
EL with Default Attributes and Overriding

P. A. Bonatti, M. Faella, and L. Sauro

Università di Napoli Federico II, Napoli, Italy,
{bonatti,mfaella,sauro}@na.infn.it,

WWW home page: http://people.na.infn.it/~bonatti

Abstract. Biomedical ontologies and semantic web policy languages
based on description logics (DLs) provide fresh motivations for extending
DLs with nonmonotonic inferences—a topic that has attracted a signif-
icant amount of attention along the years. Despite this, nonmonotonic
inferences are not yet supported by the existing DL engines. One reason
is the high computational complexity of the existing decidable fragments
of nonmonotonic DLs. In this paper we identify a fragment of circum-
scribed EL⊥ that supports attribute inheritance with specificity-based
overriding (much like an object-oriented language), and such that rea-
soning about default attributes is in P.

Keywords: Nonmonotonic description logics, Defeasible inheritance.

1 Introduction

The ontologies at the core of the semantic web — as well as ontology languages
like RDF and OWL — are based on fragments of first-order logic and inherit
strengths and weaknesses of this well-established formalism. Limitations include
monotonicity, and the consequent inability to design knowledge bases (KBs) by
describing prototypes whose general properties can be later refined with suitable
exceptions. This natural approach is commonly used by biologists and calls for
an extension of DLs with defeasible inheritance with overriding (a mechanism
normally supported by object-oriented languages) [18, 19]. Another motivation
for nonmonotonic DLs stems from the recent development of policy languages
based on DLs [21, 13, 22, 17]. DLs nicely capture role-based policies and facilitate
the integration of semantic web policy enforcement with reasoning about seman-
tic metadata (which is typically necessary in order to check policy conditions).
However, in order to formulate standard default policies such as open and closed
policies,1and authorization inheritance with exceptions, it is necessary to adopt
a nonmonotonic semantics (see the survey [9] for more details).

Given the massive size of semantic web ontologies and RDF bases, it is
mandatory that reasoning in nonmonotonic DLs be possible in polynomial time.
Unfortunately, in general nonmonotonic DL, reasoning can be highly complex

1 If no explicit authorization has been specified for a given access request, then an
open policy permits the access while a closed policy denies it.



[11, 12, 8]; the best approaches so far belong to the second level of the polynomial
hierarchy [10, 7].

In this paper we identify a fragment of circumscribed DLs that extends EL
with default attributes and inheritance with overriding. Informally, the exten-
sion allows us to express defeasbile inclusions such as “the instances of C are
normally in D”, for two concepts C and D. Such axioms can be overridden by
more specific inclusions, according to a priority mechanism. Our strategy is pre-
serving the classical semantics of EL as much as possible, in order to facilitate
the adaptation of the existing monotonic ontologies. Our framework restricts
nonmonotonic inferences to setting the default attributes of “normal” concept
instances, without changing the extension of atomic concepts. We define two
slightly nonstandard reasoning tasks to query the properties of normal instances.
In general, these reasoning tasks are NP-hard. The main cause of intractability
is the presence of conflicting defeasible inclusions, i.e., inclusions that give rise to
an inconsistency when applied to the same individual. However, if for all pairs
of conflicting inclusions δ1 and δ2, with non-comparable priority, there exists
a disambiguating, higher priority inclusion that blocks at least one of δ1 and
δ2, then the time complexity of the reasoning tasks becomes polynomial. We
show that the identification of such δ1 and δ2 can be carried out in polynomial
time; then the disambiguation can be left to the ontology engineer or performed
automatically by generating a default that blocks both δ1 and δ2.

The paper is organized as follows. In Sec. 2, we recall the basics of circum-
scribed DLs with defeasible inclusions, using the notation adopted in [7]. In
Sec. 2.1 we motivate and define a new reasoning task, tailored to inferring the
default properties of concepts. Section 3 is devoted to the complexity analysis
of this inference problem for the general case and for the restricted class of KBs
outlined above. In Sec. 4 the new task and complexity results are extended to
instance checking. A section on related work (Sec. 5) and one summarizing our
results and discussing interesting future work (Sec. 6) conclude the paper.

2 Preliminaries

In DLs, concept expressions are inductively defined using a set of constructors
(e.g. ∃, ¬, u), starting with a set NC of concept names, a set NR of role names,
a set NI of individual names, and the constants top > and bottom ⊥. In what
follows, we will deal with expressions

C,D ::= A | > |⊥| C uD | ¬C | ∃R.C ,

where A is a concept name and R a role name. In particular, the logic EL⊥
supports all of the above expressions except negation (¬C). Knowledge bases
consist in a (finite) set of concept inclusion assertions of the form C v D (TBox)
and a (finite) set of instance assertions of the form C(a), R(a, b) with a, b ∈ NI

(ABox).
The semantics of the above concepts is defined in terms of interpretations I =

(∆I , ·I). The domain ∆I is a non-empty set of individuals and the interpretation



Name Syntax Semantics

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

existential restriction ∃R.C {d ∈ ∆I | ∃(d, e) ∈ RI : e ∈ CI}
top > >I = ∆I

bottom ⊥ ⊥I = ∅

Fig. 1. Syntax and semantics of some DL constructs.

function ·I maps each concept name A ∈ NC to a set AI ⊆ ∆I , each role name
R ∈ NR to a binary relation RI on ∆I , and each individual name a ∈ NI to
an individual aI ∈ ∆I . The interpretation of arbitrary concepts is inductively
defined as shown in Figure 1. An interpretation I is called a model of a concept
C if CI 6= ∅. If I is a model of C, we also say that C is satisfied by I.

