
The Priority Curve Algorithm For Video Summarization

M. Fayzullin and V.S.Subrahmanian
University of Maryland
{fms,vs}@cs.umd.edu

M. Albanese and A. Picariello
Università di Napoli

{malbanes,picus}@unina.it

ABSTRACT
In this paper, we introduce the concept of a priority curve
associated with a video. We then provide an algorithm that
can use the priority curve to create a summary (of a de-
sired length) of any video. The summary thus created ex-
hibits nice continuity properties and also avoids repetition.
We have implemented the priority curve algorithm (PCA)
and compared it with other summarization algorithms in
the literature. We show that PCA is faster than exist-
ing algorithms and also produces better quality summaries.
The quality of summaries was evaluated by a group of 200
students in Naples, Italy, who watched soccer videos. We
also briefly describe a soccer video summarization system
we have built on using the PCA architecture and various
(classical) image processing algorithms.
Categories and Subject Descriptors. Information Sys-
tems [Information Storage and Retrieval]: Information Search
and Retrieval: Information Filtering
General Terms. Algorithms, Design, Performance
Keywords. Probabilistic, Video, Summarization, System

1. INTRODUCTION
Despite the vast amount of work on video databases, and

the existing work on summarizing video [14, 6, 8, 10, 13,
15], there is no commonly accepted solution to the prob-
lem of automatically producing video summaries that take
content into account and scale to massive data applications.
For example, if FIFA (the International Soccer Federation)
wanted to sell videos of soccer games, there would be tens
of thousands of such videos. Potential customers may wish
to watch small clips of the video to decide which videos they
wish to buy. Though financial resources may be available to
manually summarize each video, the ability to automatically
summarize such videos is likely to be attractive.
In past work [7], we proposed a model for video summa-

rization based on three important principles: the summary
produced must be continuous, must contain high priority
objects and actions/events occurring in the video, and must

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMDB’04, November 13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-975-6/04/0011 ...$5.00.

avoid repetition. This model was called the CPRmodel (con-
tinuity, priority, and non-repetition). We encoded the rela-
tive importance of these parameters in terms of an objective
function eval that evaluated the quality of a summary. The
problem then was to find a summary (set of video frames)
from the video being summarized such that (i) the cardinal-
ity of the set of frames was less than or equal to a desired
maximal summary length � and (ii) the summary had the
highest possible evaluation. We showed that the problem of
finding an optimal summary (w.r.t. the objective function
eval) was NP-complete - as a consequence, any exact algo-
rithm to find such an optimal summary will be inefficient
(even though we gave one) unless P = NP . We therefore
proposed three alternative heuristic algorithms called CPR-
dyn, CPRgen, and SEA to find summaries fast. All these
methods attempted to use the objective function to find a
good summary.
In this paper, we still retain the core idea from [7] that the

CPR criteria are important. However, we use a completely
different approach to finding good summaries fast. Our pri-
ority curve algorithm (PCA for short) completely eliminates
the objective function upon which the previous algorithms
were based, but captures the same intuitions in a compelling
way. Instead, we leverage the following intuitions.

• Block creation. We first split the video into blocks
- blocks could either be of equal sizes, or they could
be obtained as a result of segmenting the video using
any standard video segmentation algorithm [16], [9]
[25], [12]. As is common, the segments generated are
usually relatively small.

• Priority assignment. Each block is then assigned a
priority based on the objects and events occurring in
that block. Yet another alternative would use the au-
dio stream and/or accompanying text associated with
the video to identify the priority of the block. The
priority assignment can be done automatically using
object and event detection algorithms or can be done
manually1.

• Peak detection. We then conceptually proceed as
follows. Consider a graph whose x axis consists of
block numbers and whose y axis describes the prior-
ity of the blocks. We identify the blocks associated
with the peaks in this graph using a peak identification
algorithm.

1Our video summarization application uses both image pro-
cessing algorithms and some manual annotation

28

• Block merging. Subsequently, we merge multiple
adjacent blocks into one. These are cases where the
same or similar events are occurring in these blocks
even though the blocks were different segments pro-
duced by the video segmentation algorithm. Deter-
mining when to merge different blocks may be done,
for example, by examining standard image differenti-
ation algorithms.

• Block elimination. We then have a block elimination
algorithm which eliminates certain unworthy blocks -
these are blocks whose priority is too low for inclusion
in the summary. This is done by analyzing the dis-
tribution of priorities of blocks, as well as the relative
sizes of the blocks involved, rather than by setting an
artificial threshold.

