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Università di Salerno and INFM

boccig@unisa.it

A. Picariello

Università di Napoli
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Abstract

In this paper we show how, taking into account basic characteristics of biological vision, namely saccadic
eye movements, a more effective image retrieval processing can be achieved. In particular, given two fixation
sequences, extracted, respectively, from a target image and a test image, the sequences can be compared in order
to provide a measure of similarity between the two images, and we propose two novel matching algorithms.

1 Introduction

Content Based Image Retrieval (CBIR) systems rely upon the effectiveness of image similarity models. Assessing
the similarity between two images can be reformulated as a task of visual search: given a target image Iq and a test
image Ii, is there an instance of the target in the test image? To this end, it is of relevance that in most biological
vision systems, only a small fraction of the information registered at any given time reaches levels of processing
that directly influence behavior and, indeed, attention seems to play a major role in this process. Notwithstanding,
classical approaches in computer vision, and in CBIR, consider the input image as a static entity, to be processed in
a passive way [1].

To correct such trend, the attentive, animate vision paradigm has been proposed [2]. When analyzing an image,
human subjects mainly concentrate inspection on a subset of points (regions). A basic example is the generation of
saccades, i.e. ocular movements that allow to acquire high resolution images (foveation) of the most relevant part of
the scene. More precisely an average of three eye fixations per second generally occurs during active looking; these
eye fixations are intercalated by rapid eye jumps, the saccades, during which vision is suppressed. Noton and Stark
[3] claimed that when a particular visual pattern is viewed, a particular sequence of eye movements is executed and
this sequence is important in accessing the visual memory for the pattern. An example is provided in Figs. 1, 2.

In this note, we argue that animate vision mechanisms should be taken into account in CBIR, since they allow
to concentrate the visual process on a circumscribed region of the visual field, the ”focus of attention” (FOA), which
is sequentially shifted across the scene either in a bottom-up, saliency driven fashion, and/or in a top-down, model

Figure 1: Eye movements sequence over a sample image
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Figure 2: Fovea view of the sample image

driven way. To the best of our knowledge, the animate perspective has never been considered for the CBIR problem
which still adheres to a passive approach. However, it may play a twofold role for the purposes of this work: 1) An
attentional scheme has as its main goal the selection of certain aspects of the input stimulus while causing the effects
of other aspects of the stimulus to be minimized; 2) Attention introduces a third dimension, beyond features and
relationships, namely the dimension of times: features and relationships are not established as static structures, but
are incrementally set-up along the visual inspection task. In other terms, attention ”linearizes” the 2D structure,
naturally reducing visual matching complexity

2 Scanpath computation

Let us define an image I as a random field from D to a subset of the real numbers R, where the image domain
D ⊆ Z2, Z being the set of integers, is a lattice of L sites ; let I = {Ip}p∈D be any family of P random variables
indexed by p ∈ D. A possible sample I of Ip is denoted by I = (Ip1 , . . . , IpP

) and it is called a configuration of the
field. The values of the field observations represent pixel intensity, namely Ip = I(n,m), where (n,m) ∈ Z2 specifies
the coordinates of site p, provided that P = N ×M , if 1 ≤ n ≤ N and 1 ≤ m ≤ M . Namely, N and M are the
horizontal and vertical dimension of the image.

The problem of assessing the similarity between two images can be reformulated as a task of visual search: given
a target image Iq and a test image Ii, is there an instance of the target in the test image? The solution to visual
search problem involves solving a subproblem which is denoted visual matching. Thus, the general version of visual
search seeks the subset of the test image that best matches the target.

Consider the image as the collection of S sets of pixels Ds; the sets are disjoint and cover all the domain D, that
is Dsi ∩ Dsj = ∅ , for i 6= j and D =

⋃
Ds. In the simplest case the matching of the target with the test image

can be defined as Mi = Ψ(
∑

s

∑
p∈Ds d(Ip

q, Ip
i)), where Ψ(·) is a monotonically decreasing function. Clearly, in the

trivial case where Iq ≡ Ii, all subsets of the test image match the target, while in the most general case one will deal
with noisy or partial matches.

