points reachable from x following some (non-necessarily admissible)
direction that passes through R. Then we compute the mirror image of W w.r.t. x (patterned area in the
figure), to obtain the set of points that can reach R via x following a single straight direction. Finally, we
intersect the resulting set with the positive pre-flow of x, thus obtaining the set of points that can reach R
via x following a single straight and admissible direction. In order to generalize the procedure to the case
where the single point x is replaced by an arbitrary convex polyhedron Q, we first introduce the operator
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{x}↙>0

F

Figure 12: The patterned area is mirrorx(W ) and the intersection of the patterned and shaded areas is Cross({x}, R).

wedgeQ(R), which collects the points reachable from some point x in Q following some (non-necessarily
admissible) direction that passes through R. Formally, given two convex polyhedra Q and R, let

wedgeQ(R) =
{
x+ δ c

∣∣x ∈ Q, δ ≥ 0 and c ∈ R⊕ {−x}
}

In other words, the direction c can be any vector starting from x and leading to a point in R. The procedure
described above for the case Q = {x} leads to the following result:

Cross(x,R) = {x}↙>0 ∩ mirrorx(wedgex(R)). (10)

Unfortunately, if we replace the single point x with an arbitrary convex polyhedron Q, the above equiv-
alence does not hold any longer, as the following example shows.

x

y

z

R

q1

q2

Q

x

y

z

F

Figure 13: Example 3.

Example 3. Consider the two convex polyhedra Q and R depicted in Figure 13, where Q is included in the
closure of R and q1 = (1, 0, 0) and q2 = (3, 0, 0). Assume that the flow constraint allows the system to move
on planes parallel to the yz-plane, as illustrated on the right-hand side of the picture. If we apply the procedure
outlined above to Q and R we obtain: W , wedgeQ(R) = {(x, y, z) | y ≥ 0 and z ≤ 0}; Z , mirrorQ(W ) =
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{(x, y, z) | y ≤ 0 and z ≥ 0}; finally, Q↙>0 ∩ Z = {(x, y, z) | 1 ≤ x ≤ 3, y ≤ 0, z ≥ 0, and y+ z > 0}, where
the additional constraint y + z > 0 removes Q from the result, since Q is disjoint from Q↙>0 in this case.
The result does collect all the points in Cross(Q,R) but also additional points that cannot cross into R via
Q. Indeed, according to the definition, Cross(Q,R) contains all the points in Q↙>0 ∩ Z except for the two
dashed half-lines lying on the xy-plane and passing through q1 and q2. In fact, no point on those half-lines
can cross into R passing through Q following an admissible direction.

Notice that, simply excluding the extreme points q1 and q2 from Q, i.e., taking Q′ = rint(Q) instead of Q,
would restore soundness of the result, but lose completeness. In the example, we would obtain the following

Q′↙>0 ∩ mirrorQ′(wedgeQ′(R)) = {(x, y, z) | 1 < x < 3, y ≤ 0, z ≥ 0, and y + z > 0},

where the two vertical half-lines from q1 and q2, together with the enclosed face and the two lateral faces
parallel to the yz-plane, would be erroneously excluded from the solution.

The example suggests that the generalization of Equation 10 fails when the convex polyhedron Q is not
relatively open. Indeed, in the following we show that the natural generalization works when Q is relatively
open, and then we provide a way to solve the problem for the general case.

For the first step we shall need a preliminary result stating that, wheneverQ is contained in the topological
closure of R, every point in the relative interior ofQ can reach every point in wedgeQ(R) while passing through
R.

Lemma 9. Let Q and R be two convex polyhedra such that Q ⊆ cl(R).
For all y ∈ wedgeQ(R) and z ∈ rint(Q) there exist d ∈ R ⊕ {−z} and
γ ≥ 0 such that y = z + γ d.

Proof. By assumption, y = x + δ c, for some x ∈ Q, δ ≥ 0 and c ∈
R ⊕ {−x}. Let c = r − x, with r ∈ R. Since x ∈ Q and z ∈ rint(Q),
there must be a point x′ ∈ Q along the line connecting x and z and such
that z lies strictly between x and x′. By the convexity of R, the triangle
with vertices x, x′ and r is contained in cl(R) (see Figure 14), and the
relative interior of the triangle is contained in R. Hence, there is a point
r′ lying in the relative interior of the triangle and on the line segment
connecting z and y. The direction d required by the thesis is then r′− z.

x

y

x′

z

r

r′

Q

R

Figure 14: When Q ⊆ cl(R), the
points in wedgeQ(R) can be reached
from every point in rint(Q) (see
Lemma 9).