• Block resizing. Finally, we have a block resizing al-
gorithm that shrinks the remaining blocks so that the
final summary consists of these resized blocks adjusted
to fit the desired total length.

In this paper, we describe the PCA algorithm and provide
experimental results using a set of 50 soccer videos to show
that the PCA algorithm beats the best known previous al-
gorithm both in terms of computation time (to find a sum-
mary) and in terms of the quality of the summary. As most
readers are certainly aware, the only really reasonable way
to assess the quality of summaries is to have the summaries
evaluated by humans as any theoretical model may disagree
with the intuitions of humans (which are hard to express
and capture computationally). We therefore used a group
of 200 students at the University of Naples to test the sum-
maries produced of the above 50 videos not only with PCA
, but also with other algorithms developed earlier.

2. PRIORITY CURVE ALGORITHM (PCA)
Given an input video v containing len(v) frames, and an

integer 0 < k ≤ len(v), PCA finds a set of exactly k frames
from the video. It attempts to ensure that these frames
contain high priority objects and events in them (for exam-
ple, when summarizing a soccer video, it might attempt to
find frames containing goals, red cards, and other notable
events from the game). It also attempts to ensure that the
summary is not full of jitter by picking continuous portions
of the video. Last, but not least, it attempts to eliminate
repetition.

2.1 Overview of PCA
PCA is a complex algorithm consisting of many parts.

Fortunately, many of these parts can be implemented us-
ing standard image processing algorithms. Figure 1 shows
the key components of PCA . In the rest of this section,
we describe the overall functions of the PCA algorithm. In
particular, we will show how some of these components can
be built directly using standard image processing methods,
while others need new contributions. We will use an applica-
tion we have built for summarizing soccer video to illustrate
our techniques. Section 3 describes the details of the new
components.

2.1.1 Block creation
The first part of PCA is a block creation component that

takes a video file as input and automatically splits the video

Assignment
Block Priority

Creation
Peak

Detection

Block
Resizing

Block
Elimination

Block
Merging

Summary

Video

Figure 1: PCA Architecture

file into blocks. This can be done in one of two ways. In the
first way, the person interested in summarizing a collection
of videos simply says that each block is a certain number of
frames (e.g. he may say that a block is a collection of 1800
frames, representing one minute of the video at a playback
rate of 30 frames per second). Alternatively, we may use any
classical video segmentation algorithm [12], [9] [16], [25] to
split the video into a set of blocks. Each block is a segment
returned by the segmentation algorithm. The video is thus
represented as a sequence of blocks, possibly of varying sizes.

2.1.2 Priority assignment
The segmented video is then fed into a priority assignment

module which examines each block and assigns a priority to
it. For example, the person summarizing a soccer video may
specify priorities as follows (goal: 10, red card: 7, yellow
card: 6, corner kick: 3, fight: 10, and so on). The priority
assignment component can also be implemented in many
ways. In our soccer video summarization application, for
example, the priority assignment could be done by using
image processing algorithms for events such as goal shot
detection or red card detection. Alternatively. in a military
surveillance application that wants to assign high priority
gunshot detection in video, an image analysis program that
identifies gunshots or explosions may be used to assign high
priorities to such events. As a last resource, it can also be
annotated by a human.

2.1.3 Peak detection
Once the priorities have been assigned to each block, block

IDs (increasing with time), together with their priorities, are
shipped to a peak detection module. This module creates a
graph whose x axis consists of block IDs, and whose y axis
shows the priority of each block. The Peaks() algorithm we
have developed can automatically find peaks in this priority
curve. Figure 2 shows an example graph and the peaks
involved. Intuitively, a peak consists of a sequence of blocks
containing high priority events.

2.1.4 Block merging
The set of blocks thus identified in each peak is then

shipped to a block merging module that examines these
blocks and tries to determine if any of them can be merged.
For example, it may turn out that there may be three blocks
- the first containing the play just before a goal, the second
containing the goal itself, while the third shows the post goal
celebration. The block merging algorithm uses rules to de-
termine conditions under which multiple contiguous blocks
can be merged together into a new block (whose priority
equals the sum of the priorities of the blocks being merged).