An interpretation I satisfies (i) an inclusion C v D if CI ⊆ DI , (ii) an
assertion C(a) if aI ∈ CI , and (iii) an assertion R(a, b) if (aI , bI) ∈ RI . Then,
I is a model of a knowledge base S iff I satisfies all the elements of S.

Here we consider defeasible EL⊥ knowledge bases KB = (S,D) that consist of
a (finite) set of classical axioms (inclusions and assertions) S and a (finite) set D
of defeasible inclusions (DIs for short). Hereafter, with C vKB D we mean that
D classically subsumes C, that is S |= C v D. A classical axiom can be either
a normal form axiom [1] or an inclusion/disjointness of existential restrictions:

A v B A1 v ∃R.A2 A1 uA2 v B

∃P.A v B ∃R.A1 v ∃S.A2 ∃R.A1 u ∃R.A2 v⊥

where letters of type A can be either a concept name or >, whereas letters B
either a concept name or ⊥. Defeasible axioms take the form A1 vn ∃R.A2 and
can be informally be read as the instances of A1 are normally in ∃R.A2.

Example 1. A well-known example of prototypical property in a biomedical do-
main is reported by Rector [18, 19]: “In humans, the heart is usually located on
the left-hand side of the body; in humans with situs inversus, the heart is lo-
cated on the right-hand side of the body”. A possible formalization in the above
language is:

Human vn ∃has heart.LHeart
SitusInversus v Human u ∃has heart.RHeart
LHeart v Heart u ∃position.Left
RHeart v Heart u ∃position.Right .

In the absence of functional roles, we prevent humans to have both a LHeart

and a RHeart with the disjointness axiom:

∃has heart.LHeart u ∃has heart.RHeart v ⊥ . ut



The nonmonotonic semantics summarized below follows the circumscriptive ap-
proach of [7].

Intuitively, a model of a knowledge base KB is a classical model of S that
maximizes the set of individuals satisfying the defeasible inclusions in D. For-
mally, for all defeasible inclusions δ = (A vn C) and all interpretations I, the
set of individuals satisfying δ is:

satI(δ) = {x ∈ ∆I | x 6∈ AI or x ∈ CI} .

How such sets can be maximized depends on what is allowed to vary in an
interpretation. Here we assume that only the extension of roles can vary, whereas
the domain and the extension of concept names are assumed to be fixed. This
semantics is called Circfix.

The reason of this choice is rooted in the goal of having a minimal impact on
the classical semantics of DLs. If a concept name A is allowed to vary and has
exceptional properties, then A may become empty as illustrated in [8]; in most
cases, however, it is undesirable to empty a concept only because it has non-
standard properties. It should be possible to extend an existing ontology with
default attributes without incurring in such side effects. With Circfix, a subsump-
tion A v B where A and B are atomic concepts is nonmonotonically valid iff it
is classically valid. At the same time, it is possible to infer new inclusions like
A v ∃R.B that specify default properties of A. In other words, Circfix supports
default attributes without changing the extension of atomic concepts, as desired.

Maximizing defeasible inclusions may lead to conflicts between defeasible
inclusions whose right-hand sides are mutually inconsistent. For this reason, it is
useful to provide a means to say that a defeasible inclusion δ1 has higher priority
than another defeasible inclusion δ2. This can be in general provided explicitly
by any partial order over D, but here we focus on an implicit way of defining
priorities, namely specificity, which is based on classically valid inclusions.2 For
all DIs δ1 = (A1 vn C1) and δ2 = (A2 vn C2), we write

δ1 ≺ δ2 iff A1 vKB A2 and A2 6vKB A1.

Example 2. Consider the access control policy: “Normally users cannot read
project files; staff can read project files; blacklisted staff is not granted any ac-
cess”. In circumscribed EL⊥:

Staff v Users

Blacklisted v Staff

UserRequest ≡ ∃subject.Users u ∃target.Projects u ∃action.Read
StaffRequest ≡ ∃subject.Staff u ∃target.Projects u ∃action.Read
UserRequest vn ∃decision.Deny
StaffRequest vn ∃decision.Grant
∃subject.Blacklisted v ∃decision.Deny
∃decision.Grant u ∃decision.Deny v ⊥ .

2 Since concept names are all fixed and retain their classical semantics, specificity can
be equivalently defined using nonmonotonically valid inclusions instead. The result
is the same, for all priority relations over defeasible inclusions.



As usual, C ≡ D abbreviates C v D and D v C. The two equivalences can
be reformulated using normal form axioms (see Example 5). Clearly the two
defeasible inclusions cannot be simultaneously satisfied for any staff member
(due to the last inclusion above). According to specificity, the second defeasible
inclusion overrides the first one and yields the intuitive inference that non-
blacklisted staff members are indeed allowed to access project files. ut

We are finally ready to formalize the semantics of KBs with defeasible inclusions.
The maximization of the sets satI(δ) is modelled by means of the following
preference relation <D over interpretations. Roughly speaking, I <D J holds
iff I improves J by extending the set of individuals that satisfy some defeasible
inclusions. More precisely, if δ1 ≺ δ2 (i.e., δ1 has higher priority than δ2), then
the set of individuals satisfying δ1 may be extended at the cost of restricting
those that satisfy δ2.