Thanks to the lemma above, we can prove that the generalization of Equation 10 is sound and complete
for any relatively open convex polyhedron Q.

Lemma 10. For all convex polyhedra Q and R, if Q is relatively open and Q ⊆ cl(R), then it holds

Cross(Q,R) = Q↙>0 ∩ mirrorQ(wedgeQ(R)) . (11)

Proof. [⊇] Let y be a point in r.h.s. of (11), we have that y

xy y′

z

z−

z+

r

Q

Figure 15: When a point y is in Cross(Q,R), it
can cross into R via Q following a single admis-
sible direction (see Lemma 10).

can reach a point z ∈ Q along a straight direction c ∈ F in a
positive amount of time δ1 > 0 (i.e., z = y + δ1c). In addition,
y ∈ mirrorQ(wedgeQ(R)).

Let y′ be mirrorQ(y), which belongs to wedgeQ(R) (see
Fig. 15). Assume, first, that y, z and y′ identify a unique plane
H (i.e., the three points are not collinear). Let x be the middle
point of the segment with endpoints y and y′. Clearly, x belongs
to the affine hull of Q as well as z, since ahull(Q) ⊆ Q. As a con-
sequence, the line l connecting x and z is contained in ahull(Q).
We show that there is a neighborhood α of z that is contained
both in l and in Q.
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Being Q = rint(Q), there is a relative neighborhood of z entirely contained in Q. Hence, line l passing
through z must intersect such a relative neighborhood, which, in turn, is the required neighborhood α of z.
By Lemma 9, there exist r ∈ R and δ ≥ 0 such that y′ = z + δ(r − z). Now, let z− and z+ be two points,
on either side of z along line l and contained in Q. The triangle with vertices z−, r and z+ is contained in
cl(R); the relative interior of the triangle is contained in R. The intersection of the relative interior of the
triangle and the continuation of line yz contains a segment of positive length. Since all the points on that
segment are contained in R and are reachable from y along a single direction c ∈ F , passing through z ∈ Q,
we conclude that y ∈ Cross(Q,R).

[⊆] Assume now y ∈ Cross(Q,R). By definition, there exist c ∈ F , 0<δ1<δ2, such that z , y+ δ1c ∈ Q
and r , y + δ2c ∈ R. Let also y′ = mirrorQ(y) and x be the middle point of the segment with endpoints
y and y′. Clearly, y ∈ Q↙>0. We need to prove that y′ ∈ wedgeQ(R). By a similar argument as in the
previous case, there exist two points z− and z+, on either side of z along the line xz, that are contained in
Q. The relative interior of the triangle with vertices z−, r and z+ is contained in R. The intersection of the
above triangle and line zy′ contains a segment of positive length (see again Fig. 15). Therefore, y′ belongs
to wedgeQ(R) and, consequently, point y, the mirror of y′ w.r.t. Q, belongs to Cross(Q,R).

It is now easy to compute Cross(Q,R) a general convex polyhedron Q which is not relatively open. First,
we notice that Cross distributes over unions in its first argument, i.e., Cross(Q1 ∪Q2, R) = Cross(Q1, R) ∪
Cross(Q2, R). Second, any convex polyhedron Q can be recursively partitioned into a finite set RelOpen(Q)
of relatively open convex polyhedra, as follows. Let RelOpen(∅) = {∅}, and

RelOpen(Q) = {rint(Q)} ∪
⋃

Q′∈[[Q\rint(Q)]]

RelOpen(Q′).

The above recursion is well founded, since the affine dimension of every Q′ ∈ [[Q \ rint(Q)]] is strictly lower
than the affine dimension of Q, down to the case where Q′ contains a single point, in which case Q′ is
relatively open and the recursion terminates. Hence, for all convex polyhedra Q and R, it holds

Cross(Q,R) =
⋃

Q′∈RelOpen(Q)

Cross(Q′, R). (12)

If, additionally, Q ⊆ cl(R), by Lemma 10 we can compute each Cross(Q′, R) above, provided we can compute
wedge(·), which is the topic of the following subsection.

5.2.5. Computing wedge

The following straightforward proposition states that if a convex polyhedron satisfies a linear inequal-
ity and its relative interior touches the corresponding hyperplane, then the whole polyhedron lies on the
hyperplane.

Proposition 2. For all convex polyhedra A and constraints α , a x ≤ b, if A is contained in the halfspace
α and there exists z ∈ rint(A) lying on the hyper plane β , a x = b (i.e., a z = b), then A is contained in β.