29

2.1.5 Block elimination
The set of blocks produced after merging is then shipped

to a block elimination module. This module eliminates blocks
whose priority is too low. For example, it may turn out that
10 merged blocks are returned after the block merging al-
gorithm and these 10 blocks have a total of 5000 frames.
If we want a summary consisting of just 3600 frames, we
may want to re-examine whether a block of relatively low
priority should be eliminated. For example, if we compute
the average priority of the 10 blocks above to be 25 and the
standard deviation to be 3, then we may want to eliminate
all blocks with a priority under 16 (this is the classical statis-
tical model which says that for a normal distribution, most
objects in the distribution must occur within 3 standard de-
viations of the mean). Other statistical rules can also be
used here.

2.1.6 Block resizing
The next component is the block resizing component. For

example, even after eliminating “low value” blocks above, it
may turn out that we still have 8 blocks containing a total
of 4500 frames. This must somehow be reduced to 3600.
The block resizing component eliminates frames from the
blocks in proportion to the priorities of the blocks involved.
For example, let us say that the total priorities of all the 8
blocks is 800, and that a particular block (containing 1500
frames) has priority 200. Thus, this block accounts for a
quarter of the entire priority of the 4500 frame sample. As
a consequence, the block should be allowed to contribute
a quarter of the 3600 frames allowed in the summary, i.e.
900 frames should be chosen from this block for inclusion in
the summary. Our block resizing algorithm will show how
to select the best 900 frames from the 1500 frame block.
The block resizing component sequences the resized blocks
together to create the final summary.

3. DETAILS OF PCA COMPONENTS
In this section, we describe how to implement the peak

identification, block merging, block elimination, and block
resizing modules. The block creation and priority assign-
ment modules can be readily implemented using classical
segmentation algorithms [16], [25], [9], [12] and classical ob-
ject recognition and/or event recognition algorithms [2], [3],
[24] which have been extensively studied in the literature.
Hence, we do not describe these components in detail as
they are well known.

3.1 Peak Identification Module
Let b1, . . . , bn be the blocks in the video (e.g. after the

segmentation process). Let pi denote the priority of block
bi.

Definition 3.1 ((r, s)-peak). Suppose r ∈ (0, n/2] is
an integer and s ∈ [0, 1] is a real number. Blocks bj , . . . , bj+r

are said to be an (r, s)-peak iff
P

j≤i≤j+r piP
j− r

2≤i≤j+ 3r
2
pi

≥ s

Suppose we wish to check if a sequence of r blocks S1 =
bj , . . . , bj+r, constitutes a peak. The above definition looks
at r

2
blocks before the sequence as well as r

2
blocks after the

sequence, i.e. the sequence S2 = bji r
2
, . . . , bj , . . . , bj+r, . . . , bj+ 3r

2

2

4

6

8

10

2

4

6

8

10

priority

blocks

peaks with r=6,s=0.65

priority

blocks

peaks with r=4,s=0.6

0.66 0.63 0.610.6

0.680.78

Figure 2: Peaks

is considered. This latter sequence S2 is of width 2r. We
sum up the priorities of all blocks in S2 - let us call this sum
s2. Likewise, we sum up the priorities of all blocks in S1 and
call this priority s1. Clearly, s1 ≤ s2. If

s1
s2
exceeds or equals

s, then we decide that the contribution of the priorities of
the peaks in S1 is much larger than that in S2 and so S1

constitutes a peak. It is important to note that r and s must
be chosen by the application developer.
Figure 2 shows two examples of peaks corresponding to

r, s values of (6, 0.65) and (4, 0.6) respectively. Dotted rect-
angles signify peaks, with s-values shown for the most sig-
nificant peaks. As seen from the figure, peaks often oc-
cur in clusters. While the upper graph corresponds to wide
(r = 6) peaks, parameters in the lower graph allow for nar-
rower (r = 4) and slightly lower (s = 0.6 as opposed to
s = 0.65) peaks. As result, the lower graph contains more
peaks and smaller clusters.
Here is a simple algorithm that, given a sequence of video

blocks and r, s values, will find all blocks that belong to
(r, s)-peaks:
Algorithm Peaks(v,r,s)

v is a sequence of block-priority pairs
r is the peak width
s is the peak height

begin
Res := ∅
for each j ∈ [r, card(v) − r] do

center := 0
total := 0
for each 〈 bi, pi 〉 ∈ v such that i ∈ (j − r, j + r] do

total := total + pi

end for
for each 〈 bi, pi 〉 ∈ v such that i ∈ (j − r

2 , j + r
2] do

center := center + pi

end for
if center

total ≥ s then
Res := Res ∪ {〈 bi, pi 〉 ∈ v | i ∈ (j − r

2 , j + r
2]}

end if
end for
return Res

end

The Peaks() algorithm slides a 2r-wide window along a
sequence of blocks, computing the total sum of block prior-
ities in that window (total). It then computes the sum of
block priorities in a narrower r-wide window in the middle
of the 2r-wide window (center). When the ratio of these

30

jj−r/2 j+r j+3r/2

sum=41sum=5 sum=8

41/(5+41+8)=0.76

Figure 3: Peaks() Algorithm Analyzing a Peak

two sums center
total

exceeds the threshold s, all blocks in the
r-wide window are picked as a peak.

