A Technological Framework for Personalized Museum Visiting

Massimiliano ALBANESE Antonio PICARIELLO Antonio Maria RINALDI

Dipartimento di Informatica e Sistemistica University of Napoli "Federico II" Napoli, Italy

Introduction

- Visiting museums and archeological sites is usually an amazing experience
 - Sometimes a visitor may get lost in huge exhibitions in which thousands of artifacts are exposed
- Paper or human guides may help to reach interesting items, but the offer cannot be personalized according to the preferences of each user
 - Paper guides are the same for each visitor
 - Human guides usually drive a whole group of tourists

Contribution

- We present a system that assists a user in visiting a museum or an archaeological site, providing useful recommendations, based on an innovative strategy for predicting user behavior
- The strategy we propose
 - makes use of an artificial neural network, for predicting users' behavior, trained on a suitable set of features characterizing the objects of interest
 - takes into account site topological information gathered from a Geographical Information System (GIS)

System Architecture

- GIS Support Subsystem
 - stores in the Usage Log information about users' movements and provides information about objects' location
- Prediction Subsystem
 - predicts the items that a user may be interested to see next
- Path Planning Subsystem
 - proposes a path to the user, based on the data gathered from the other subsystems

CITSA 2004 / ISAS 2004 - July 21-25, 2004 - Orlando, Florida, USA

GIS Support Subsystem GPS

- Standard GPS technology is affected by several classes of errors
 - Ephemeris data
 - transmitted location of the satellite
 - Satellite clock
 - transmitted clock
 - Multipath
 - reflected signals entering the receiver antenna
 - Measurement errors in the receiver caused by thermal noise, software accuracy and inter-channel biases

GIS Support Subsystem From GPS to DGPS

- Errors can be avoided or reduced using the differential correction technique (**DGPS**)
 - A second receiver at a fixed location is used to compute the corrections to the GPS measurements
 - Corrections are transmitted through a radio connection (beacon) or an internet connection (DGPS-IP)
 - The accuracy of the measure improves from 15-20 meters up to 2-3 meters.

GIS Support Subsystem Current implementation

- Outdoor positioning has been implemented using DGPS
- Mobile devices are equipped with IEEE 802.11b wireless Ethernet to allow internet connection

GIS Support Subsystem Outdoor and indoor positioning

- Outdoor positioning
 - GPS has been successfully adopted in a lot of applications
- Indoor positioning
 - GPS receivers are blind into indoor spaces
 - Different kinds of positioning systems should be used
 - Infrared or ultrasound sensors
 - Radio Frequency sensors
 - WLAN-based positioning

GIS Support Subsystem Distance between objects

- Let us consider a network in which the nodes represent objects and the arcs represent paths between pairs of objects
- The spatial distance between two objects o_i and o_j can be defined as

$$dist_s(o_i, o_j) = \min_h \{\omega_h(o_i, o_j)\}$$

- ω_h is the length of the *h*-th path between o_i and o_j
- The distance between two objects is the length of the shortest path between them

Prediction Subsystem Timestamped Usage Paths

- Prediction is realized through an Artificial Neural Network trained on the behavior of past users
- Behavior is represented through the usage paths of the users
- A Timestamped Usage Path (TUP) p of length k is defined as

 $p = ((o_{i_1}, t_{i_1}), ..., (o_{i_k}, t_{i_k}))$

- *o_{ik}* is the *k*-th object visited by the user and *t_{ik}* is the time that she ha spent in front of *o_{ik}*
- Let *P* denote the set of all the timestamped usage paths of past users and *O* the set of all the objects

Prediction Subsystem Artificial Neural Network

- We have designed a 4-layer feed-forward network
 - The inputs to the network are the feature vectors of the last N objects visited by the current users and their respective visit times

$$\boldsymbol{v}_f^i = (f_1^i,..,f_n^i)$$

 The output is a vector containing the desired features of the objects that the user is likely to visit next

$$v_f^{N+1} = (f_1^{N+1}, ..., f_n^{N+1})$$

Prediction Subsystem Artificial Neural Network

Features extraction

- We assume that each object in the collection has a digital representation
 - A digital representation is usually a picture of the object itself
- We then consider color and texture features evaluated after applying Wavelet Transform to the original pictures
- Wavelet Transform
 - reduces the amount of data to be analyzed
 - provides a suitable color and texture representation

