Information Retrieval from the Web: an Interactive Paradigm

Massimiliano ALBANESE Pasquale CAPASSO Antonio PICARIELLO Antonio Maria RINALDI

Dipartimento di Informatica e Sistemistica Università di Napoli "Federico II" Napoli, Italy

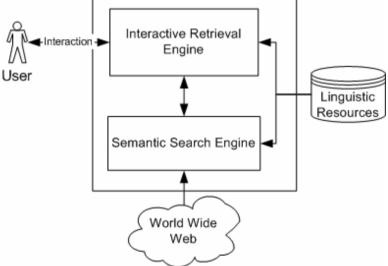
Introduction

- The goal of an information retrieval system is that of finding the most relevant information to a user query, possibly providing a compact answer
 - Users don't want to go through large result sets in order to find what they are actually looking for
 - Targeted answers to their queries should be computed, even if their interests are either poorly defined or inherently broad
- A classical approach in which the search engine returns a ranked list of documents containing the keywords in the query is not suitable anymore for today's information retrieval challenges

Contribution

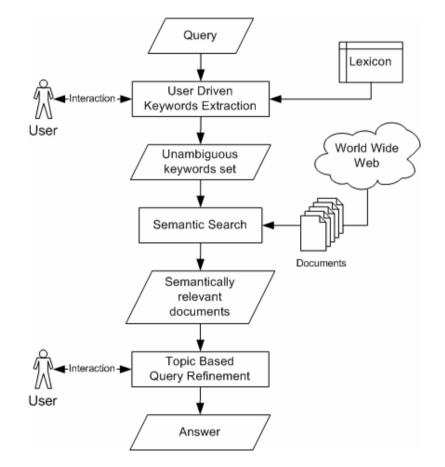
- An approach for designing a web retrieval system capable to find the desired information through several interactions with the users
- The proposed approach
 - allows to overcome the problems deriving from ambiguous or too vague queries
 - uses semantic search and topic detection techniques
- The results of the very experiments on a prototypal system are reported

The approach


- The answer of a search engine to a user query may be thought as the *engine's model* of the user's idea of what is considered relevant
- If the user finds out that most of the retrieved documents are not relevant (*the model is wrong*), she gives up and usually tries to rewrite the query
 - In order to prevent this to happen, the system should have the capability of *understanding* if the user query is too much general, thus automatically *trying to refine* it
 - User's feedback is used to adjust the *engine model*

System Architecture

- Users submit queries to the *Interactive* Retrieval Engine
 - Both keyword and natural language queries are allowed
- The Interactive Retrieval Engine
 - accesses the web through the *Semantic Search Engine*
 - interacts with the users in order to clarify and refine queries



• *WordNet* is used as both a dictionary and a semantic network

The retrieval process

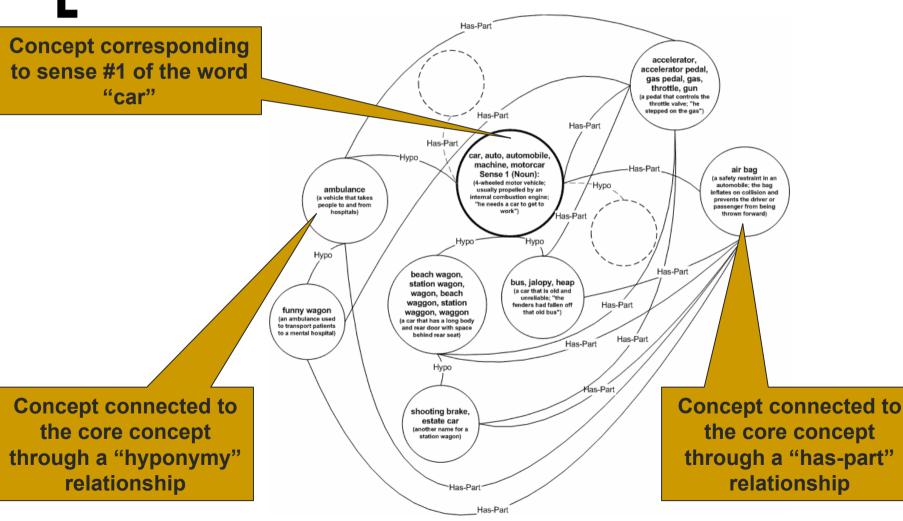
- Keywords are derived from the query and disambiguated through user's feedback
- The *Semantic Search Engine* uses the unambiguous keyword set for retrieving document semantically relevant to the query
- Topics are identified and the query is further refined, based on further user feedback