Example 3.1. Consider the very small fragment shown
in Figure 3. At some time, the Peaks() algorithm will focus
its window of length 2r on the segment from j − r

2
to j+ 3r

2
shown in the figure. It will compute the sum of the priorities
of the blocks in the entire window of length 2r (which is
5 + 41 + 8 = 54) as well as the sum of the priorities of the
window of length r in the center of the window of length 2r -
the priority there is 41. As a consequence, the ratio of these
is 41

54
= 0.76. If 0.76 exceeds the s that the user has picked,

then the sequence of blocks from j to j + r is considered a
peak.

Example 3.2. Consider the 35 block sequence shown in
Figure 4. We now describe how the Peaks() algorithm finds
the peaks in this figure. Suppose r = 6 and s = 0.8.

• Window from 1−12: We initially start by looking at
the first 12 blocks. The sum of the priorities of these
12 blocks is 59. If we look at the window of size 6
centered at the middle of the first 12 blocks (these are
the blocks 4-9), the sum of the priorities is 36. The
ratio, 36

59
is below s = 0.8.

• Window from 2 − 13: We now slide the window of
length 2r one place to the right. At this time, the sum
of the 12 block window is 60 and the sum of the 6
center blocks (blocks 5-10) is 44. The ratio is therefore
44
60

which is below s = 0.8.

• Window from 3 − 14: We now slide the window of
length 2r one place to the right. At this time, the sum
of the 12 block window is 58 and the sum of the 6
center blocks (blocks 6-11) is 48. The ratio is therefore
48
58

which is greater than s. Therefore, blocks 6−11 are
returned as a peak.

The algorithm continues in a similar fashion, finding peaks
in blocks 18− 23 (r = 25

29
) and 28− 33 (r = 39

48
).

Note that the performance of the Peaks() algorithm can
be improved by avoiding computation of center and total
iteratively in each iteration of the outer loop. After the first
iteration of the outer loop, these values can be updated in

2

4

6

8

10

priority

blocks

peaks

15 20105 25 30

Figure 4: Result of Running Peaks() Algorithm

constant time. We have not included this optimization in
the above algorithm as it complicates the simplicity of the
algorithm, but it is easy to incorporate.
Complexity of Peaks() algorithm. The Peaks() algo-
rithm has complexity of O(r · card(v)) - hence it is linear
with respect to the number of input blocks.

3.2 Block Merging Module
The peak identification algorithm eliminates all blocks

that are not (r, s)-peaks for the r, s values selected by the
application developer. Let Peaks(v, r, s) be the set of all
blocks from the original video that contain peaks. Consider
the set {(bi, bi+1) | bi, bi+1 ∈ Peaks(v)} of all pairs of blocks
that are adjacent to each other. In general when adjacent
blocks are peaks, they may describe the same event. For
example, in our soccer video summarization application, we
may have one block (peak block) that describes a goal. The
camera may have been switched to another block that also
describes the same goal - however, the segmentation algo-
rithm creating the blocks may treat these events as different
events when in fact they describe the same event. The main
goal of the block merging module is to merge adjacent blocks
that may be very similar, so that repeating blocks can be
treated as a single block in the later processing steps (such
as resizing).
A block similarity function is a function sim that takes

two blocks as input and returns a non negative real number
as output. The smaller the number returned, the more simi-
lar the blocks are considered to be. There are many ways in
which we could implement block similarity functions. Here
are a few examples:

1. simdiff : We could use any classical image differencing
algorithm idiff [11] to return the similarity between
two frames and we could set the similarity between the
two blocks to be the similarity between the two most
similar frames, drawn from each block.

2. simtext: In the event that the videos in question have
an accompanying text transcript, we could identify the
text blurb associated with each of the two blocks and
set the similarity of the two blocks to be equal to the
similarity between the two text transcripts using any
classical method to evaluate similarities between text
documents.

3. simvec: As is often common in image processing, we
could associate a color and/or texture histogram with
each block and return the similarities between the his-
tograms using root mean squared distance or the L1

metric [23].

