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ABSTRACT

Visiting museums and archeological sites is usually an
amazing experience but sometimes a visitor may get
lost in huge exhibitions in which thousands of arti-
facts are exposed. In this paper we present a system
that assists a user in visiting a museum or an archaeo-
logical site, providing personalized recommendations,
based on an innovative strategy for predicting user be-
havior. Our approach makes use of an artificial neu-
ral network trained on a suitable set of features char-
acterizing the objects of interest and also takes into
account site topological information gathered from a
Geographical Information System.

Keywords: ANN, GIS, GPS, Location Aware Com-
puting, Mobile/Wireless Applications.

1. INTRODUCTION

Visiting museums and archeological sites is usually an
amazing experience but sometimes a visitor may get
lost in huge exhibitions in which thousands of artifacts
are exposed.
Paper or human guides may help to reach interesting
items, but the offer cannot be personalized according
to the preferences of each user. Paper guides are the
same for each visitor while human guides usually drive
a whole group of tourists. In order to make visitor ex-
perience in the museum or archaeological site more
interesting and stimulating, the access to the exposed
items should be differentiated according to the visi-
tor’s specific profile.
In this paper we present a system that assists a user
in visiting a museum or an archaeological site, provid-
ing useful recommendations, based on an innovative
strategy for predicting user behavior.

∗This work has been carried out partially under the financial
support of the Ministero dell’Istruzione, dell’Università e della
Ricerca (MIUR) in the framework of the FIRB Project “Mid-
dleware for advanced services over large-scale, wired-wireless
distributed systems (WEB-MINDS)”

At the best of our knowledge, no much work has been
done in developing a technological framework to en-
hance visitor’s experience by personalizing the access
to collections of artifacts. In [14] a user-centered ap-
proach for computational storytelling is presented. The
author describes theMuseum Wearable, a device which
delivers an audiovisual narration interactively in time
and space to the visitor, depending on the estimated
visitor type. The authors of [1] present a system that
automatically clusters GPS data that are incorporated
into a Markov model that can be consulted for use
with a variety of applications in both single-user and
collaborative scenarios. In particular the model is
used for predicting user’s movements.
Several approaches have been developed in order to
simplify and personalize browsing and retrieval in large
multimedia databases. Such techniques have been suc-
cessfully applied in the scenario of virtual museums,
i.e. museums that offer a web based access to a collec-
tion of digital reproductions of artifacts, mainly paint-
ings. Drummond et al. [5] propose a technique to
assist the users in their search through a multimedia
database, based on the intelligent agents paradigm.
In [3] Bodendorf et al. present a system architecture
for hypermedia applications that includes fuzzy logic
and artificial neural networks for dynamically creating
user–specific paths through a database of multimedia
objects.
The strategy we propose in our approach makes use
of an artificial neural network, for predicting users’
behavior, trained on a suitable set of features char-
acterizing the objects of interest, and also takes into
account site topological information gathered from a
Geographical Information System (GIS).
In our application domain a great accuracy in the mea-
sure of position is a fundamental aspect because the
objects of interest are usually very close each other.
Standard GPS technology is affected by several classes
of errors [12] deriving from transmitted location of the
satellite (Ephemeris data), transmitted clock (Satel-
lite clock), corrections of pseudorange caused by iono-
spheric and tropospheric effects, reflected signals en-
tering the receiver antenna (Multipath) and errors in