Definition 1. For all interpretations I and J , let I <D J iff:

1. ∆I = ∆J ;
2. AI = AJ , for all A ∈ NC; (extensions of concept names are fixed)
3. for all δ ∈ D, if satI(δ) 6⊇ satJ (δ) then there exists δ′ ∈ D such that δ′ ≺ δ

and satI(δ′) ⊃ satJ (δ′) ;
4. there exists a δ ∈ D such that satI(δ) ⊃ satJ (δ).

The subscript D will be omitted when clear from the context. Now I is a model
of Circfix(KB) iff I is a model of S that cannot be further improved (defeasible
inclusions are satisfied “as much as possible”).

Definition 2 (Model). Let KB = (S,D), an interpretation I is a model of
Circfix(KB) iff I is a (classical) model of S and for all models J of S, J 6< I.

Example 3. Let KB be the knowledge base of Example 2. According to condi-
tion 2 in Def. 1, model improvements cannot change the extension of atomic con-
cepts;3 therefore, if Grant and Deny are empty in a model, then the two defeasible
inclusions of KB cannot possibly force any request to satisfy ∃decision.Grant
nor ∃decision.Deny. In order to “enable” the two DIs, it suffices to assert that
Grant and Deny are non-empty, by means of an auxiliary role aux and two simple
inclusions:

> v ∃aux.Grant > v ∃aux.Deny .4

Now the two DIs can “fire” and, as a consequence, the models of Circfix(KB) are
all the models of the classical inclusions of KB such that for all individuals x
satisfying ∃target.Projects u ∃action.Read,

– if x satisfies ∃subject.Blacklisted, then x satisfies ∃decision.Deny;

3 Recall that this is one of our requirements, aimed at controlling the side effects of
adding defeasible inclusions to existing classical ontologies.

4 These axioms are usually harmless and can be inserted with the help of automated
tools, that identify which concepts occurring in the right hand side of a DI can
possibly be empty.



– otherwise, if x satisfies ∃subject.Staff, then x satisfies ∃decision.Grant;
– otherwise, if x satisfies ∃subject.User, then x satisfies ∃decision.Deny. ut

The above example shows the need for declaring the non-emptyness of default
attribute ranges, such as B in A vn ∃R.B. In theory, such declarations may be
inconsistent with the knowledge base; however, in practice, concept names are
usually meant to be non-empty and, accordingly, concept consistency checking
is a typical step in ontology validation. In other words, we only need to make
explicit some assumptions that are sometimes left implicit; this can be done
automatically for all default attribute ranges B. These additional axioms can
be easily checked for consistency: In EL⊥, if all non-emptyness statements are
individually consistent with the KB, then also the set of all non-emptyness state-
ments is collectively consistent; consequently, no combinatorial problems arise
and consistency checking remains polynomial. It is not difficult to extend this
framework with nominals and concrete datatypes; when default attributes range
over nominals or concrete domains, non-emptyness is implicit in the logic and
no explicit declarations are needed.

2.1 A New Reasoning Task

Now that we have provided constructs for associating concepts to default prop-
erties, we need a suitable reasoning task to retrieve them. For example, from
the formalization of human heart we would like to infer that typical humans
satisfy ∃has heart.LHeart. Subsumption queries, according to [8], are defined
as follows: Circfix(KB) |= C v D iff for all models I of Circfix(KB), CI ⊆ DI .
This reasoning method is not completely appropriate for our purposes, because
a standard subsumption query A v ∃R.C considers not only the typical mem-
bers of A, but also the typical members of A’s subconcepts, where A’s default
properties may be overridden. In this way, some of A’s default properties might
not be included in the answer. For instance, in the context of the situs inver-
sus example, it is generally not possible to entail Humans v ∃has heart.LHeart ,
because the members of Humans comprise all the members of SitusInversus,
too, that are forced to satisfy ∃has heart.RHeart, instead. For this reason, in
this work we consider a slightly modified subsumption problem, according to
which a query A v ∃R.C is interpreted as: “do the individuals belong to A
and no subconcepts of A satisfy ∃R.C?”. This is a sort of closed world assump-
tion. It is equivalent to interpreting A v ∃R.C as CWAKB(A) v ∃R.C, where
CWAKB(A) = A u

d
{¬B | B ∈ NC and A 6vKB B}. In EL⊥, this closure cannot

introduce any inconsistency:

Theorem 1. For all EL⊥ knowledge bases KB, CWAKB(A) is satisfiable w.r.t.
KB iff A is satisfiable w.r.t. KB.

CWAKB(A) can be equivalently defined in purely model theoretic terms not
involving ¬ as the set bAcI that denotes the set of all individuals d ∈ AI such
that, for all concept names B, d ∈ BI holds only if A vKB B. Then, we define
the modified entailment problem as follows:



Definition 3. Circfix(KB) |=cw A v D if and only if for all models I of Circfix(KB),
bAcI ⊆ DI .