31

To simplify the block merging process, let us assume that
Peaks(v, r, s) returns a set of block-priority pairs of the form
〈 bi, pi 〉, as opposed to a set of blocks, and adjacent blocks
can be concatenated with the ⊕ operator. The block merg-
ing algorithm then takes as input, any block similarity func-
tion between blocks, together with a set of block-priority
pairs, and returns a new set of merged blocks-priority pairs,
as follows.
Algorithm Merge(v,sim(),d)

v is a sequence of block-priority pairs
sim() is a similarity function on blocks
d is the merging threshold

begin
Res := ∅
B := first block-priority pair 〈 b1, p1 〉 ∈ v
for each 〈 bj , pj 〉, 〈 bj+1, pj+1 〉 ∈ v do

if sim(bj , bj+1) ≥ d then
B := 〈B.b ⊕ bj+1, B.p + pj+1 〉

else
add B to the tail of Res
B := 〈 bj+1, pj+1 〉

end
end for
add B to the tail of Res
return Res

end

TheMerge() algorithm considers all pairs of blocks bj , bj+1,
concatenating them together into a bigger block B.b, as long
as sim(bj , bj+1) value stays above the threshold d. The pri-
ority B.p of the newly merged block is computed as the sum
of individual priorities of its parts.

Example 3.3. Let us continue with Example 3.2. The
peaks identified are 6−11, 18−23, and 28−33. The Merge()
algorithm merges these blocks as follows. For the sake of this

example, let us define sim(b1, b2) = 1− |p1−p2|
p1+p2

, where p1 and
p2 are priorities of blocks b1 and b2 respectively, and set the
threshold d = 0.9. Given these parameters, blocks 8 − 10
will be merged into a single new block with p = 28 and so
will blocks 19− 21 (p = 16), 28 − 29 (p = 11), and 30 − 32
(p = 33). Thus, the total number of blocks decreases from
18 to 11 after merging.

Complexity of Merge() algorithm. The Merge() algo-
rithm has linear complexity with respect to the number of
blocks in its input.

3.3 Block Elimination Module
Suppose S is the set of blocks from the original video after

the block merging step has been applied to the set of blocks
in Peaks(v, r, s). In the block elimination module, we would
like to remove from this set all blocks whose priorities are
less than a certain threshold. In addition, we would like to
consider eliminating blocks that are repetitive. For example,
in our soccer application, we may have replays of a goal
long after the goal was scored. Both the original goal and
the later replay may have high priorities, but our summary
should probably not include both of them.
The block elimination module may use a similarity func-

tion similar to those used in the block merging module to
first identify similar blocks. Any similarity function desig-
nated by the application developer may be used here. Blocks
are grouped into equivalence classes w.r.t. similarity and for
each equivalence class, one member is retained.
After removing repeatitions, our block elimination mod-

ule computes the mean µ and standard deviation σ for the
priorities of blocks in S. Given a real number m ≥ 0, let us

define a function Drop(S,m) that drops from S all blocks
whose priorities are less than µ − mσ. Drop() can be eas-
ily implemented by iterating over all blocks returned by the
Merge() algorithm. Thus, the result of

Drop(Merge(Peaks(v, r, s), d),m)

will be a set of all non-repeating high-priority merged peaks
taken from v, with respect to the r, s, d,m parameters.

Example 3.4. Let us continue with Example 3.2 and as-
sume that there are no repetitive blocks. The average priority
of the peaks is µ = 122

11
= 11 and the standard deviation is

σ =
q

1089
11

= 10.4. If we choose m = 0.25 and thus delete

all blocks whose priorities are less than 8.4, the remaining
blocks will be 8−10, 19−21, 28−29, and 30−32. Notice that
these are merged blocks whose priorities have been bumped
up during the merging process.

3.4 Block Resizing Module
Even after eliminating some low-priority blocks in the pre-

vious step, the total frame count of the remaining blocks
may still exceed the limit k imposed in the beginning of this
paper. In such a case, we have to truncate some blocks to fit
the limit. Clearly, blocks with higher priorities must have
more prominence in the summary and thus occupy a larger
percentage of frames. We then devise an algorithm that al-
locates to each block a number of frames proportional to its
priority and truncates blocks to fit the limit of k frames.
Algorithm Resize(v,k)

