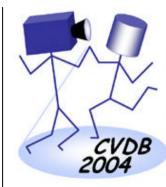
A Multimedia Data Base Browsing System



Massimiliano Albanese Carmine Cesarano Antonio Picariello

Dipartimento di Informatica e Sistemistica University of Naples "Federico II" Naples, Italy

Introduction

- Browsing of large multimedia data bases
 - Availability of great amounts of data
 - Complexity of the retrieval techniques
- Browsing and retrieval from multimedia data bases is usually based on the similarity of
 - low-level features
 - e.g. color and texture in the image realm, motion information in the video domain
 - high-level features
 - semantic descriptors or textual annotations

Motivating example

- We consider the case of a "virtual museum"
 - A "virtual museum" is a museum that offers a web based access to a collection of digital reproduction of paintings
- Our approach can be extended to any kind of multimedia object



Contribution

- A Multimedia Data Base Browsing System that gives useful recommendations to the user based on
 - image analysis and features extraction
 - human-created annotations and taxonomic knowledge bases
 - user preferences, represented by the navigational behavior of current and past users

System Architecture

- Usage Log
 - stores log data of users' browsing sessions
- Pattern Discovery Subsystem
 - recognizes the users having the most similar behavior to the current users
- Recommendation Subsystem
 - produces a ranked list of recommended items (paintings)

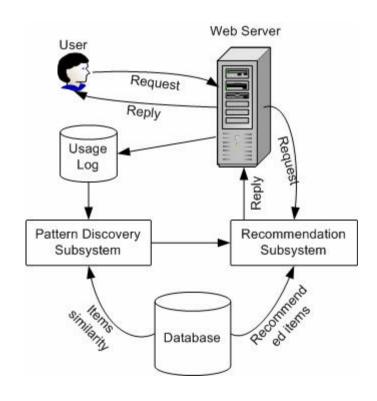


Image Comparison

- Wavelet Transform
 - reduces the amount of data to be analyzed
 - provides a suitable color and texture representation
- Color Distance
 - comparison of color histograms
 - computed on the low-pass components (a smoothed copy of the original picture)

$$d_{col}(I_1, I_2) = 1 - \sum_{b=1}^{B} \min\left(h_b^{I_1}, h_b^{I_2}\right) / \sum_{b=1}^{B} h_b^{I_1}$$

Image Comparison

Texture features

$$\Sigma_C^2 = {\{\sigma_{X,Y}^2\}}$$
 $\sigma_{X,Y}^2 = \sum_{x,y} \left\{ \frac{1}{|D_p|/4} \sum_{k=1}^3 X_k(x,y) Y_k(x,y) \right\}$

Texture Distance

$$d_{tex}(I_1, I_2) = \frac{1}{R} \sum_{i=1}^{|\Sigma^2|} \frac{\left| \Sigma_{C_1}^2[i] - \Sigma_{C_2}^2[i] \right|}{\min\left(\left| \Sigma_{C_1}^2[i] \right|, \left| \Sigma_{C_2}^2[i] \right|\right)}$$

- R is a normalization factor
- $|\Sigma^2|$ is the number of features

Features Based Similarity

• The Features Based Distance and Similarity between two images I_1 and I_2 are defined as

$$d_{features}(I_1, I_2) = \alpha_{col} \cdot d_{col}(I_1, I_2) + \alpha_{tex} \cdot d_{tex}(I_1, I_2)$$

$$S_F(I_1, I_2) = 1 - d_{features}(I_1, I_2)$$

- α_{col} and α_{tex} are two weighting factors
 - chosen by maximizing the correlation between human judged similarity and S_F
 - $\alpha_{col} = 0.67$ and $\alpha_{tex} = 0.33$

Taxonomies

- A taxonomy is a hierarchical concept network
- Given an application specific taxonomy T, we define an Object Semantic Description as

$$OSD = (TA, NTA)$$

- $TA = (A_1, ..., A_{\tau})$ is an ordered tuple of attributes that assumes values represented by nodes of T
- $NTA = (A_1^*, ..., A_{\tau^*}^*)$ is an ordered tuple of attributes that assumes values not represented by nodes of T
- Let O denote the set of all the objects in the collection, defined as triples (OID, OSD, PhyObj)

Taxonomy Based Similarity

• The Features Based Similarity and Distance between two objects o_1 and o_2 are defined as

$$S_T(o_i, o_j) = \frac{1}{\tau} \cdot \sum_{k=1}^{\tau} e^{-\alpha \cdot l(a_k^i, a_k^j)} \cdot \left(1 - e^{-\beta \cdot d(a_k^i, a_k^j)}\right)$$

- a_k^i and a_k^j are the values of A_k for o_i and o_j
- $l(a_k^{\ i}, a_k^{\ j})$ is the shortest path length and $d(a_k^{\ i}, a_k^{\ j})$ the depth of the subsumer between $a_k^{\ i}$ and $a_k^{\ j}$
- α and β are parameters scaling the contribution of shortest path length and depth respectively