The following lemma shows that wedgeA(B) is a convex polyhedron that can easily be computed from
the representations of A and B. In particular, it is obtained by selecting a subset of the constraints defining
B.

Lemma 11. For all non-empty convex polyhedra A and B, such that A ⊆ cl(B), the set wedgeA(B) is the
convex polyhedron defined as follows. Let {aix ∼i bi | i = 1, . . . , k} be a constraint system for B, where
∼i∈ {<,≤}. Let I ⊆ {1, . . . , k} be the set of indices i such that all points in A satisfy aix = bi. Then,

wedgeA(B) =
⋂
i∈I

aix ∼i bi, (13)

where the intersection over an empty I is taken to mean Rn.
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Proof. (⊆) Let y ∈ wedgeA(B), and let u ∈ A, v ∈ B, and δ ≥ 0 be such that y = u+δ(v−x). Let i ∈ I, we
prove that aiy ∼i bi. Our assumptions imply that aiu = bi and aiv ∼i bi. Then, aiy = aiu+ δ(aiv− aiu) ∼i
bi + δ(bi − bi) = bi.

(⊇) Let y be a point belonging to the r.h.s. of (13). If y ∈ B, the thesis is immediate by setting δ = 1
and c = y − x as witness direction in the definition of wedge. Otherwise, let u be any point in the relative
interior of A, and consider the line segment l connecting u and y. We prove that there exists a point v 6= u
on l that belongs to B. Assume the contrary. Then, each point on l, except possibly u, violates at least
one of the constraints defining B. Hence, there is a constraint aix ∼i bi among those that define B that is
violated by points that are arbitrarily close to u. However, since A ⊆ cl(B), aiu = bi. In words, the relative
interior of A touches the hyperplane aix = bi. Moreover, A is entirely contained in the halfspace aix ≤ bi.
By Proposition 2, A is entirely contained in the hyperplane aix = bi, and therefore i ∈ I. Summarizing, u
lies on aix = bi, and some points on l violate aix ∼i bi. As a consequence, y also violates aix ∼i bi, which
is a contradiction because y belongs to the r.h.s. of (13). We conclude that there is a point v 6= u on l

belonging to B. Then, let δ = |y−u|
|v−u| , we obtain y = u+ δv and the thesis.

We can now provide the main result of the paper. Indeed, from Lemma 11, Lemma 10, and Equation 12,
we obtain that the Cross operator is computable and, as a consequence of Equation 9, so is CExt3 . Theo-
rems 5 and 6 provide the same result for the operators Ext2 and Ext3 . Hence, by Lemma 6, we have that the
extension of any convex type, and, therefore, of every canonical type, is computable. Finally, by Theorem 4
and by recalling that RWACd(G1 ∪ G2, A) is equal to the union of RWACd(G1, A) and RWACd(G2, A), we
obtain the desired result.

Theorem 7. For all disjoint polyhedra G and A, RWACd(G,A) is computable.

6. Computing RWA One Layer at a Time

In some sense, the procedure outlined at the end of Section 5 represents a depth-first computation of
RWA. In this section we recall the alternative algorithm that we presented in the preliminary version of this
work [8]. Such algorithm can be thought of as a breadth-first computation of RWA. Rather than computing
the extension of a single type, the algorithm maintains a generally non-convex polyhedron W , containing all
points that have already been proved members of RWA, regardless of their type, and it progressively enlarges
W by invoking Ext2 (P, P ′) and Ext3 (P, P̂ , P ′), where P ′ is a convex polyhedra already in W , whereas P
and P̂ are patches of A, i.e., sets of points that could belong to RWA. We conjecture that the breadth-first
algorithm is generally more efficient than the depth-first one, since it involves fewer calls to the expensive
Ext3 operator. Indeed, our implementation, presented in Section 7, is based on this breadth-first version.

Analogously to the τae operator, define the following:

τd(G,A,W ) = G ∪
⋃

P∈[[A]]

Ext3 (P,G,Rn) ∪
⋃

P,P̂∈[[A]]

⋃
P ′∈[[W ]]

Ext2 (P, P ′) ∪ Ext3 (P, P̂ , P ′).

A finite number of repeated applications of τd(G,A,W ), starting from W = ∅, captures exactly all points in
RWACd(G,A). In particular, comparing the definition of τd with Equation 7, the first disjunct G corresponds
to Ext(G0). The second disjunct collects the extensions of the types of the form P>G0, including the case
G>G0, which is equivalent to type G>. Finally, the last disjunct covers the two recursive cases of Equation 7,
where P ′ ranges over the patches of already computed type extensions. Based on this correspondence, the
following theorem can be proved.