User Driven Keyword Extraction

- *Part of Speech* (PoS) *tagging* is applied to user queries
 The PoS tagging is improved through
 - Named Entities Recognition
 - Heuristics to disambiguate ambiguous PoS assignment
- The results of PoS tagging allow to distinguish between keyword and natural language queries
 - In both cases a set of keywords is derived
 - Keyword whose meaning is not clear from the context need to be disambiguated through user feedback

Example of disambiguation

What do you mean by "car"?


- 1. "4-wheeled motor vehicle; usually propelled by an internal combustion engine"
- 2. "a wheeled vehicle adapted to the rails of railroad"
- 3. "a conveyance for passengers or freight on a cable railway"
- 4. "car suspended from an airship and carrying personnel and cargo and power plant"
- 5. "where passengers ride up and down"

Glosses from WordNet

Semantic Search

- Semantic search capabilities are needed to overcome the limitations of traditional search engines, that are mainly keyword based
 Ontologies are fundamental to achieve this goal
- The Semantic Search Engine presented in this work is based on *Dynamic Semantic Networks* (DSN)
 - A DSN is a semantic network dynamically built around one or more concepts that are central to a specific context
 - We build DSNs by extracting a subgraph from the complete graph of WordNet

Dynamic Semantic Network

Information Retrieval from the Web: an Interactive Paradigm

Semantic Relatedness Preliminary definition

Given a DSN, we define the length *l* of the path between two terms/concepts as

$$l = \min_{j} \sum_{i=1}^{h_j} \frac{1}{\sigma_j}$$

where *j* spans over all the paths between the two considered terms, b_j is the number of hops in the *j*-th path and σ_j is the weight assigned to relations in the *j*-th path

Semantic Relatedness Definition

The *Semantic* Relatedness between two terms/concepts is defined as

$$W = e^{-\alpha l} \frac{e^{\beta d} - e^{-\beta d}}{e^{\beta d} + e^{\beta d}}$$

where

- *l* is the length of the path between the terms
- *d* is the depth of their subsumer
- $\alpha \ge 0$ and $\beta > 0$ are two scaling parameters whose values have been defined by experiments

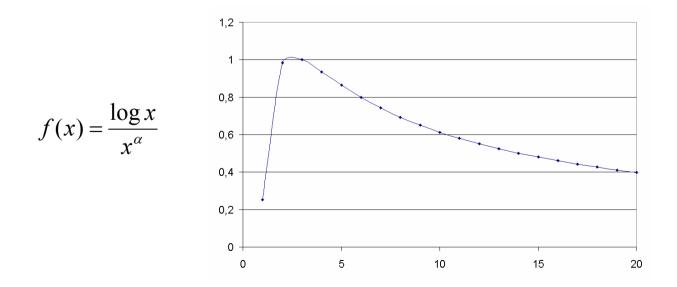
Semantic Search Engine

The Semantic Search Engine

- retrieves documents from the web using traditional search engines
 - keywords derived from the user query are used to this aim
- evaluates the semantic relatedness of such documents w.r.t. the DSN built around the disambiguated keywords
 - documents showing a semantic relatedness greater than a given threshold are returned