Example 4. Extend the knowledge base of Example 1 with > v ∃aux.LHeart,
to ensure that there exists at least one normal heart.5 Note that

CWAKB(Human) =
Human u ¬SitusInversus u ¬LHeart u ¬RHeartu
u¬Heart u ¬Left u ¬Right

It is not hard to see that Circfix(KB) |=cw Human v ∃has heart.LHeart and
Circfix(KB) |=cw SitusInversus v ∃has heart.RHeart, as desired. ut

The reader may wonder whether in general the CWA can be too restrictive
and miss valid default properties. This might happen if a concept A’s extension
could be completely covered by n subconcepts A1, . . . , An sharing a same default
property ∃R.B. In this case, it would be natural to require A’s prototypical
members to satisfy ∃R.B, as they must necessarily fall into some Ai. However,
in EL⊥ such coverings cannot be defined, i.e. there is always a model I in which
there exists d ∈ AI \

⋃n
i=1A

I
i . Such d need not satisfy ∃R.B, and hence it would

be inappropriate to list ∃R.B among the default properties of A.

3 Complexity

3.1 NP-hardness of the General Case

In general, deciding whether Circfix(KB) |=cw A v D is NP-hard. This can be
proved by reducing SAT to our reasoning task. For each clause ci in the SAT
instance introduce two roles Ci and C̄i. Intuitively, the meaning of ∃Ci and ∃C̄i

is: ci is/is not satisfied, respectively. For each propositional symbol pj introduce
two concept names Aj and Āj , and two roles Pj and P̄j . Intuitively, ∃Pj and
∃P̄j represent the truth of the complementary literals pj and ¬pj , respectively.
Finally, we need two concept names B0 and B1, and a role F̄ . Intuitively, ∃F̄
represents the falsity of the set of clauses. The semantics of clauses is axiomatized
by adding the inclusions

∃Pj v ∃Ci , ∃P̄k v ∃Ci ,

for all disjuncts pj and ¬pk in ci. The space of possible truth assignments is
generated by the following inclusions:

Aj vn ∃Pj , Āj vn ∃P̄j , ∃Pj u ∃P̄j v ⊥ .

All of the above defaults have the same priority. The defeasible inclusions with
the same index j “block” each other; we will make at least one of them active
by assuming B0 and adding the inclusions

B0 v Aj , B0 v Āj .

5 See Example 3 for an explanation of this kind of axioms.



This will “force” a complete truth assignment. Then we introduce a defeasible
inclusion with lower priority:

Aj v B1 , Āj v B1 , B1 vn ∃C̄i .

This defeasible inclusion “assumes” that ci is not satisfied. The first three groups
of axioms may defeat this assumption (if the selected truth assignment entails
∃Ci) thanks to the following disjointness axiom:

∃Ci u ∃C̄i v ⊥ .

Finally, we need the inclusions ∃C̄i v F̄ to say that the set of clauses is not
satisfied when at least one of the clauses is false. Now let KB denote the above
set of inclusions. It can be proved that the given set of clauses is unsatisfiable
iff:

Circfix(KB) |=cw B0 v ∃F̄ .

Consequently:

Theorem 2. Let KB range over EL⊥ knowledge bases. The problem of checking
whether Circfix(KB) |=cw C v D is NP-hard, even if C is a concept name and D
an unqualified existential restriction.

3.2 A Polynomial Case

The above reduction of SAT is based on concepts with equally specific, conflict-
ing default properties. In our reference scenarios, we expect such situations to
be symptoms of representation errors. For instance, in modelling prototypical
entities, equally specific and conflicting default properties constitute a contra-
dictory prototype definition. In the access control domain, a class of requests
associated to conflicting decisions with the same priority constitutes an ambigu-
ous policy, with potentially dangerous consequences. In this section, we focus
on a class of KBs called conflict safe, where this kind of conflicts cannot occur.
This restriction turns out to reduce the computational complexity of reasoning.

Intuitively, the idea is that it is possible to check efficiently whether two
defaults δ1 and δ2 block each other and none of them is more specific than the
other (as in the reduction from SAT). Such conflicts, that make the search space
grow, can be solved (either manually or automatically) by adding more specific
defaults that determine how to resolve the conflict (either in favor of one of the
δis or blocking them both). In the following, let KB = (S,D) be an arbitrary
knowledge base. The next definitions are all relative to KB.

We say that two defeasible inclusions are in conflict when they can be simulta-
neously activated (their premises are mutually consistent) and their conclusions
are mutually inconsistent. The formal definition follows.

Definition 4. Two defeasible inclusions δ1 = A1 vn ∃R.A′1 and δ2 = A2 vn

∃S.A′2 are in conflict, denoted by δ1 = δ2, iff A1 u A2 6vKB⊥ and ∃R.A′1 u
∃S.A′2 vKB⊥.



Since classical subsumption in EL⊥ knowledge bases can be computed in poly-
nomial time [2], we have:

Proposition 1. Given an EL⊥ knowledge base KB = (S,D) and two defaults
δ1 and δ2 in D, the problem of checking whether δ1 = δ2 is in PTIME.

A naive approach to listing all the conflicting pairs, consists in performing a
quadratic number of EL⊥ subsumptions. Better strategies can be obtained by
adapting the ideas behind efficient classification algorithms [6, Chap. 9] to reduce
the number of comparisons (the details lie beyond the scope of this paper). In
this section we assume that KB is conflict safe in the following sense:

Definition 5. KB is conflict safe iff whenever two defeasible inclusions δ1 =
A1 vn ∃R.A′1 and δ2 = A2 vn ∃S.A′2 are incomparable and in conflict (i.e.
δ1 6≺ δ2, δ2 6≺ δ1 and δ1 = δ2), then (i) A1 6≡KB A2, (ii) there exists a concept
name A3 such that A3 ≡KB A1 u A2, and (iii) one of the following sets of
inclusions belongs to KB:

– A3 vn ∃R.A′1;
– A3 vn ∃S.A′2;
– A3 vn ∃T and ∃T u ∃R.A′1 v⊥ and ∃T u ∃S.A′2 v⊥. ut

Note that the above three DIs (whose priority is higher than δ1 and δ2) corre-
spond to three possible ways of resolving the conflict between δ1 and δ2, namely,
supporting the conclusion of δ1, supporting the conclusion of δ2, or blocking
both δ1 and δ2 . The third option constitutes a possible default conflict reso-
lution strategy that can be performed automatically by introducing fresh roles
T and the corresponding disjointness axioms. Note also that our two running
examples are conflict safe because all conflicting defaults are comparable and
specificity resolves the conflict.