the receiver’s measurement of range caused by ther-
mal noise, software accuracy, and inter-channel biases.
These errors can be eliminated or reduced using the
differential correction technique (DGPS), which em-
ploys a second receiver at a fixed location to compute
the corrections of the GPS satellite measurements. In
this way we can improve the accuracy of the measure
from 15 − 20 meters up to less than 2 − 3 meters.
The fixed receiver has a radio connection (beacon) to
transmit corrections to the devices, or alternatively,
uses an internet connection.
In outdoor positioning, GPS [11] is used in many ap-
plications. A restriction for GPS technology is the im-
possibility to evaluate position in indoor spaces, where
GPS receivers are blind. We can use several kinds of
sensors such as infrared (IR) [16], ultrasound [13, 17],
vision [9] or radio (RF) sensors [2, 7, 10, 18] to deter-
minate the position in a indoor environment. These
systems differ for many parameters as sensors used,
cost of system components, hardware, time and space
resolution [6]. Many issues arise in developing a ro-
bust location system in an indoor environment. These
restrictions consist for example of an exact knowledge
of spatial position of sensors and errors in the propa-
gation of wave signals [4].
The exponential growth in the use of wireless com-
munication drives the developers of mobile devices to
equip their products with off-the-shelf IEEE 802.11b
wireless Ethernet; at the same time the communica-
tion infrastructures of many buildings have often base
stations based on the same IEEE 802.11b protocol.
The localization is obtained by the measure of RF
signal strength.
The model behind our system might be easily ex-
tended to any kind of museum, even if in this paper
we make some assumptions that are valid in the case
of a museum exhibiting paintings.
The rest of the paper is organized as follows. Section
2 shows the overall architecture of the proposed sys-
tem. Sections 3, 4, and 5 describes the GIS Support,
the Prediction and the Path Planning subsystems re-
spectively. In section 6 some conclusion are eventually
reported.

2. SYSTEM ARCHITECTURE

Figure 1 shows at a glance the overall architecture of
the system. A user who wants to visit the site only
needs a hand held computer, equipped with a posi-
tioning system and a wireless Ethernet connection, to
access the Recommendation System and start its per-
sonalized visit. The positioning system allows to track
the position of the visitor, that is periodically trans-
mitted to the server, and stored in the Usage Log.
The Prediction Subsystem, based on the history of the
user and the behavior of the past users, predicts which
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are the items that it may be interested to see next.
The Path Planning Subsystem proposes a path to the
user, taking into account the results of the Prediction
Subsystem and the information provided by the GIS

Support Subsystem.

3. GIS SUPPORT SUBSYSTEM

The data analysis on large repository storing several
kind of data allows us to combine, transform and re-
trieve relations among the data themselves in order to
establish a reliable decision support methodology. In
our framework the use of spatial and temporal infor-
mation is a strategic aspect for real-time applications.
In particular, GIS supplies a useful technological sup-
port to manage this kinds of data. On the other hand
DGPS technology can be used for tracking the user
position in a reliable and accurate way, as shown in
figure 2.
We use IEEE 802.11b wireless Ethernet for localiza-
tion and usual communication services (internet ac-



cess). The use of more sophisticated localization sys-
tems, as example sonar, that allows to achieve a bet-
ter performance (up to 20 centimeters), may be sub-
ject to environmental and legal constraints for cultural
heritage buildings. In our system we get information
about the user position and the time when that po-
sition is measured, and then interpolate the collected
data in order to reconstruct the user’s path and com-
pute the spatial proximity to the objects in the site.
Our GIS module implements some functions to man-
age the geographic path of a user. We define a net
where nodes are the objects and arcs are the connec-
tion among them; the weight on each arc is the dis-
tance among objects and around each node we con-
sider a buffer area to define the object’s space of in-
terest : if a visitor is in this area we assume that the
object is of interest to it. The distance between two
objects oi and oj is defined as

dists(oi, oj) = min
h
{ωh(oi, oj)} (1)

where ωh are the paths between oi and oj . We can
evaluate the time spent by a user looking an artifact by
considering the points in the object’s buffer. We select
the points in the buffer area using the GISmodule with
a spatial join between buffer and points. This operator
allows to extract user information about proximity to
the artifacts and visit time that can be evaluated as
the difference between the time of first and the last
position points along its path that fall in the buffer.

4. PREDICTION SUBSYSTEM

In this work we are interested in predicting the objects
that a visitor of a museum may be interested to visit,
based on its behavior and on the behavior of the past
visitors. Such prediction can be used for both making
useful suggestions to the visitors and pre–fetching the
description of the predicted objects, thus improving
the performance of the system.
No mechanisms such as cookies or explicit user login
have been implemented to simplify the task of user
identification and classification, since the first ones can
be deleted or disabled by the user itself and the same
device might be used by several users over time, while
the explicit login and the typing of personal data typ-
ically discourages the visitors from using the service,
even if it is regarded as interesting. So the precision of
user classification, being exclusively based on his dy-
namic behavior, is quite poor when the user accesses
the system for the first time and then it gets better
and better as it keeps on visiting the museum.
Knowledge about the visitors’ behavior can be derived
by the analysis of the Usage Log that records which
artifacts have been visited by the users and how much
time they have spent in front of each item. Assuming

that O = {oi} is the set of all the artifacts exposed in
the museum or archeological site, let us introduce the
following definition.