It has been shown [4] that unbounded visual matching is NP-complete (exponential in the size of the image),
while bounded visual search has linear time complexity. Thus, two issues are to be taken into account. The first
issue deals with the problem of salient feature detection, which, in the limit case of weak segmentation corresponds
to the detection of conspicuous points described by the generic equation Cs(p) =

∧
D h ◦ Ip, where

∧
stands for a

local selection operation and operator h maximizes the saliency of the image field Ip. Clearly, the information should
be selected with precision as regards saliency and robustness. To this end, it is generally agreed that multiscale
processing is a suitable tool.

The second issue concerns the optimal exploitation of conspicuous points (regions) Cj(p). When these are
available the matching problem deals with identifying the points of the data as similar to the salient points of the
query Mi = Ψ(

∑
s

∑
Cj(p) d(fp

q, fp
i)). Here fp

q and fp
i are feature vectors of salient properties of corresponding
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p in Ii, Iq images or salient regions centered in p. An alternative is to concentrate only on the spatial relationships
among salient point sets. If joint feature/spatial relationships are to be taken into account, a general model to
represent entities and relationships is an Attributed Relational Graph (ARG). Representation of image contents as
ARGs, and matching, involves the identification of an optimal error correcting (sub)graph isomorphism, which is an
NP-complete problem with exponential time solution algorithms (see [5], for an in-depth discussion).

However, one could question whether if other strategies could be pursued in order to process feature values
together with spatial relationships, or even if more effective representations are given. To this end, we will introduce
an evaluation of image similarity based on attention cues. Limiting to bottom-up processes, the attention mechanism
can be articulated in two steps: i) compute some measure of saliency over the whole image; ii)generate attentional
shifts, to move the FOA on points of interest.

The input to our system is represented by color images. A color image is a vector-valued image, namely a smooth
mapping from the image domain D ⊆ Z2 to an m-dimensional range, f : D → Rm; in other terms, it is a set of
single-valued images, or channels, sharing the same domain, i.e., I(r) = (Ii(r))

T , where i = 1, ..., m defines the ith

color channel and r= (x, y) denotes a point in the lattice D. As regards the preattentive feature analysis and FOA
computation, we basically adhere to the model proposed by Itti et al. [6]. In such model early visual features such
as color, intensity or orientation are computed, in a massively parallel manner, in a set of pre-attentive feature maps
based on retinal input. Visual features are computed using linear filtering at a certain number of spatial scales,
followed by center-surround differences, which compute local spatial contrast in each feature dimension. Feature
maps are then combined into a single conspicuity map for each feature type.

More precisely, low-level vision features considered are: brightness (E), color channels tuned to red (R), green
(G), blue (B) and yellow (Y) hues, and orientation (0). These are extracted from the original color image at several
spatial scales using Gaussian pyramids [6], which, at each resolution level l, consist of progressively low-pass filtering
(via convolution with a gaussian G(σ)) and sub-sampling the smoothed scalar field, I

(l+1)
i (r) = S ↓ G(σ) ∗ I

(l)
i (r),

where I
(0)
i (r) ≡ Ii(r), namely, the highest resolution level corresponds to the original input field, and S ↓ is the

down-sampling operator. We will denote P{Ii} = P{Ii(·)} the Gaussian pyramid build on the scalar field Ii. The
preliminary low level representation is given by the following pyramids: P{E} (image brightness pyramid), P{R}
(red pyramid), P{G} (green pyramid ), P{B} (blue pyramid), P{Y } (yellow pyramid), and P{Ok}k=00,450,900,1350 .
P{Ok} denotes an oriented Gabor pyramid computed from I at orientation k. In our implementation, pyramids
have a depth of nine scales, providing horizontal and vertical image reduction factors ranging from 1:1 (level 8; the
original input image) to 1:256 (level 0) in consecutive powers of two.