We proceed towards a PTIME algorithm for reasoning with conflict safe
KBs. We first need some preliminary definitions. Given a concept C, SupCls(C)
denotes the set of superclasses of C:

SupCls(C) = {B | C vKB B} ∪ {∃R.A | C vKB ∃R.A}. (1)

We write C ; A if C vKB ∃R.A for some R, and we denote by
∗
; the transitive

closure of ;. Given a concept C, the operator NE(C) represents the set of
concepts that are forced to be non-empty whenever C is. Notice that this set
includes some concepts that are forced to be non-empty by the ABox in KB,
independently of C.

NG(C) = {C} ∪
⋃
a∈NI

{A | KB |= A(a)} ∪
⋃

a∈NI,R∈NR

{A | KB |= (∃R.A)(a)} (2)

NE(C) =
⋃

A∈NG(C)

{A′ | A ∗
; A′}. (3)

When trying to satisfy a certain defeasible inclusion A1 vn ∃R.A2, we have to
check two forms of consistency. First, the addition of an R edge to A2 should



Algorithm 1:

Data: C, KB = 〈S,D〉.
X← SupCls(C);1

while D 6= ∅ do2

remove from D an inclusion δ = (A1 vn ∃R.A2) with maximal priority;3

if A1 ∈ SupCls(C) and δ ∈ Compfix(C) ∩ Cons(X) then4

X← X ∪ SupCls(∃R.A2);5

return X;6

be possible without modifying the interpretation of the concepts names, that
are fixed. This check is realized by the following function Compfix. Second, the
addition of ∃R.A2 should not lead to classical inconsistencies, also considering
other defeasible inclusions that were previously satisfied. This check is realized
by the function Cons.

For a concept C, Compfix(C) (for fixed-atoms compatible) is the set of defea-
sible inclusions whose r.h.s. agree with C on the inferred and non-empty concept
names. That is, a defeasible inclusion A1 vn ∃R.A2 is in Compfix(C) if and only
if: (i) NE(∃R.A2) ⊆ NE(C) and (ii) for all concept names A ∈ SupCls(∃R.A2),
it holds A ∈ SupCls(C).

For a set of concepts X, Cons(X) is the set of defeasible inclusions whose r.h.s.
is logically consistent with X. That is, a defeasible inclusion A1 vn ∃R.A2 is in
Cons(X) if and only if

d
D∈X D u (∃R.A2) 6vKB ⊥.

We claim that Algorithm 1, when invoked over the concept C, returns the
set of all concepts C ′ that are implied by C under the closed world assumption.

Theorem 3. Let X be the result of Algorithm 1 on the concept C. If KB is
conflict safe and assertion-free6 then X = {C ′ |Circfix(KB) |=cw C v C ′}.

Proof. (⊆) Let C ′ ∈ X. If C ′ was inserted in line 1 of the algorithm, then C ′

is classically implied by C (i.e., C vKB C ′), and hence Circfix(KB) |=cw C v
C ′. Otherwise, C ′ was inserted in line 5. Hence, there is a defeasible inclusion
δ = (A1 vn ∃R.A2) such that A1 ∈ SupCls(C), δ ∈ Compfix(C) ∩ Cons(X′) and
C ′ ∈ SupCls(∃R.A2), where X′ is the value of the variable X when C ′ was inserted.
By applying the definition of Compfix, we obtain that (i) NE(∃R.A2) ⊆ NE(C),
and (ii) for all concept names A′ ∈ SupCls(∃R.A2), it holds A′ ∈ SupCls(C).

Let I be a model of Circfix(KB) with an individual d ∈ bCcI , we show that d ∈
C ′I . Assume by contradiction that d 6∈ C ′I . Since A1 is a classical consequence
of C, we have d ∈ AI1 . Since C ′ ∈ SupCls(∃R.A2), we have d 6∈ (∃R.A2)I . We
show that there exists a classical model J of KB that improves I, i.e., J <D I.
To define J , for all ∃S.A3 ∈ SupCls(∃R.A2) (including ∃R.A2 itself), we add to
I an S-arc from d to an individual x ∈ AJ3 . The existence of such an individual

6 In DL jargon: the ABox is empty. The reason for considering ABox assertions in the
definition of NG(C) will be clear in the next section, when we deal with instance
checking.



is guaranteed by the fact that NE(∃R.A2) ⊆ NE(C). As a result, we have in
particular that d ∈ (∃R.A2)J . By (ii), all atomic concepts that are classical
consequences of ∃R.A2 are also consequences of C. This, together with the fact
that δ ∈ Cons(X′), ensures that J is a classical model of KB. It remains to prove
that J <D I. Since I and J only differ on the arcs outgoing from d, we have
satI(δ) ⊂ satJ (δ) and for all δ′ 6= δ in D, we have satI(δ′) = satJ (δ′). Therefore,
we obtain the thesis.