Theorem 8 ([8]). For all polyhedra A and convex polyhedra G ∈ [[A]], we have

RWACd(G,A) = µW . τd(G,A,W ).

Moreover, the fixpoint is reached in a finite number of iterations.
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7. Experiments

In this section we report the results of experiments performed on a prototype implementation of the
algorithm reported in Section 6, based on the Parma Polyhedra Library [15].

The input system is a variation of the 2-ship example presented in the Introduction: two ships must
reach a target area while avoiding obstacles and keeping a minimum safety distance. Figure 16a shows the
target area and the four obstacles. The latter are topologically open and weakly adjacent, so that only two
0-width channels are left between them. As advocated in the Introduction, the 0-width channels and the
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(a) Target area G and avoidance region A.

1 2 3 4
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ẏ
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F2

(b) Range of velocities for the two ships.

Figure 16: The inputs to the 2-ship example.

differentiability constraint together provide an abstract way to model the fact that the ships cannot change
direction at the intersection of the two channels (point (2, 2)). In practice, the ships may not be able to
change direction due to a non-holonomic constraint (i.e., they may be going too fast to make the turn), or
because their shapes and sizes prevent it (i.e., they are too large compared to the actual channel width).

Figure 16b shows the range of velocities (a.k.a. flow constraints) allowed for the two ships. The grayed
area denoted by F1 (resp., F2) is the set of possible velocities for ship 1 (resp., 2). Both ships can move
in all directions from 0◦ (i.e., straight along the x axis) to 90◦ (straight along the y axis), but they have a
different range of speeds, with ship 1 being slower than ship 2. Neither of them can stop.

The resulting input system has 4 variables (x1, y1, x2, y2), representing the position of the two ships. The
goal G consists in both ships being in the target area at the same time, as defined by (x1, y1, x2, y2) ∈ [4, 6]4.
The avoidance region A is the union of 9 convex polyhedra: 8 of them represent the collision of each ship
with one of the 4 obstacles; the last polyhedron is the safety distance constraint, collecting all configurations
in which the Chebyshev distance between the ships is at most 1:

x1 − x2 ≤ 1 ∧ x2 − x1 ≤ 1 ∧ y1 − y2 ≤ 1 ∧ y2 − y1 ≤ 1.

Intuitively, this constraint sets an imaginary safety barrier around each ship, in the shape of an axis-aligned
square of size 2, centered on each ship, which the other ship cannot enter.

We used our tool to compute the sets RWAC(G,A), for the two classes of trajectories C ∈ {Cae, Cs}3. It
is worth stressing that these sets represent the exact solution to the controllability problem, and cover all
possible initial positions of the two ships.

Figure 17 shows in blue the slice of the solutions when ship 1 is located at (0, 2). The solution for smooth
trajectories (Fig. 17b) is significantly smaller than the one for a.e. differentiable trajectories (Fig. 17a). To

3The results were obtained in ∼12 seconds for Cae and ∼320 seconds for Cs on a 1.7Ghz Intel Core i7.

22



1 2 3

1

2

3

x2

y2

(a) Almost everywhere differentiable trajectories.

1 2 3

1

2

3

x2

y2

(b) Smooth trajectories.

Figure 17: Solution slice with x1 = 0, y1 = 2 in the two semantics.

investigate this difference, consider starting point (2,−1) for ship 2. This point belongs to the solution for
Cae but not for Cs.

x1, x2

y1, y2

t = 0

t = 0

t = 1t = 1 t = 1t = 1

t = 3

t = 3.3

ship 1

ship 2

Figure 18: Witness trajectories with the a.e. differentiable semantics.
Ship positions are marked at times t = 0, 1, 2, 3, 3.3 (best seen in color).

To see why that configuration is only
part of the solution if the ships are allowed
to change direction at the intersection, con-
sider the witness in Figure 18. The two thick
lines represent the trajectories for the two
ships. Moreover, the position of the ves-
sels is marked for times t ∈ {0, 1, 2, 3, 3.3},
with 3.3 being a time in which the ships are
simultaneously in the target area. In the
first time unit, ship 2 quickly reaches the in-
tersection point (2, 2) and then changes di-
rection eastwards. In the meanwhile, ship
1 slowly reaches the intersection and then
turns northwards. In this way, they man-
age to go though the intersection while keep-
ing the minimum required distance. On the
other hand, consider the smooth semantics,
in which the ships cannot change direction
instantaneously. In that case, once ship 2
reaches the intersection, it is forced to con-
tinue northwards. Then, even at its max-
imum speed, it cannot escape fast enough
from the safety barrier of the approaching
ship 1.