 $d_{taxonomy}(o_i, o_i) = 1 - S_T(o_i, o_i)$

Features and taxonomy A combined metric

 The combined distance metric used to index the images into an M-tree structure and the corresponding similarity measure are defined as

$$d_M(I_i, I_j) = \alpha_F \cdot d_{features}(I_i, I_j) + \alpha_T \cdot d_{taxonomy}(I_i, I_j)$$
$$S_M(I_i, I_j) = 1 - d_M(I_i, I_j)$$

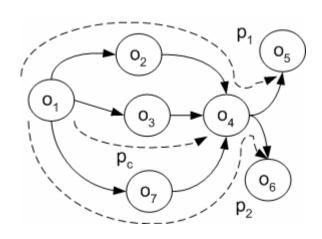
- α_F and α_T are two weighting factors
 - chosen by maximizing the correlation between human judged similarity and S_F
 - $\alpha_F = 0.62$ and $\alpha_T = 0.38$

User preferences Usage patterns

- Recommendations for current users are based on the behavior of past users
- Behavior is represented through the usage patterns of the users
- A Usage pattern p of length k is defined as

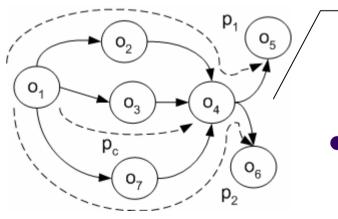
$$p = (o_{i_1}, o_{i_2}, ..., o_{i_k}), \text{ with } o_{i_j} \in \mathcal{O} \ \forall j \in [1, k]$$

 Let P denote the set of all the usage patterns of past visitors



Comparison of usage patterns

- Some distances (e.g. Levenshtein) have been defined to evaluate the distance between sequences of symbols from a given alphabet Σ
 - Only the alignment of the symbols is taken into account



The Levenshtein distance between patterns p_1 =(o_1 , o_3 , o_4 , o_5) and p_2 =(o_1 , o_2 , o_4 , o_5) is equal to 1, whatever o_3 and o_2 are

- Our approach
 - Evaluate the similarity between patterns based on the similarity between objects

Local similarity of patterns The proposed algorithm


```
function local-similarity(p_1, p_2)
   p_1 and p_2 are two patterns of length m and n respectively
   D is a two-dimensional array with m + 1 rows and n + 1 columns
begin
  for j \leftarrow 0 to n do
      D[0, i] \leftarrow 0
   end for
  for i \leftarrow 0 to m-1 do
      D[i + 1, 0] \leftarrow 0
      for j \leftarrow 0 to n do
         D[i + 1, j + 1] \leftarrow \max\{0, D[i, j] + Sub(p_1[i], p_2[j]),
                                      D[i, j+1] + Del(p_1[i], p_2[j]), D[i+1, j] + Ins(p_2[j], p_1[i])
           end for
    end for
    return \max_{i,j} \{D[i,j]\} / \min\{m,n\}
end
```

Sub(), Ins() and Del() functions

 Sub(), Ins() and Del() are the functions used to reward/penalize an alignment

$$Sub(p_1[i], p_2[j]) = \frac{S_M(o_{k_i}, o_{l_j}) - \delta}{1 - \delta}$$

$$Ins(p_2[j], p_1[i]) = \frac{\min\{S_M(o_{k_i}, o_{l_j}), S_M(o_{k_{i+1}}, o_{l_j})\} - 1}{(1 - \delta)/\delta}$$

$$Del(p_1[i], p_2[j]) = Ins(p_1[i], p_2[j])$$

• δ is a threshold defined as

$$\delta = (\lg |\mathcal{O}| - 0.4)/\lg |\mathcal{O}|$$

Recommendation process Selection of candidate objects

Consider the following sets

$$\mathcal{P}_{\gamma} = \{ p \in \mathcal{P} \mid \text{local-similarity}(p, p_c) \geq \gamma \}$$

$$\mathcal{O}_{\gamma} = \{ o \in \mathcal{O} \mid \exists p \in \mathcal{P}_{\gamma}, \text{next}_{p}(p_c) = o \}$$

 The set of candidate objects to be recommended is defined as

$$\mathcal{O}_c = \mathcal{O}_{\gamma} \cup \mathsf{NN}(o_c, k)$$

- γ is a threshold defined as $\gamma = (|\mathcal{P}| 0.2)/|\mathcal{P}|$
- $NN(o_c, k)$ is a k nearest neighbors query

Recommendation process Pattern Based Similarity

Consider the following sets

$$\mathcal{P}_i = \{ p \in \mathcal{P}_\gamma \mid \text{next}_p(p_c) = o_i \}, \forall o_i \in \mathcal{O}_c \}$$

• The Pattern Based Similarity of an object o_i w.r.t. to the current path p_c is defined as

$$S_{P}(o_{i}) = \frac{\sum_{p \in \mathcal{P}_{i}} local\text{-}similarity(p, p_{c})}{\max_{i} \left\{ \sum_{p \in \mathcal{P}_{i}} local\text{-}similarity(p, p_{c}) \right\}}$$