From such a representation, each feature is computed in a center-surround representation,namely, given a coarser
scale s (surround) and a finer scale c (center), Ic,s

i (r, t) = |I(c)
i (r, t) − Ĩ

(s)
i (r, t)|, where Ĩ

(s)
i = S ↑(δ) I

(s)
i and S ↑(δ)

indicates the up-sampling interpolation operation of I
(s)
i to level c. The center of the receptive field corresponds to

a pixel at level c in the pyramid, and the surround to the corresponding pixel at level s = c + δ. What is obtained
is a center surround pyramid, which for short we denote Pc,s{Ii} = Pc{Ii} − Ps{Ii}

Features are computed from the low level pyramids: one feature type encodes for on/off image brightness contrast,
Pc,s{E} = Pc{E} − Ps{E}; two encode for red/green (RG) and blue/yellow (BY) double- opponent channels,
Pc,s{RG} = Pc{RG}−Ps{GR} and Pc,s{BY } = Pc{BY }−Ps{Y B}, respectively; four encode for local orientation
contrast, Pc,s{Ok} = Pc{Ok} − Ps{Ok}, k = 00, 450, 900, 1350.

After normalization, the feature maps for intensity, color, and orientation are summed across scales into three
separate conspicuity maps, one for intensity, one for color and one for orientation. Eventually, the three conspicuity
maps are linearly summed into a unique conspicuity map, which we denote c(·, t), and provides the input for a
dynamic saliency map (DSM). The DSM is implemented as a 2-D sheet of Integrate-and-Fire (I&F ) neurons. A
winner-take-all (WTA) network, also implemented using I&F neurons, detects the most salient location and directs
attention towards it. An inhibition-of-return mechanism transiently suppresses this location in the saliency map,
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Figure 3: An IP example

such that attention is autonomously directed to the next most salient image location.
The salient regions surrounding conspicuous points Cs(p) have been shaped as squared regions having dimensions

equal to 1/16 of image’s dimensions, roughly corresponding to biological FOA dimension [7]. Eventually, each image
is represented through its FOA sequence, or scanpath, which can be organized into a sequential structure as shown
in Fig. 3. We define this structure image Information Path (IP ). An IP can be seen as a ”signature” of image.

A basic problem to deal with is the number of FOAs necessary to represent an image. We have chosen K = 10
FOAs because, as described in [7], the inhibition of the winner’s region avoids to consider the same pixel in the same
region for about 15 − 20 computational steps. Another strategy would have been to expose the image to a longer
time of observation (e.g., 2, 3 minutes, corresponding approximately to 300− 400 FOAs, then reducing this number
via a clustering procedure), at the cost of higher processing time and data reduction complexity. In other terms, we
adhere to early Yarbus’ results, demonstrating that ”additional time spent on perception is not used to examine the
secondary elements, but to re-examine the most important elements” [8].

3 The Information Path matching algorithm

In a successive stage, from each FOA, some features are extracted relative to color, shape and texture. For what
concerns color, an histogram is derived from each FOA in HSV color space. Evaluation of FOAs similarity, is
performed via histogram intersection [9]. Given the color histograms of a target and a test FOA, respectively
h(Cq(p)) and h(Ci(p)), using the same number of bins b = [0, . . . , B], it is possible to define a similarity measure
Mcol = 1−∑

b(min(hb(Cq(p)), hb(Ci(p′))))/
∑

b hbC
q(p)

As regards shape and texture, we use feature descriptors based on intensity and oriented pyramids, which in this
case can be thought as redundant wavelet representations (WT ). We only take into account the details components of
WT transform (high frequency), which contain shape and texture characterizations. Texture and shape are described
via wavelet covariance signatures, CovWT (I) =

∫
DXj

nk (b)DXi
nk (b)db, DX

l being a detail component, and n = 0, .., d−1
, k = 1, 2, 3 i, j = 1, 2, 3 j <= i. These signatures for j = k represent the energies; the others represent the covariance
between the H,S, and V components. To evaluate FOA’s similarity in terms of shape and texture we use the distance
Mtex = 1−∑

j∈N (p,p′)[abs(CovWT (Cq(p))−CovWT (Ci(p′)))/min(abs(CovWT (Cq(p)), abs(CovWT (Ci(p′)))], where
CovWT (Cq(p) and CovWT (Ci(p′) are the WT covariance signatures of target and test FOAs, respectively. FOA’s
content similarity is given from the weighted mean of this two terms, Mcontent = µ1Mcol + µ2Mtex.