Next, consider the slice of the solutions when we fix the position of ship 2 to the point (0, 2) (see Figure 19).
In both semantics, if the slower ship 1 has already cleared the intersection, the faster ship 2 can catch up and
reach the target area in time. On the other hand, when ship 1 starts behind the intersection (say, at point
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(2, 0)), the two semantics exhibit a significant difference. Broadly speaking, in the smooth semantics ship 2
must initially move at its fastest speed for a longer period of time, in order to avoid a collision with ship 1.
Afterwards, even if ship 2 slows down and ship 1 speeds up, they will not be able to be in the target area
at the same time. This explains why points such as (2, 0) belong to the solution for the a.e. differentiable
semantics (Fig. 19a) but not in the smooth semantics (Fig. 19b).

x1

y1

(a) Almost everywhere differentiable trajectories.

x1

y1

(b) Smooth trajectories.

Figure 19: Solution slice with x2 = 0, y2 = 2 in the two semantics.

8. Conclusions

In this paper we considered the problem of computing the set of points that can reach a given polyhedron
while avoiding another one via a differentiable or smooth trajectory that is subject to a polyhedral differential
inclusion. This problem is relevant for the symbolic analysis of continuous time dynamic systems such as
Linear Hybrid Automata.

We have shown that previous solutions do not guarantee differentiability of the trajectories, particu-
larly because it is not sufficient to consider pairs of adjacent polyhedra when extending the set of possible
trajectories. Rather, triples of weakly adjacent polyhedra come into play.

We provided a precise formulation of the problem, allowing us to prove that the distinction between
differentiable and smooth trajectories is immaterial to it, as both constraints lead to the same result. We
then presented an exact symbolic algorithm for the problem, which works in the original state space (i.e., it
does not add extra dimensions) and is based on reflections of polyhedra. Our algorithm uses only standard
operations on polyhedra that are offered by state-of-the-art libraries such as Parma Polyhedra Library [15].

The implementation used to carry out the experiments in Section 7 is a preliminary proof-of-concept. As
future work, we plan to explore performance improvements, based, for instance, on polyhedra adjacency, in
the same vein as we have done in previous work [9]. This could, in principle, mitigate the performance gap
with respect to the a.e. differentiable semantics. We also plan to integrate the algorithm into existing tools
for verification of hybrid systems, such as SpaceEx [16].
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Appendix A. Additional Proofs

Lemma 1 (Tangent). Let P be a convex polyhedron, x a point, f ∈ AdmCd(x) a trajectory, and δ̂ > 0 a

delay such that in all non-empty intervals (δ, δ̂) there is a time γ such that f(γ) ∈ P . Then, there exists

δ∗ > 0 such that f(δ̂)− δ∗ḟ(δ̂) ∈ cl(P ) ∩ {x}↗>0.
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Proof. Let y = f(δ̂) and c = ḟ(δ̂). Notice that y ∈ cl(P ) because in all neighborhoods of y there is a point
in P . Moreover, by Proposition 1 all points of the trajectory belong to {x}↗>0.

Assume by contradiction that for all δ > 0 it holds y − δc 6∈ cl(P ) ∩ {x}↗>0. In this case, the half-line
{y − δc | δ ≥ 0} intersects Q , cl(P ) ∩ {x}↗>0 only in point y. Since Q is a convex polyhedron, there is a
linear constraint which is satisfied by y and violated by all other points of the half-line. Hence, the distance
between Q and a generic point y − δc of the half-line grows at least linearly with δ. Formally, there exists
a > 0 such that dist(y − δc,Q) ≥ δa for all δ ≥ 0, where dist denotes the Euclidean distance.

On the other hand, by definition limδ→0
y−f(δ̂−δ)

δ = c. Therefore, there exists δ∗ > 0 such that for all
0 < δ < δ∗ it holds ∥∥∥∥∥y − f(δ̂ − δ)

δ
− c

∥∥∥∥∥ < a, i.e.

‖(y − δc)− f(δ̂ − δ)‖ < δa

dist(y − δc, f(δ̂ − δ)) < δa.

As a consequence, we have that f(δ̂− δ) 6∈ Q, contradicting the assumption that in all left-neighborhoods of

δ̂ there is a time when f lies in P .

Claim 1. Given the interval [0, δ] and δ1 ≥ 0, there exists an α > 0 such that the function g, defined by
equation (6), with parameter α satisfies all the conditions (1)–(5).