v is a sequence of block-priority pairs
k is the desired summary length

begin
Res := ∅
ptotal :=

P
〈 b,p 〉∈v p

p′ := 0
k′ := 0
for each 〈 b, p 〉 ∈ v do

if len(b) ≤ p·k
ptotal

then

Res := Res ∪ {〈 b, p 〉}
v := v \ 〈 b, p 〉
p′ := p′ + p
k′ := k′ + len(b)

end if
end for
ptotal := ptotal − p′

k := k − k′

for each 〈 b, p 〉 ∈ v do

alloc := round(p·k
ptotal

)

b′ := b truncated to alloc frames
Res := Res ∪ {〈 b′, p 〉}

end for
return Res

end

Example 3.5. Let us continue with Example 3.2. There
are four blocks that have survived merging and elimination:
8 − 10 (p = 28), 19 − 21 (p = 16), 28 − 29 (p = 11), and
30 − 32 (p = 33). Notice that all four are merged blocks,
hence there are ranges instead of single numbers. Assuming
that each “original” block corresponds to a single frame and
the user requested a summary of 5 frames, let us see what
the Resize() algorithm does to our summary. First of all,
given the total priority ptotal = 88, all blocks will have to be
resized. Block 8−10 has an allocation of 5·28

88
= 1.59 frames.

As we cannot split frames, this block has to be truncated
to two frames 8 − 9. Block 19 − 21 has an allocation of
3·16
60

= 0.8 and therefore gets truncated to a single frame 20.

32

By repeating this process, we also obtain frames 28 and 31.
Thus, the final summary is made of frames 8, 9, 20, 28, 31.

4. IMPLEMENTATION
Our prototype system, implemented to evaluate the ef-

ficiency and effectiveness of PCA , consists of a database
storing an annotated collection of soccer match videos, an
implementation for the PCA summarization algorithm, as
well as CPRgen, CPRdyn, and SEA algorithms [7], and a
user interface for specifying desired summary content. The
system is capable of automatically segmenting video into
shots and detecting events, for annotation purposes.
Shot boundary detection is the first step in video process-

ing. In spite of the long research history, it has not been
completely solved yet. Sports video is arguably one of the
most challenging domains for robust shot boundary detec-
tion due to i) strong color correlation between shots, due
to a single dominant background color (soccer field, etc.),
ii) large camera and object motions, and iii) cuts and grad-
ual transitions (such as fades and dissolves) often present in
sports video clips.
To detect shots in soccer videos, we have adapted an al-

gorithm from [4], based on the observation that frames be-
longing to the same shot are more similar than frames from
different shots. The similarity is computed with respect to
color, texture, and shape features, measured at the focus of
attention (FOA) spots of the frames.
Automatic event detection in soccer videos is an open

problem actively addressed by several sports institutions.
In this work, we are interested in a simple detection of such
events as “goal”, “celebration”, “yellow card”, and “red
card”. To detect these events, we have adopted a feed-
forward neural network with a back-propagation algorithm
[5] that is fed information about focus of attention, color
histogram, texture, shape, and sound volume changes.
Note that in order to summarize a video, we can use data

structures such as those in AVIS [1] to determine what ac-
tivities and objects occur in frames. This will clearly speed
up the algorithms within the PCA model.

5. EXPERIMENTS
In this section, we describe a set of experiments conducted

to evaluate the performance of the PCA system. We com-
pare the PCA algorithm to the CPRgen, CPRdyn, and SEA
algorithms proposed in [7], both in terms of the time spent
to compute a summary and the quality resulting summaries.
As the only way of evaluating quality of summaries is via
human subjects, we used a group of 200 students from the
University of Naples.
Our data set consists of about 50 soccer videos, totaling

about 80 hours. The videos were segmented into blocks and
annotated, as described in section 4. The resulting blocks
have an average length of about 10 seconds, with a relatively
low variance.

Performance: To assess performance, we fixed the de-
sired length of the summary to 60 seconds. We then varied
the number of candidate blocks in the 4-75 range, by choos-
ing an increasing number of events and subjects of interest.
The processing times were computed for each algorithm

by averaging the results of 10 executions for each video. Fig-
ure 5 shows times taken by different algorithms. From this
figure, we can conclude that the PCA algorithm outperforms

Figure 5: Summary Creation Times

Figure 6: Summary Quality Ratings

the other three algorithms. This is true even without using
the optimization for Peaks() mentioned earlier.

Quality: To assess the quality of results produced by the
four algorithms being compared, we asked a group of ap-
proximately 200 students at the University of Naples to rate
the resulting summaries on a 1 to 5 scale. The experiment
was repeated three times, with desired summary lengths of
2, 4, and 6 minutes, for all videos. The results, shown in
Figure 6, indicate that summaries produced by the PCA al-
gorithm have been rated best in 48%, 46%, and 45% of all
cases respectively. These percentages are significantly better
than those for the other three algorithms.