(⊇) Let C ′ be a concept such that Circfix(KB) |=cw C v C ′. Assume by
contradiction that C ′ does not belong to the output X of the algorithm. Clearly,
C 6vKB C ′, otherwise C ′ would have been added to X in step 1 of the algorithm.
Since Circfix(KB) |=cw C v C ′, there is a defeasible inclusion A1 vn ∃R.A2 ∈ D
such that A1 ∈ SupCls(C) and ∃R.A2 vKB C ′ Let δ̂ ∈ D be a defeasible inclusion

with the above property and maximal priority. At some point, δ̂ is extracted from
D at step 3 of the algorithm. Since C ′ is never added to X, we have that either
δ̂ 6∈ Compfix(C) or δ̂ 6∈ Cons(X′), where X′ is the current value of the variable X.
In both cases, it is possible to define a model I of Circfix(KB) with an individual
d ∈ ∆I such that d ∈ bCcI \ C ′I , which is a contradiction.

We define I as follows.

– ∆I = {dC} ∪ {dA | A ∈ NE(C)} ∪ {da | a ∈ NI};
– for each concept name A, AI = {dX | X vKB A} ∪ {da | KB |= A(a)};
– for each role name R, we start by putting all edges that are classically

required, i.e., RI = {(dX , dY ) | X vKB ∃R.Y } ∪ {(da, db) | R(a, b) ∈
KB} ∪ {(da, dX) | KB |= (∃R.X)(a)}. Moreover, for each ∃R.Y ∈ X, we
add the edge (dC , dY ) to RI . Extra edges starting from individuals other
than dC are not relevant.

By construction, I is a classical model of KB and, as C ′ 6∈ X, dC ∈ bCcI \ C ′I .
It remains to prove that there is no model J that improves I by making dC
satisfy δ̂.

If δ̂ 6∈ Compfix(C), then either NE(∃R.A2) 6⊆ NE(C) or there exists a concept
name A′ such that A′ ∈ SupCls(∃R.A2) and A′ 6∈ SupCls(C) (hence, dC 6∈ A′I).
Since any model J that is comparable with I has the same interpretation for
the concept names, such model cannot have dC ∈ ∃(R.A2)J .

If instead δ̂ 6∈ Cons(X ′), we have
d

D′∈X′ D′ u∃R.A2 vKB ⊥. If this inconsis-
tency derives from classical consequences of C (i.e., ∃R.A2 uSupCls(C) vKB ⊥),
the thesis is obvious. Otherwise, the inconsistency is due to one or more defeasi-
ble inclusions δ that were chosen in the previous iterations of the loop, on line 3.
For each such δ, either its priority is higher than the one of δ̂, or it is incom-
parable with it. In the first case, clearly it is not worth modifying δ in order
to improve δ̂. In the latter case, we employ the assumption that KB is conflict
safe. In particular, we have that δ and δ̂ are incomparable and in conflict. Let
δ = (A3 vn ∃R.A4). There is a concept name A5 such that A5 ≡KB A1uA3 and
the defeasible inclusion δ′ = (A5 vn ∃R.A4) belongs to KB. Then, the priority

of δ′ is higher than both δ and δ̂. Hence, it is not worth modifying δ′ to improve
δ̂. ut



Theorem 4. Algorithm 1 runs in polynomial time.

Proof. The main cycle of the algorithm performs as many iterations as the num-
ber of defeasible inclusions in KB. The polynomial complexity of the auxiliary
operators NE, SupCls, Compfix and Cons derive from the polynomial complexity
of reasoning in EL. ut

The following example shows how to apply Algorithm 1 to the KB of Exam-
ple 2.

Example 5. Assume that KB is the knowledge base of Example 3 and we want to
check whether staff members can read project files. First, we have to reduce the
KB in normal form as follows. We introduce six new concept names — SubUsers,
SubStaff, TargProjects, AuxUsers, AuxStaff and ActRead — together with
the following equivalences.

∃subject.Users ≡ SubUsers

∃subject.Staff ≡ SubStaff

∃target.Projects ≡ TargProjects

∃action.Read ≡ ActRead

SubUsers u TargProjects ≡ AuxUsers

SubStaff u TargProjects ≡ AuxStaff

AuxUsers u ActRead ≡ UserRequest

StaffUsers u ActRead ≡ StaffRequest

The above equivalences replace the original definitions of UserRequest and
StaffRequest. The other inclusions remain unchanged. Recall that the KB con-
tains

> v ∃aux.Grant
> v ∃aux.Deny

Algorithm 1 receives as input

C = ∃subject.Staff u ∃target.Projects u ∃action.Read.

On line 1, the superclasses of C are computed. At that point, X contains, among
the others, StaffPolicy and NE(C) contains Grant. According to specificity, the
first defeasible inclusion removed from D is StaffPolicy vn ∃decision.Grant.
Since ∃decision.Grant has no proper superclasses and NE(∃decision.Grant)
contains only Grant, the condition on line 4 is satisfied and X becomes X ∪
{∃decision.Grant}. Thus, we have that

Circfix(KB) |=cw

∃subject.Staff u ∃target.Projects u ∃action.Read v ∃decision.Grant.