Proof. It is easy to verify that g(δ) is continuous in the interval [0, δ̄] and satisfies conditions (1) and (2)
by construction. Moreover, since LF (x) ∈ (0, 1), for all x ∈ R, it immediately follows that g(δ) ∈ (0, 1), for
all δ ∈ [0, δ̄], thus satisfying condition (3). When we want to emphasize the dependency of h and g on the
parameter α, we will write hα and gα. Figure A.20 shows three instances of gα, for different values of α.
Regarding property (4), the first derivative of g(δ) is:

0

1

δ̄
δ

y

g0.5(δ)

g1(δ)

g2(δ)

Figure A.20: Three instances of gα(δ), for α = 0.5, α = 1 and α = 2.

d

d δ
g(δ) =

1

1 + e−h(δ)

e−h(δ)

1 + e−h(δ)
ḣ(δ) = g(δ) (1− g(δ)) ḣ(δ). (A.1)

In addition, one can easily prove by induction on k ≥ 1 that

dk

dδk
h(δ) = δ̄ k!

[
1

α(δ̄ − δ)k+1
− (−1)kα

δk+1

]
. (A.2)

Hence, it is immediate to see that the k-th derivative of h(δ) w.r.t. δ is the ratio between two polynomials
in δ, with the degree of the denominator greater than that of the numerator. Moreover, the limits at 0 and
δ̄ of the ratio is 0.
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Proposition 3. The k-th derivative of g(δ) w.r.t. δ is of the form 4

∑
i

ai · gni(δ) · (1− g(δ))mi · pi(δ)
qi(δ)

, (A.3)

for suitable integer constants ai, ni ≥ 1, mi ≥ 1, and for pi(δ) and qi(δ) polynomials in δ with
deg(pi(δ)) < deg(qi(δ)).

Proof. The base case for k = 1 is given by equation (A.1). For the inductive case, it suffices to
observe that the derivative of each term in the summation above reduces to the summation of three
additional terms, each of the form a · gn(δ) · (1− g(δ))m · pj(δ)qj(δ)

, for suitable a, n, and m. Indeed,

d

dδ

(
ai · gni(δ) · (1− g(δ))mi · pi(δ)

qi(δ)

)
=− ai · ni · gni(δ) · (1− g(δ))mi+1 · ḣ(δ) · pi(δ)

qi(δ)
+

+ ai ·mi · gni+1(δ) · (1− g(δ))mi · ḣ(δ) · pi(δ)
qi(δ)

+

+ ai · gni(δ) · (1− g(δ))mi · pi(δ)q̇i(δ) + ṗi(δ)qi(δ)

q2
i (δ)

.

It is immediate to see that each quotient of polynomials in all the terms still satisfies the required
condition that the degree of the numerator is smaller than the one of the denumerator (end of
Proposition proof).

Due to Proposition 3, in order to prove that g(k)(0) = 0 it is sufficient to show that for all polynomials
p(δ) and q(δ), and all integers a, n ≥ 1,m ≥ 1, it holds:

lim
δ→0+

a · gn(δ) · (1− g(δ))m · p(δ)
q(δ)

= 0.

Notice that in any bounded neighborhood of 0 the polynomial p is bounded and so is its limit for δ → 0+.
Moreover, the limit of the term (1− g(δ))m for δ → 0+ is 1, due to condition (1). We are left to study the

limit of the quotient gn(δ)
q(δ) , which is non-trivial if q(0) = 0.

We distinguish three cases, based on the position of α w.r.t. 1. If α > 1 then we prove that when δ is
sufficiently close to 0, it holds that

g(δ) =
1

1 + e−h(δ)
<

1

1 + e
1
δ

. (A.4)

In other words, −h(δ) > 1
δ . Assume for simplicity that δ̄ = 1, we have the following:

−h(δ) =
α(1− δ)

δ
− δ

α(1− δ)
.

Hence, we should verify

α2(1− δ)2 − δ2 > α(1− δ)
α2(1− δ)2 − α(1− δ)− δ2 > 0.

Since
lim
δ→0+

α2(1− δ)2 − α(1− δ)− δ2 = α2 − α > 0,

4Note that 1 ≤ i ≤ 3k−1.
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we obtain the thesis (A.4). We then go back to studying the ratio between g(δ)n and q(δ) when δ approaches
0:

lim
δ→0+

g(δ)n

q(δ)
≤ lim
δ→0+

g(δ)

q(δ)

≤ lim
δ→0+

1

1 + e
1
δ

· 1

q(δ)
by (A.4)

≤ lim
δ→0+

1

e
1
δ

· 1

q(δ)

= lim
δ→0+

e−
1
δ

q(δ)

= lim
y→−∞

ey

q(− 1
y )

= lim
y→−∞

yl · ey

q′(y)
where l = deg(q) and q′ is a polynomial

= 0.