Our rationale is that two similar images must have similar IPs and that the matching is computed only between
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Figure 4: Images with similar First FOAs

homologous FOAs, while taking into account node spatial position. More precisely, two IPs are similar if their
homologous nodes have similar features and if they are in the same image spatial region. This strategy resembles that
suggested by Walker and Smith [10], who, in contrast to the scanpath theory proposed by Noton and Stark [3],provided
evidence that when observers are asked to make a direct comparison between two simultaneously presented pictures,
rather a repeated scanning, in the shape of a feature by feature comparison, occurs.

The similarity in terms of spatial position can be seen as an index of IPs overlay as shown in figure 4. To evaluate
spatial similarity we use the euclidean distance between homologous FOAs’s centers, dp,p′ =

√
(x2 − x1)2 + (y2 − y1)2,

p = (x1, y1) and p′ = (x2, y2) being FOA center coordinates.
The distance is ”penalized” if, for the two images, the movement between the current FOA and the next one

is not in the same direction, d̂p,p′ = dp,p′ · e−∆, where ∆ is the difference of direction between two FOAs, namely
∆ = Ω · sign[(xj

Iq
− xj−1

Iq
) · (xj

Ii
− xj−1

Ii
)] · sign[(yj

Iq
− yj−1

Iq
) · (yj

Ii
− yj−1

Ii
)]. Here, Ω is the penalization constant and

(xj
Iq

, yj
Iq

), (xj
Ii

, yj
Ii

) center coordinates relative to j − th FOAs of Iq and Ii images. Thus, after d̂p,p′ , normalization,

Mspatial = 1− d̂p,p′

The FOA similarity is given by the weighted mean of FOAs content similarity and FOAs spatial similarity, i.e.:

MFOA = αMcontent + βMspatial (1)

where α, β ∈ [0, 1]. Clearly, due to variations of lighting conditions, pose, different background, we should expect a
certain variability in the feature range on similar FOA. Thus, a fuzzyness degree is associated to the matching result
between homologous FOAs. Thus the fuzzy horizon of the problem is subdivided into decision regions. These regions
can be ”certainty regions” (CR), denoting high probability that images be similar or very different, or ”uncertainty
region” (UR). The limits of UR and CR regions, are represented by two thresholds experimentally determined:
when the similarity value is greater than thresholdMAX or is less than thresholdMIN it falls in CR, otherwise in
a UR.

The similarity or matching Mimage is obtained through the following matching algorithm. The algorithm com-
pares the first k Target Image’s FOAs, k < K where K is the number of extracted FOAs, with the homologous
FOAs of the various images in database. In the experiments, we set k = 3, the first FOAs being more important in
a bottom-up process [11] and in driving the Visual Attention search process. At the end of this first match we obtain
a fuzzy IP similarity measure. For all images that have a fuzzy similarity value which falls in a CR the algorithm
stops. An example is shown in figure 4. The algorithm can be stopped also in the case of very dissimilar first k

FOAs. Otherwise, the matching goes on FOA by FOA, and stops if the matching value falls in a CR or if all K
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Figure 5: Token data flow

nodes have been examined, returning a similarity or not similarity answer (relying on threshold T).

Algorithm 3.1 (IP Matching Algorithm) .
Compute the Information Path of the Target Image
j ← 0
while (¬stop ∧ j < K)
begin

Compute content similarity Mcontent between Cq
j (p) and Ci

j(p
′)

Compute spatial position similarity Mspatial between Cq
j (p) and Ci

j(p
′)