Definition 1 (Timestamped Usage Path)
A Timestamped Usage Path (TUP) p of length k is
an ordered sequence of (oi, ti) ∈ O × R+ pairs, where
oi is the i-th object visited by the user in the same tour
and ti is the time that it has spent in front of oi.

p = ((oi1 , ti1), ..., (oik , tik)) (2)

Let P denote the set of all the timestamped usage
paths of past visitors stored in the log. We remark
that the times are evaluated as described in section 3.
To the aim of prediction we have adopted an Artificial
Neural Network (ANN) approach, designing a neural
network that is trained on a suitable set of features
characterizing the objects of interest. We describe the
features extraction process and the design of the neu-
ral network in the remainder of this section.

Features extraction

We assume that each object o in the collection O has
a digital representation I = r(o), that is usually a
picture of the object itself. A feature vector vIf =
(f1, ..., fn) in an n-dimensional space can be extracted
from each object representation and a distance distf
can be defined in the feature space. In the following
we report two examples of feature extraction w.r.t.
the image domain; suitable distances are respectively
defined too. We have adopted the Wavelet Transform
(WT) [15] as a mechanism useful for both reducing
the amount of data to be analyzed and providing a
suitable color and texture representation.

Color features: Given a set of representative col-
ors Q = {q1, ..., qB}, a color histogram h(I) = {hIb} of
an image I is defined on bins b ∈ [1, B], such that, for
any pixel in Dp, h

I
b is the probability that the color

of the pixel is qb ∈ Q. To this aim, we have used the
low pass component of the WT, i.e. a smoothed copy
of the original picture, that allows to avoid lightening
and noise problems.

Definition 2 (Color Distance) Given two images I1
and I2 and their respective color histograms h(I1) =
{hI1b } and h(I2) = {h

I2
b }, defined on the same number

B of bins, a Color Distance can be defined as

distc(I1, I2) = 1−

B
∑

b=1

min
(

hI1b , h
I2
b

)

/

B
∑

b=1

hI1b , (3)

where
∑B

b=1 h
I1
b is a normalization factor.

Texture features: Let us denote the wavelet co-
efficients as wkl (x, y), where (x, y) ∈ Dp ⊆ R2, l is the



decomposition level and k the sub-bands. A wavelet
decomposition gives rise to 4 subregions of dimen-
sion |Dp|/4. Only the detail components of the WT

are taken into account, in order to characterize tex-
ture. For k = 1, 2, 3, the detail sub-bands contain
horizontal, vertical and diagonal directional informa-
tion, respectively, and are represented by coefficient
planes

[{

wkl (x, y)
}]

k=1,2,3
. Next, the Wavelet Covari-

ance Signature is computed, i.e. the feature vector of
coefficient covariances Σ2C = {σ

2
X,Y }, where:

σ2X,Y =
∑

x,y

{

1

|Dp|/4

3
∑

k=1

Xk(x, y)Yk(x, y)

}

. (4)

The pair (Xk, Yk) is in the set of coefficient plane pairs
{(wki , w

k
j )}, i and j being used to index the three chan-

nels, and (x, y) span over the sub-band lattice of di-
mension |Dp|/4.

Definition 3 (Texture Distance) Let C1 and C2 be
the wavelet signatures of two images I1 and I2 respec-
tively. A Texture Distance between two images I1 and
I2 can be defined as

distt(I1, I2) =
1

R

|Σ2|
∑

i=1

∣

∣Σ2C1
[i]− Σ2C2

[i]
∣

∣

min
(∣

∣Σ2C1
[i]
∣

∣ ,
∣

∣Σ2C2
[i]
∣

∣

) (5)

where R is a normalization factor to bound the sum
in [0, 1], and |Σ2| the number of features in the feature
vector Σ2 computed through equation 4.

In this work we have used a feature vector that con-
tains both color and texture features, since they have
been proved to be powerful descriptors for pictorial
images. Thus we have introduced a distance that com-
bines color and texture distances, as reported in the
following.