Next, we consider the case α < 1. Similarly to the previous case, we observe that when δ is sufficiently close
to zero, it holds that

g(δ) =
1

1 + e−h(δ)
<

1

1 + e
α2

δ

.

In other words, −h(δ) > α2

δ . Hence,

lim
δ→0+

g(δ)n

q(δ)
= lim
δ→0+

e−
α2

δ

q(δ)

= lim
y→−∞

ey

q(−α2

y )

= lim
y→−∞

yl · ey

q′(y)
where l = deg(q) and q′ is a polynomial

= 0.

Finally, the case α = 1 can be treated along similar lines, by observing that in a neighborhood of 0 it holds
that

g(δ) <
1

1 + e
1
2δ

.

This proves that g(k)(0) = 0. The other half of property (4) (i.e., g(k)(δ̄) = 0) can be proved in a symmetrical
fashion.

We are left with condition (5), i.e., for each choice of δ1, δ2 there exists α such that the integral of gα
between 0 and δ̄ is δ1. We show this result indirectly: we prove that by an appropriate choice of α, the
integral can be made arbitrarily close to 0 or arbitrarily close to δ̄. The desired property then follows by
continuity.

The following proposition allows us to prove that the integral can be made arbitrarily close to zero.
As illustrated by Figure A.21, if an appropriate choice of α makes gα pass below the point of coordinates
(δ̄− a, a), considering that gα is monotonically increasing, this implies that the integral of gα between 0 and
δ̄ is at most equal to the area of the two rectangles of corners (0, 0)-(δ̄−a, a) and (δ̄−a, 0)-(δ̄, 1), respectively
(i.e., the shaded region in Figure A.21). If this property holds for an arbitrary a > 0, said integral can be
made arbitrarily small.
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Proposition 4. For all a > 0 there exists α > 0 such that g−1
α (a) > δ̄ − a.

Notice that it holds g−1
α (y) = h−1

α (LF−1(y)). The inverse functions LF−1 and h−1
α can easily be computed

and are expressed as follows:

LF−1(y) = − log

(
1

y
− 1

)
and

h−1
α (y) = αδ̄ · y − 2α+

√
y2 + 4

2(1 + αy − α2)
. (A.5)

Now, LF−1(y) maps the interval (0, 1) onto R and h−1(y) maps R onto the interval (0, δ̄). In order to prove
Proposition 4 it is sufficient to prove that for all y ∈ R it holds limα→∞ h−1

α (y) = δ̄. The latter property can
be verified by inspecting (A.5).

Suppose we want to prove that the integral can be made smaller than ε > 0. Then, we apply Proposition 4

to a =
ε

δ̄ + 1
and we obtain as a consequence that

∫ δ̄

0

g(δ)dδ < δ̄a+ a = ε.

0

1

δ̄
δ

y

gα

δ̄ − a

a

g−1
α (a)

Figure A.21: Illustrating Proposition 4. The curve gα can be made to pass below any point of the type (δ̄− a, a), for all a > 0.
Hence, its integral can be made arbitrarily small.

The argument for the fact that the integral can be made arbitrarily close to δ̄ is symmetrical.

Theorem 6. For all convex polyhedra P , P̂ and P ′ the following holds:

Ext3 (P, P̂ , P ′) = P ∩ CExt3 (P, P̂ , P ′)↙ .

Proof. (⊇) This part is illustrated in Figure A.22. Let x ∈ P∩CExt3 (P, P̂ , P ′)↙ and let y ∈ CExt3 (P, P̂ , P ′)
be such that x ∈ {y}↙. There exist c ∈ F and 0 < δ1 < δ2 satisfying the definition of CExt3 (P, P̂ , P ′) for y.

Let z = y + δ1c; by definition it holds z ∈ P̂ . Moreover, since y + δc ∈ cl(P ) for all δ ∈ (0, δ1), also
z ∈ cl(P ) holds. By applying Lemma 2 with x0 = x, x1 = y and x2 = z, we get a differentiable trajectory f
in AdmCd(x) from x to z whose derivative in z is c. In addition, f lies within P in all the points from x to
z, except, possibly, z itself.