6. RELATED WORK
Summarizing video content is important for several ap-

plications including archiving and providing access to video
teleconferences, video mail, news broadcasts, security videos,
etc. The approaches to video summarization fall in two
broad categories:

• Reasoning Based Summarization: Reasoning based ap-
proaches use logic or neural algorithms to detect cer-
tain combinations of events based on the information
from different sources (audio, video, natural language).
Examples of such approaches are video skims from
the Informedia Project by Smith and Kanade [15] and
movie trailers from the MoCA project by Lienhart et
al [14]. Sometimes multiple characteristics of a video

33

stream are employed simultaneously: the video anal-
ysis is combined with the audio analysis (speech, mu-
sic, noise, etc.) and even with the textual information
contained in closed captions. The heuristics, used to
identify video segments of interest with respect to all
these characteristics, are encoded with logical rules or
neural networks.

• Measure Based Summarization: Measure based ap-
proaches use various importance and similarity mea-
sures within the video to compute the relevance value
of video segments or frames. Possible criteria include
duration of segments, inter-segment similarities, and
combination of temporal and positional measures. These
approaches can be exemplified by the use of SVD (Sin-
gular Value Decomposition) by Gong and Liu [10], or
the shot-importance measure by Uchihashi and Foote
[8].

It is worth noting that most systems summarize video
by key-frame extraction. For example, the Video Skimming
System [15] finds key frames in documentaries and news-
bulletins by detecting important words in the accompany-
ing audio. Systems like MoCA [14] compose film previews
by picking special events, such as zooming of actors, explo-
sions, shots, etc. Finally, Yahiaoui, Merialdo et al [20] pro-
pose an automatic video summarization method in which
they define and identify what is the most important content
in a video by means of similarities and differences among
videos. They also suggest a new criterion to evaluate the
quality of the summaries that have been created, through
the maximization of an objective function. In contrast to
the previous work discussed above, our paper introduces a
more general framework which takes into account user con-
tent preferences (via block priorities) and produces contin-
uous summaries while avoiding repetition. In addition, our
method is not limited to a certain type of videos, but general
enough to address many different classes of videos.

7. CONCLUSIONS
There is growing interest in summarizing video. Com-

mercial enterprises with large video banks such as the US
NBA or NCAA sports organizations, as well as military or-
ganizations deploying Predator and other video, have huge
amounts of interest in identifying and summarizing video.
In this paper, we have proposed a new architecture for

creating video summaries. We have introduced the novel
concept of a block priority curve and shown how the peaks
in this curve can be used to create video summaries. Un-
like prior work in video summarization that we are aware of,
our approach is not limited to selecting key frames, but at-
tempts to maximize priority, continuity, and non-repetition
of the video summary. We have conducted detailed experi-
ments which clearly show that the proposed PCA algorithm
is faster and produces much better ummaries than our pre-
vious algorithms described in [7].
Acknowledgements. This work was supported in part by
the Army Research Lab under contracts DAAL0197K0135
and DAAD190320026, the CTA on Advanced Decision Ar-
chitectures, by ARO contracts DAAD190010484 and
DAAD190310202, by DARPA/RL contract number
F306029910552, and by NSF grants 0205489 and IIS0329851.

8. REFERENCES
[1] S. Adali, K.S. Candan, S.-S. Chen, K. Erol, and

V.S.Subrahmanian. Advanced Video Information
Systems. ACM Multimedia Systems Journal, Vol. 4,
1996, pp. 172-186.

[2] N. Ancona, G. Cicirelli, A. Branca, and A.Distante.
Goal Detection in Football by Using Support Vector
Machines for Classification. Proc. Int. Joint
Conference on Neural Networks, Vol. 1, 2001, pp.
611-616.

[3] S. Ayub and P. Bonissone. Goal Recognition in
Complex Domains. IEEE Int, Conf. on Systems,
Man, and Cybernetics, Vol. 2, 1994, pp. 1409-1414.

[4] G. Boccignone, A. Chianese, V. Moscato, and A.
Picariello. Foveated Shot Detection for Video
Segmentation. to be published in IEEE Trans. on
Circuits and Systems for Video Technology, 2004.