• $S_P(o_i)$ can be thought as the likelihood that the user may be interested in o_i , given her current usage pattern and the usage patterns of past visitors

Recommendation process Recommendation Grade

• The Recommendation Grade of an object o_i , given the current pattern p_c and the last element o_c in p_c , is defined as

$$\rho(o_i) = \alpha_M \cdot S_M(o_i, o_c) + \alpha_P \cdot S_P(o_i)$$

• α_M and α_P are two weighting factors, defined as functions of the length n_c of the current pattern

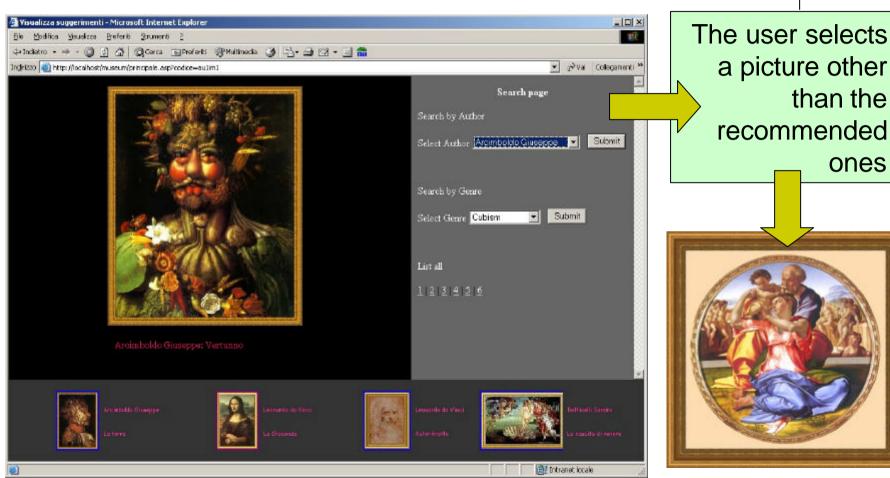
$$\alpha_M = 1/n_c$$
 $\alpha_P = (n_c - 1)/n_c$

• The k objects in O_c exhibiting the highest values of ρ are recommended to the user

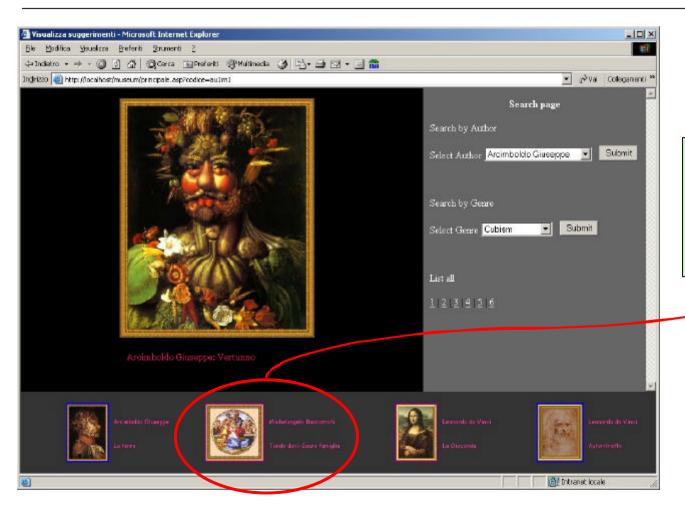
Scale issues

- Two main scale issues
 - Size of the image (object) collection
 - Addressed using an M-tree to index the images
 - The d_M distance has been adopted to partition the metric space
 - Size of the usage pattern collection
 - Addressed using an M-tree to index the patterns
 - The metric space has been partitioned using the distance d = (1 local-similarity)
 - The set P_{γ} can be determined as
 - range $(p_c, 1 \gamma)$

Experiments Example of use



Experiments Example of use



Next users with a similar behavior will be invited to see that picture

Experiments Qualitative evaluation

Step 1

 We asked a group of about 60 people to use the system for some days, in order to collect a significant amount of usage patterns

Step 2

- We asked a different group of 20 people to browse the collection using
 - the standard search capabilities
 - the assistance of the recommender system
- 73% of the people found the system helpful, while the remaining 27% did not appreciate significant differences

Conclusions

- We have shown that the proposed system provides the following interesting insights:
 - the recommendation algorithm does not use any preliminary knowledge about the users' behavior
 - the recommendations are produced using both visual and semantic descriptions
 - the impact on the users at this early stage of the experimentations is promising

Open issues

- Extending analysis and experiments to more general scenarios and different kind of multimedia data, such as video
- How to create an adequate semantic taxonomy for different realms

Acknowledgements

 This work has been carried out partially under the financial support of the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) in the framework of the FIRB Project "Middleware for advanced services over large-scale, wired-wireless distributed systems (WEB-MINDS)"