Let now v = y + δ2c. By the definition of CExt3 (P, P̂ , P ′), we have that v ∈ cl(P ′) ∩ P ′↙, therefore
there exists a point t ∈ P ′ reachable from v following a straight directon in F . We can then apply once
again Lemma 2 with x0 = z, x1 = v and x2 = t, obtaining an admissible differentiable trajectory g whose
derivative in z is c. Similarly to f , g lies within P ′ in all the points from z to t, except, possibly, z itself.

Therefore, the concatenation of f and g in z is differentiable everywhere, leads from x to a point in P ′,
and satisfies all the requirements of Ext3 (P, P̂ , P ′).
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x

y z v

t

P

P ′

Figure A.22: When a point x ∈ P can reach another point y which is in CExt3 (P, P̂ , P ′), x can differentiably pass into P ′ (see

Theorem 6). Here, P̂ = {z}.

x

y

y′

y′′

g

f

Figure A.23: Converting an arbitrary trajectory (dashed line) into one that starts with a straight segment (see Lemma 5).

(⊆) Let x ∈ Ext3 (P, P̂ , P ′) and let f ∈ Adm(x) and δ1, δ2 be the trajectory and the delays whose
existence is postulated by the definition of Ext3 . By definition, x ∈ P . Let y = f(δ1), recall that y ∈ P̂ .
Moreover, since f(δ) ∈ P for all δ ∈ [0, δ1), we also have that y ∈ cl(P ).

Let c = ḟ(δ1) ∈ F , by Lemma 1, there exists γ1 > 0 such that u1 , y − γ1c ∈ cl(P ) ∩ {x}↗. Since
u1 ∈ cl(P ) and y ∈ cl(P ), then for all δ ∈ (0, γ1) we have u1 + δc ∈ cl(P ).

Similarly, by applying Lemma 1 backwards from a point f(δ) ∈ P ′ (it is sufficient to consider any
δ ∈ (δ1, δ2)), we obtain another value γ2 > 0, such that u2 , y + γ2c ∈ cl(P ′) ∩ P ′↙. Since y ∈ cl(P ′)
and u2 ∈ cl(P ′) , then for all δ ∈ (γ1, γ1 + γ2) we have y + δc ∈ cl(P ′). As a consequence, we obtain that
x ∈ P ∩ CExt3 (P, P̂ , P ′)↙.

Lemma 5. For all types T and x ∈ Ext(T) there exist a trajectory f ∈ Adm(x) of type T, a positive delay
δ∗, and a slope c ∈ F such that ḟ(δ) = c for all δ ∈ [0, δ∗).

Proof. If T = ε the thesis is trivial, because all trajectories have type T in the interval [0, 0], including
those trajectories that start with a straight segment. Otherwise, let x ∈ Ext(T) and g ∈ AdmCd(x) be a
trajectory of type T. Let P be the first polyhedron occurring in T, we distinguish two cases: (i) T = P>T′,
or (ii) T = P 0T′. The essential features of both cases are shown in Figure A.23.

(i) Since T = P>T′, the trajectory g lingers in P for a positive amount of time. Let δ̄ > 0 be a delay
such that g lies in P at all times between 0 and δ̄.

Let y = g(δ̄) and c = ġ(δ̄); by Lemma 1, there exists δ′ > 0 such that y′ , y − δ′c ∈ cl(P ) ∩ {x}↗>0.
We build a new trajectory f ∈ AdmCd(x) as follows (see Figure A.23): starting from x, the trajectory
f follows the straight line from x to y′ up to an arbitrary intermediate point y′′ = f(δ∗); then, we
apply Lemma 2 to points x0 = y′′, x1 = y′, x2 = y, thus obtaining a curve that reaches y with final
slope c. After reaching point y, the new trajectory f proceeds as the old one g. It is easy to verify that
f is differentiable (in particular, in y′′ and y). Moreover, f lies in P from time 0 to the time required
to reach y, because it is contained in the triangle with vertices x, y′, and y, of which x and y belong
to P , and y′ to cl(P ). After reaching y, f coincides with g, hence f also has type T.
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(ii) The trajectory g immediately exits from P . If T′ = ε, then the straight-line trajectory f with slope
ġ(x) is the desired trajectory. Otherwise T′ = Q>T′′ and g lingers in Q, i.e., there exists δ̄ > 0 such
that g(δ) ∈ Q for all δ ∈ (0, δ̄). Notice that x ∈ cl(Q). We build a new trajectory f in the same way
as in the previous case. However, now we have x ∈ cl(Q), and y, y′, y′′ ∈ Q. It follows that f lies in
Q for all positive time delays up to the time required to reach y. After that time, f coincides with g.
Hence, f has type T.
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