[5] A. Chianese, R. Miscioscia, V. Moscato, S. Parlato,
and A. Picariello. A Fuzzy Approach to Video Scene
Detection and Its Application For Soccer Matches. to
be published in IEEE Intelligent Systems Design and
Applications, Budapest, August 2004.

[6] D. DeMenthon, D.S. Doermann, and V. Kobla. Video
Summarization by Curve Simplification. Proc. ACM -
Multimedia, Bristol, England, 1998, pp. 211-218.

[7] M. Fayzullin, A. Picariello, M.L. Sapino, and V.S.
Subrahmanian. The CPR Model for Summarizing
Video. ACM Workshop on Multimedia Databases,
New Orleans, 2003.

[8] J. Foote and S. Uchihashi. Summarizing Video Using
a Shot Importance Measure and a Frame-Packing
Algorithm. Proc. of the Int. Conf. on Acoustics,
Speech, and Signal Processing, Phoenix, 1999, Vol. 6,
pp. 3041-3044.

[9] U.Gargi, R. Kasturi, and S.H. Strayer. Performance
Characterization of Video-Shot Change Detection
Methods. IEEE Trans. on Circuits Systems Video
Technology, Vol. 10(1), 2000, pp. 1–13.

[10] Y. Gong and X. Liu. Video Summarization Using
Singular Value Decomposition. Proc. of Computer
Vision and Pattern Recognition, 2000, pp. 174-180.

[11] R. C. Gonzales and P. Winz. “Digital Image
Processing” Addison-Wesley Publishing Company,
Knoxville, Tennesee, 1987.

[12] A. Hanjalic. Shot-Boundary Detection: Unraveled
and Resolved? IEEE Trans. Circuits Systems Video
Technology, Vol. 12, 2002) pp. 90-105.

[13] L. He, E. Sanocki, A. Gupta, and J. Grudin.
Auto-Summarization of Audio-Video Presentations.
ACM Proc. on Multimedia, 1999, pp. 489-498.

[14] R. Lienhart, S. Pfeiffer, and W. Effelsberg. The
MoCA Workbench: Support for Creativity in Movie
Content Analysis. Proc. IEEE Conf. on Multimedia
Computing and Systems, Hiroshima, Japan, 1995,
pp. 314-321.

[15] T. Kanade, M. Smith, S. Stevens, and H. Wactlar.
Intelligent Access to Digital Video: The Informedia
Project. IEEE Computer, Vol. 29(5), 1996, pp. 46-52.

[16] D. Li and H. Lu. Model Based Video Segmentation.
IEEE Trans. Circuits Systems Video Technology, Vol.
5, 1995, pp. 533-544.

[17] H.Martin and R.Lozano. Dynamic Generation of

34

Video Abstracts Using an Object Oriented Video
DBMS. Networking and Information Systems
Journal, Vol. 3(1), 2000, pp. 53-75.

[18] H.R. Naphide and T.S. Huang. A Probabilistic
Framework for Semantic Video Indexing, Filtering,
and Retrieval. IEEE Transactions on Multimedia,
Vol. 3(1), 2001, pp. 141-151.

[19] E. Oomoto and K. Tanaka. OVID: Design and
Implementation of a Video-Object Database System.
IEEE TKDE (Multimedia Information Systems),
Vol. 5(4), 1993, pp. 629-643.

[20] I. Yahiaoui, B. Merialdo, and B. Huet. Generating
Summaries of Multi-Episode Video. IEEE Int. Conf.
on Multimedia and Expo, 2001, pp. 22-25.

[21] C. Stauffer and E. Frimson. Learning Patterns of
Activity Using Real-Time Tracking. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 22(8), 2000, pp. 747-757.

[22] V.S. Subrahmanian. “Principles of Multimedia
Database Systems” Morgan Kaufmann, 1998.

[23] M.J. Swain and D.H. Ballard. Color Indexing. Int.
Journal of Computer Vision, Vol. 7(1), 1991, pp.
11-32.

[24] V. Tovinkere and R. J. Qian. Detecting Semantic
Events in Soccer Games: Towards a Complete
Solution. IEEE Int. Conf. on Multimedia and Expo,
2001, pp. 833-836.

[25] B.T. Truong, C. Dorai, and S. Venkatesk. New
Enhancements to Cut, Fade, and Dissolve Detection
Processing Video Segmentation. ACM Multimedia,
2000, pp. 219-227.

[26] D. Zhong and S.-F. Chang. Video Object Model and
Segmentation for Content-Based Video Indexing.
IEEE Int. Conf. on Circuits and Systems, Hong
Kong, 1997.

35