Features extraction Color

- Color features
 - Color histograms

 $h(I) = \{h_b^I\}, \ b \in [1, B]$

- Color Distance
 - comparison of color histograms
 - computed on the low-pass components (a smoothed copy of the original picture)

$$dist_{c}(I_{1}, I_{2}) = 1 - \sum_{b=1}^{B} \min\left(h_{b}^{I_{1}}, h_{b}^{I_{2}}\right) / \sum_{b=1}^{B} h_{b}^{I_{1}}$$

Features extraction Texture

• Texture features

$$\Sigma_C^2 = \{\sigma_{X,Y}^2\} \qquad \sigma_{X,Y}^2 = \sum_{x,y} \left\{ \frac{1}{|D_p|/4} \sum_{k=1}^3 X_k(x,y) Y_k(x,y) \right\}$$

• Texture Distance

$$dist_t(I_1, I_2) = \frac{1}{R} \sum_{i=1}^{|\Sigma^2|} \frac{\left|\Sigma_{C_1}^2[i] - \Sigma_{C_2}^2[i]\right|}{\min\left(\left|\Sigma_{C_1}^2[i]\right|, \left|\Sigma_{C_2}^2[i]\right|\right)}$$

- *R* is a normalization factor
- $|\Sigma^2|$ is the number of features

Feature Distance

- We have used a feature vector that contains both color and texture features
 - color and texture features have proved to be powerful descriptors for pictorial images
- The Features Distance between two images *I*₁ and *I*₂ is defined as

 $dist_f(I_1, I_2) = \alpha_c \cdot dist_c(I_1, I_2) + \alpha_t \cdot dist_t(I_1, I_2)$

- α_c and α_t are two weighting factors
 - chosen by maximizing the correlation w.r.t. human judgments

Path Planning Subsystem

- Considerations
 - When visiting a museum or an archaeological site a user
 - would like to see interesting artifacts
 - doesn't want to go up and down through the site to accomplish her cultural needs
- Solution
 - Proposing a path to the user based both on visual content of objects in the museum and their spatial location

Path Planning Subsystem

- Given the last N objects visited by the current user, let us consider the desired feature vector returned by the neural network and an hypothetic object o_d characterized by this feature vector
- We define a distance that combines feature and spatial distances as follows

 $d(o_j) = \alpha \cdot dist_f(o_d, o_j) + \beta \cdot dist_s(o_{i_N}, o_j), \ o_j \in \mathcal{O}$

 In conclusion, the path proposed to the user is a list of the top-k artifacts {o_j} ranked by ascending values of d(o_j)

CITSA 2004 / ISAS 2004 - July 21-25, 2004 - Orlando, Florida, USA

Experiments Qualitative evaluation

- Step 1
 - We set up an exhibition in the campus of the Faculty of Engineering - University of Napoli and asked a group of about 60 people to use the system for some days, in order to collect a significant amount of usage paths for training the neural network
- Step 2
 - We asked a different group of 20 people to visit the exhibition
 - without the support of the recommendation system
 - with the assistance of the recommendation system
 - 81% of the people found the system helpful, while the remaining 19% did not appreciate significant differences

- We have shown that the proposed system provides the following interesting insights:
 - the recommendation system does not use any preliminary knowledge about the users' behavior
 - the paths through the museum are proposed based both on visual descriptors of the objects and on their location within the museum
 - the impact on the users at this early stage of the experimentations is promising
- Open issues
 - Extending analysis and experiments to more general scenarios
 - Integrating outdoor and indoor positioning

Acknowledgements

 This work has been carried out partially under the financial support of the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) in the framework of the FIRB Project "Middleware for advanced services over large-scale, wired-wireless distributed systems (WEB-MINDS)"