Note that the second defeasible inclusion UsersPolicy vn ∃decision.Deny
does not belong to Cons(X) since ∃decision.Grant and ∃decision.Deny are
inconsistent. ut



4 Reasoning about Individuals

The ideas illustrated so far can be naturally extended to reasoning about indi-
viduals, that is, instance checking. This task suffers from the same problem as
subsumption: given an assertion A(a), the individual a might well be a mem-
ber of any subclass of A, which may prevent the default properties of A from
being inherited by a if the standard definition of instance checking [7] is used.
Therefore, some form of closure similar to CWAKB is needed. The closure, in this
case, applies to the atomic concepts that contain the individuals in the ABox,
as collected by the meta-function AtClsKB(a) =

d
{A | KB |= A(a)}.

Definition 6. Let KB be any defeasible EL⊥ KB. CWA(KB) denotes the knowl-
edge base obtained from KB by adding the assertions CWAKB(AtClsKB(a))(a),
for all individuals a occurring in KB.

Instance checking Circfix(KB) |=cw C(a) is then defined as Circfix(CWA(KB)) |=
C(a) or, in a model-theoretic view:

Definition 7. Circfix(KB) |=cw C(a) if and only if for all models I of Circfix(KB)
if {A ∈ NC | aI ∈ AI} = {A ∈ NC | KB |= A(a)}, then aI ∈ CI .

Since Circfix preserves the classical semantics of atomic concepts and EL⊥
KBs behave like Horn theories in many respects, it can be proved that:

Proposition 2. For all defeasible EL⊥ knowledge bases KB, and all conjunc-
tions of atomic concepts C, Circfix(KB) |=cw C(a) iff CWA(KB) |= C(a) iff
KB |= C(a) .

In other words, membership to atomic concepts and conjunctions thereof is fully
classical. Therefore, in this paper, we focus on the more interesting problem of
inferring the default properties of individuals. The reasoning task of our interest
is the following: Given an individual “a” and a concept ∃R.A, decide whether

Circfix(KB) |=cw (∃R.A)(a) .

The NP-hardness proof for subsumption can be easily adapted to instance check-
ing (using the same reduction plus assertion B0(a) and the query Circfix(KB) |=cw

(∃F̄ )(a)). So we get:

Theorem 5. Let KB range over EL⊥ knowledge bases. The problem of checking
whether Circfix(KB) |=cw C(a) is NP-hard, even if the existential restriction is
unqualified (i.e., A = >).

For conflict safe knowledge bases, the instance checking problem can be decided
using the same algorithm as for subsumption. What we need is to provide as
input a concept which is the conjunction of all the atomic concepts and existential
restrictions which a is classically an instance of. Let GenClsKB(a) be such a
conjunction:

GenClsKB(a) =
l
{A | KB |= A(a)} u

l
{∃R.A | KB |= (∃R.A)(a)} .

The proof of the following theorem is analogous to Theorem 3 and is left to the
reader.



Theorem 6. Let X be the result of Algorithm 1 on the concept GenClsKB(a). If
KB is conflict safe then Circfix(KB) |=cw (∃R.A)(a) iff (∃R.A) ∈ X.

Example 6. Let KB be a knowledge base obtained by adding to Example 4 the
assertions:

Human(Mary)
SitusInversus(John)

Recall that KB contains > v ∃aux.LHeart , where aux is a new role name.
We want to check that Circfix(KB) |=cw (∃has heart.LHeart)(Mary) and

Circfix(KB) |=cw (∃has heart.RHeart)(John). Let consider the first query, the
input of Algorithm 1 is the concept C = Human. As Human has no proper super-
classes, at line 1 X = {Human}. The only defeasible inclusion to be checked in
lines 2-5 is Human vn ∃has heart.LHeart. The set NE(Human) consists of all the
concept names occurring in the knowledge base, ∃has heart.LHeart is consis-
tent with Human and it does not force other concept names to be locally true.
Therefore, the condition in line 4 is satisfied and ∃has heart.LHeart is added
to X as expected.

For the second query, as seen before ∃has heart.RHeart classically derives
from SitusInversus and hence it is added toX directly in line 1. Note that, even
if Human vn ∃has heart.LHeart is activated by the fact that SitusInversus vKB
Human, the defeasible inclusion Human vn ∃has heart.LHeart is not in Cons(X)
because ∃has heart.LHeart and ∃has heart.RHeart are inconsistent. ut

5 Related Work

DLs have been extended with nonmonotonic constructs such as default rules
[20, 3, 4], autoepistemic operators [11, 12], and circumscription [10, 8, 7]. An ad-
vantage of circumscription is that nonmonotonic properties apply to all individ-
uals, while the other approaches restrict nonmonotonic inferences to the indi-
viduals that are explicitly denoted in the ABox, as observed in [8]. While [8]
focusses on expressive circumscribed description logics whose complexity may
reach NEXPTIMENP, [10] and [7] deal with lower-complexity DLs like ALE ,
DL-lite, and EL; however, upper complexity bounds are all at the second level
of the polynomial hierarchy or harder, while here we have identified a tractable
case. The two works [8, 7] consider more general forms of circumscription (with
variable concept names) and reasoning tasks (satisfiability and KB consistency)
that we do not consider here. However, they do not deal with the modified
entailment |=cw on which this paper is focussed. Another recent attempt at low-
complexity, nonmonotonic DL reasoning is based on a modal typicality operator
[15, 14], whose extension is maximized to achieve nonmonotonic inferences. Un-
fortunately, reasoning is intractable in this approach.