Definition 4 (Feature Distance) The Feature Dis-
tance between two images I1 and I2 is defined as

distf (I1, I2) = αc · distc(I1, I2)+αt · distt(I1, I2) (6)

αc and αt being two weighting factors.

In the following of the paper, we will be using the term
object to refer both to the artifacts in the museum and
their digital representations; it will be clear from the
context which meaning is intended.

Neural network implementation

Among the several ANN architectures presented in
the literature we have chosen a feed–forward topol-
ogy, that is well–suited for classification problems [8].
In feed-forward networks neurons are typically orga-
nized into layers. A standard L–layer feed-forward

network1 consists of an input stage, L–1 hidden layers
and an output layers of unit successively connected in
a feed-forward fashion with no connections between
units in the same layer and no feedback connections.
In this work we have designed a 4–layer feed–forward
network, as sketched in figure 3. Each unit in the
first hidden layer defines an hyperplane in the pattern
space. A unit in the second hidden layer defines a
hyper–region from the outputs of the first-layer unit;
a decision region is obtained by performing an AND
operation on the hyperplanes. The units in the third
layer combine the decision regions defined by the units
in the second hidden layer by performing logical OR
operations, thus allowing to define arbitrarily complex
decision boundaries and represent any boolean func-
tion.
The inputs to the network are the feature vectors vif =

(f i1, .., f
i
n) of the last N objects visited by the user

and their respective visit times, while the output is a
vector vN+1f = (fN+11 , .., fN+1n ) containing the desired
features of the objects that the user is likely to visit
next.
Neurons in the three hidden layers have a sigmoid
activation function f(x) = 1/(1 + e−α·x), where α
is a parameter that controls the slope of the curve.
The sigmoid activation function allows to divide the
N · (n+1)–dimensional input space into smooth deci-
sion regions rather than piecewise linear regions. Units
in the output layer have a linear activation function
that permits to obtain an output vector in the features
space F .
A standard back–propagation algorithm [8] has been
used to learn the connection weights from available
training patters, in a supervised fashion. The data set
to be used in the learning process has been built by
running the system without the support of the neural
network and collecting the usage patterns of visitors
over a sufficient time interval. All the subsequences
of length N + 1 of the paths in P have been then
considered, using the feature vectors of the first N
element as the inputs and the feature vector of the
last one as output.
Cross validation methodology has been used in order
to choose the optimal number of neurons in the hidden
layers and evaluate the generalization capability of the
designed neural network.

5. PATH PLANNING SUBSYSTEM

We can finally define how to make suggestions to the
visitors and plan their future path through the mu-
seum combining the information gathered from the
GIS Support Subsystem and the results of the Pre-
diction Subsystem. The basic consideration is that,

1We adopt the convention that the input nodes are not
counted as a layer.
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Figure 3: Neural Network for users’ behavior prediction

when visiting a museum or an archaeological site, a
user would like to see interesting artifacts, but, at the
same time, it doesn’t want to go up and down through
the site to accomplish its cultural needs.
Given the last N objects ((oi1 , ti1), ..., (oik , tik)) vis-
ited by the user, the neural network returns a vector
vN+1f = (fN+11 , .., fN+1n ) containing the desired fea-
tures of the objects that the user is likely to visit next.
We can now define a distance d that combines the fea-
ture and spatial distances defined by Eq. 6 and Eq. 1
respectively.

d(oj) = α·distf (od, oj)+β ·dists(oiN , oj), oj ∈ O (7)

where od is an hypothetic object characterized by the
desired features vN+1f , and α and β are two parameters
used for both weighting the contribution of feature and
spatial distances and making the two metric spaces
coherent.
In conclusion, the path proposed to the user is a list
of the top–k artifacts {oj} ranked by ascending values
of d(oj).

6. CONCLUSIONS

In this paper we have presented a novel technological
framework for personalizing museum visits and make
visitors’ experience more appealing. Our approach is
based on an innovative strategy for predicting user
behavior, that uses an artificial neural network trained
on a suitable set of features characterizing the objects
of interest and also takes into account site topological
information (GIS).
So far the system has been implemented for outdoor
environments, using the DGPS technology. We are
planning to implement the indoor solution described
in the paper and manage the integration of the two
technologies, allowing the handover between the two
tracking solutions, so that a user can walk within an

outdoor environment and, at any time, enter a build-
ing without losing the connection with the system.
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