Compute FOA similarity MFOA between Cq
j (p) and Ci

j(p
′)

j ← j + 1
if (j=k) then
begin

Compute the mean similarity Mimage = 1
k

∑k
f=1MFOAf

if (Mimage < thresholdMIN) ∨ (Mimage > thresholdMAX) then
stop

if (j > k) then
begin

Compute the mean similarity Mimage =
∑j

z=1MFOAz/j

if (Mimage < thresholdMIN) ∨ (Mimage > thresholdMAX) then
stop

if (Mimage > T) then
target image is similar to test image

It is worth noting, at this point, that the FOA sequence {Cs}, is a sequence which is time-dependent, since
actually Cs(p) = Cs(p, t), where the time parameter t, will depend, in our case, on the firing time of WTA neurons.
Interestingly enough, neurophysiological experiments have revealed that cells in the whole visual pathway respond
with different latencies to visual stimuli (Rank Order Coding (RC)[12]).

In our context, the image will be decomposed in a data flow of activating tokens represented by FOAs. The
indexing mechanism takes advantage from the sequenced arrival of tokens to rapidly recognize the query image as
similar to the image present in the DB. In turn, the indexing mechanism can modify the latency of tokens by delaying
those whose effects are incompatible with the current interpretation state.

In other terms, the rank defines the temporal order of arrival of each token in the data flow, as described in figure
5.
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In the matching phase, FOAs that are extracted from the image arrive with a certain latency. The earliest FOA,
named the activating FOA, will activate the subset of target images that contains a single token of that type. A search
is then started for all missing tokens that concur at defining the activated group. The relevance of the component
tokens is ranked according latency. In order to take into account the difference of time that a human eye spend on
two FOAs pertaining to two different images (WTA fire times), we introduce the distance Mtime = abs(tCq − tCi),
tCq and tCi being the WTA fire times relative to homologous FOAs of images Iq and Ii. Then, the FOA similarity
becomes:

MFOA = αMcontent + βMspatial + γMtime (2)

where α, β, γ ∈ [0, 1]. The new algorithm, obtained considering WTA fire time, is the following.

Algorithm 3.2 (Improved IP Matching Algorithm) .
Compute the Information Path of the Target Image
j ← 0
while (¬stop ∧ j < K)
begin

Compute content similarity Mcontent between Cq
j (p) and Ci

j(p
′)

Compute spatial position similarity Mspatial between Cq
j (p) and Ci

j(p
′)

Compute time similarity Mtime between Cq
j (p) and Ci

j(p
′)

Compute FOA similarity MFOA between Cq
j (p) and Ci

j(p
′)

j ← j + 1
if (j=k) then
begin

Compute the mean similarity Mimage = 1
k

∑k
f=1MFOAf

if (Mimage < thresholdMIN) ∨ (Mimage > thresholdMAX) then
stop

if (j > k) then
begin

Compute the mean similarity Mimage =
∑j

z=1MFOAz/j

if (Mimage < thresholdMIN) ∨ (Mimage > thresholdMAX) then
stop

if (Mimage > T) then
target image is similar to test image

4 Simulation and final remarks

The experimental work has been performed using an Image Database of about 5000 images obtained from the Web
and others commercial archives. We have clustered the images into several categories; matching results presented
here refer to within-category matching.

Some examples are provided in Fig. 6. For the various target images, presented on the left side of the figure, the
most similar images are shown on the right side. Also, in Fig. 7 some examples of false positives discarded by the
algorithm are given.

The matching precision has been evaluated with the help of the ROC curves (Receiving Operating Charac-
teristic).These curves have been obtained considering several images belonging to various categories (Fig. 8).The
similarity threshold T decreases within the [0,1] range.
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Figure 6: Matching Examples

Figure 7: Discarded false positives
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Figure 8: ROC curves

Results plotted in Fig. 8 give evidence that all True Positive are rapidly detected and the False Positive
number, for threshold values no too low, is negligible. Eventually, Fig. 9 outlines the difference between the ROC

curve (red) obtained without considering WTA fire time and the ROC curve (green) obtained considering WTA fire
times as a matching parameter, showing an average better performance of the latter.

These preliminary results provide evidence that the animate vision approach is a promising approach in designing
CBIR systems. Future work will consider large scale experiments of the current prototype and also an investigation
of how animate vision mechanisms and query planning may be integrated.
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