6 Conclusions and Perspectives

The need for supporting prototypical reasoning and exceptions in DLs can be
addressed by restricting the expressiveness of the underlying DL and by select-



ing an appropriate form of inference (|=cw). We have shown how to encode a
recurring example originated by the work on biomedical ontologies, and a rep-
resentative example related to semantic web policies. The adoption of Circfix

makes it possible to add default attributes to the concepts of a given (classical)
ontology in a controlled way, without affecting the extension of atomic concepts.
For conflict safe KBs, the problem of reasoning about default attributes belongs
to P; we provided an algorithm based on EL classification problems that enjoy
efficient implementations [5]. This is a promising starting point for addressing
the performance challenges posed by the semantic web.

In the full version of this paper we will provide more details on the strategies
for making KBs conflict safe. We are also going to support more general queries
and more constructs from EL++, identifying the tractability threshold.

An interesting direction for further research consists in studying the impact
of variable concept names on the complexity of |=cw .

Acknowledgements. This work is partially supported by the national project
LoDeN (http://loden.fisica.unina.it/). The authors are grateful to the
anonymous referees for their constructive comments that helped improving the
paper.

References

1. F. Baader. The instance problem and the most specific concept in the description
logic EL w.r.t. terminological cycles with descriptive semantics. In Proc. of the
26th Annual German Conference on AI, KI 2003, volume 2821 of Lecture Notes
in Computer Science, pages 64–78. Springer, 2003.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the Nine-
teenth International Joint Conference on Artificial Intelligence, IJCAI-05, pages
364–369. Professional Book Center, 2005.

3. F. Baader and B. Hollunder. Embedding defaults into terminological knowledge
representation formalisms. J. Autom. Reasoning, 14(1):149–180, 1995.

4. F. Baader and B. Hollunder. Priorities on defaults with prerequisites, and their
application in treating specificity in terminological default logic. J. Autom. Rea-
soning, 15(1):41–68, 1995.

5. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL - a polynomial-time reasoner
for life science ontologies. In U. Furbach and N. Shankar, editors, IJCAR, volume
4130 of Lecture Notes in Computer Science, pages 287–291. Springer, 2006.

6. F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press, 2003.

7. P. A. Bonatti, M. Faella, and L. Sauro. Defeasible inclusions in low-complexity
DLs: Preliminary notes. In C. Boutilier, editor, IJCAI, pages 696–701, 2009.

8. P. A. Bonatti, C. Lutz, and F. Wolter. The complexity of circumscription in dls.
J. Artif. Intell. Res. (JAIR), 35:717–773, 2009.

9. P. A. Bonatti and P. Samarati. Logics for authorization and security. In
J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging Ap-
plications of Databases, pages 277–323. Springer, 2003.



10. M. Cadoli, F. Donini, and M. Schaerf. Closed world reasoning in hybrid systems.
In Proc. of ISMIS’90, pages 474–481. Elsevier, 1990.

11. F. M. Donini, D. Nardi, and R. Rosati. Autoepistemic description logics. In IJCAI
(1), pages 136–141, 1997.

12. F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge
and negation as failure. ACM Trans. Comput. Log., 3(2):177–225, 2002.

13. T. W. Finin, A. Joshi, L. Kagal, J. Niu, R. S. Sandhu, W. H. Winsborough, and
B. M. Thuraisingham. ROWLBAC: representing role based access control in OWL.
In I. Ray and N. Li, editors, SACMAT, pages 73–82. ACM, 2008.

14. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Prototypical reasoning with
low complexity description logics: Preliminary results. In E. Erdem, F. Lin, and
T. Schaub, editors, LPNMR, volume 5753 of Lecture Notes in Computer Science,
pages 430–436. Springer, 2009.

15. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Reasoning about typicality
in ALC and EL. In Grau et al. [16].

16. B. C. Grau, I. Horrocks, B. Motik, and U. Sattler, editors. Proceedings of the
DL Home 22nd International Workshop on Description Logics (DL 2009), Oxford,
UK, July 27-30, 2009, volume 477 of CEUR Workshop Proceedings. CEUR-WS.org,
2009.

17. V. Kolovski, J. A. Hendler, and B. Parsia. Analyzing web access control policies.
In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, editors,
WWW, pages 677–686. ACM, 2007.

18. A. L. Rector. Defaults, context, and knowledge: Alternatives for OWL-indexed
knowledge bases. In R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and
T. E. Klein, editors, Pacific Symposium on Biocomputing, pages 226–237. World
Scientific, 2004.

19. R. Stevens, M. E. Aranguren, K. Wolstencroft, U. Sattler, N. Drummond, M. Hor-
ridge, and A. L. Rector. Using OWL to model biological knowledge. International
Journal of Man-Machine Studies, 65(7):583–594, 2007.

20. U. Straccia. Default inheritance reasoning in hybrid KL-ONE-style logics. In
IJCAI, pages 676–681, 1993.

21. A. Uszok, J. M. Bradshaw, R. Jeffers, N. Suri, P. J. Hayes, M. R. Breedy, L. Bunch,
M. Johnson, S. Kulkarni, and J. Lott. KAoS policy and domain services: Towards
a description-logic approach to policy representation, deconfliction, and enforce-
ment. In 4th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY), pages 93–96, Lake Como, Italy, June 2003. IEEE Computer
Society.

22. R. Zhang, A. Artale, F. Giunchiglia, and B. Crispo. Using description logics in
relation based access control. In Grau et al. [16].