Topic Based Query Refinement

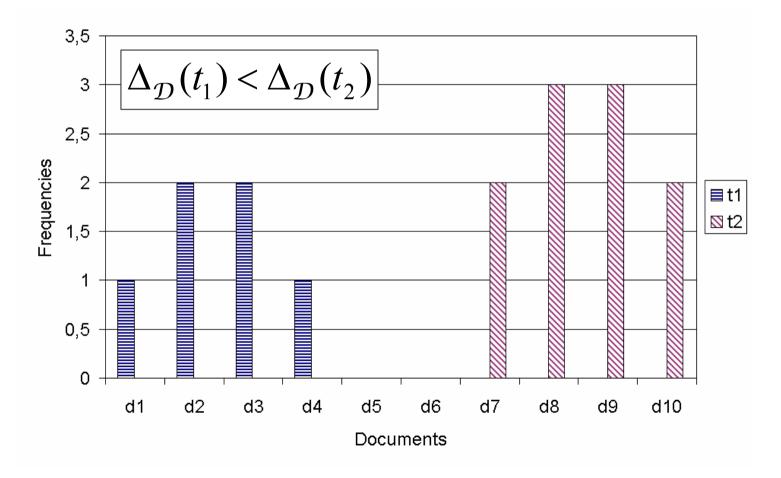
The idea of Topic Based Query Refinement is that of


- Recognizing a set of topics from the set of documents returned by the semantic search engine
- Asking the user for the topic she is interested in
- Returning the subset of the semantic search results that match the topic
- To this aim we define a function (discriminating power) that allows to evaluate which topics are most suitable for selecting small document subsets

Discriminating Power Preliminary considerations

- We empirically found out that the ability of an identified topic to select a small document subset is affected by
 - The fraction of documents matching the topic
 - The average frequency of occurrence of the topic into the matching documents
 - The length of the topic expressed as the number of words

Discriminating Power Frequency and length


The way that frequency and length affect the discriminating power can be taken into account through a function like the one sketched below

Discriminating Power Definition

- Given a set \mathcal{D} of documents and a topic t, we define the discriminating power Δ of t in \mathcal{D} as $\Delta_{\mathcal{D}}(t) = -\log(p) \cdot \frac{\log(f + \Delta f)}{f^{\alpha}} \cdot \frac{\log(w + \Delta w)}{w^{\beta}}$ where
 - p is the fraction of documents matching t
 - *f* is the average frequency of *t* over the matching documents
 - *w is* the number of words in *t*
 - Δf and Δw are used to prevent Δ to be zero when f = 1or w = 1
 - α and β are used to regulate the slop of the curve

Discriminating Power Example

Experimental Results (1/2)

We considered the worst case of very vague single-keyword queries

Query	# documents
car	154,000,000
museum	46,200,000
music	283,000,000
photography	45,500,000
soccer	24,900,000
train	39,600,000

- This case corresponds to the one in which the user doesn't clearly specify from the beginning what she's actually looking for
- In such cases a traditional search engines would return millions of results

Experimental Results (2/2)

- Topic identified for $q_1 =$ "car" and $q_2 =$ "museum"
 - Each identified topic allows to select a very small subset of documents
 - Precision is high: each returned document contain the desired information

Topic	Δ	P	f	w	
used car values	0.623	2	4	3	
car reviews	0.612	2	4	2	
find new cars	0.599	1	2	3	
car loan calculator	0.599	1	2	3	
premium cars	0.589	1	2	2	
midsize cars	0.599	1	2	3	
msn autos	0.573	1	3	2	
dollar rent a car	0.560	1	2	4	
$q_1 = ``car''$					

Information Retrieval from the Web: an Interactive Paradigm

Topic	Δ	P	f	w		
national museum	0.736	2	7	2		
bishop museum	0.695	1	4	2		
nobel prize	0.625					
asian art museum	0.617	1	3	3		
design museum	0.607	1	3	2		
american museum	0.571	2	4	2		
san francisco museum	0.509	1	2	3		
science museum	0.500	1	2	2		
$q_2 = "museum"$						

MIS 2005 - September 19-21, 2005

Conclusions

- We have presented an information retrieval system based on an interactive paradigm
 - we have extended a classic search engine with some semantic capabilities and query refinements techniques, trying to dynamically understand user's interests
- We have also described some preliminary experiments on a prototypal system
- Further investigation should be devoted first to conduct a more extensive experimentation and then to integrate management of other kinds of media into the system