
 via Claudio, 21- I-80125 Napoli - [#39] (0)81 768 3813 - [#39] (0)81 768 3816

UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
Scuola di Dottorato in Ingegneria dell’Informazione

Dottorato di Ricerca in Ingegneria Informatica ed Automatica

EXTRACTING AND SUMMARIZING INFORMATION
FROM LARGE DATA REPOSITORIES

MASSIMILIANO ALBANESE

Tesi di Dottorato di Ricerca

Novembre 2005

Comunità Europea

Fondo Sociale Europeo

A. D. MCCXXIV

 via Claudio, 21- I-80125 Napoli - [#39] (0)81 768 3813 - [#39] (0)81 768 3816

UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
Scuola di Dottorato in Ingegneria dell’Informazione

Dottorato di Ricerca in Ingegneria Informatica ed Automatica

EXTRACTING AND SUMMARIZING INFORMATION
FROM LARGE DATA REPOSITORIES

MASSIMILIANO ALBANESE

Tesi di Dottorato di Ricerca

(XVIII ciclo)

Novembre 2005

Il Tutore Il Coordinatore del Dottorato

Prof. Antonio PICARIELLO Prof. Luigi Pietro CORDELLA

_________________________ ___________________________

Il Co-Tutore

Prof. V.S. SUBRAHMANIAN

Dipartimento di Informatica e Sistemistica

A. D. MCCXXIV

Abstract

Information retrieval from large data repositories has become an impor-

tant area of computer science. Research in this field is highly encouraged by

the ever-increasing rate with which today’s society is able to produce digital

data. Unfortunately most of such data (e.g. video recordings, plain text

documents) are unstructured. Two major issues thus arise in this scenario:

i) extracting structured data – information – from unstructured data; ii)

summarizing information, i.e. reducing large volumes of information to a

short summary or abstract comprising only the most essential facts.

In this thesis, techniques for extracting and summarizing information

from large data repositories are presented. In particular the attention is

focused onto two kinds of repositories: video data collections and natural

language text document repositories. We show how the same principles

can be applied for summarizing information in both domains and present

solutions tailored to each domain. The thesis presents a novel video summa-

rization algorithm, the Priority Curve Algorithm, that outperforms previous

solutions, and three heuristic algorithms, OptStory+, GenStory and DynStory,

for creating succinct stories about entities of interest using the information

collected by algorithms that extract structured data from heterogenous data

sources. In particular a Text Attribute Extraction (TAE) algorithm for ex-

tracting information from natural language text is presented. Experimental

results show that our approach to summarization is promising.

I

Acknowledgements

This work would certainly not have been possible without the support

of many people. I’d like to acknowledge Prof. Lucio Sansone, who has been

my master thesis’ advisor, for having given me lots of useful suggestions. I’d

like to thank Prof. Antonio Picariello, my master thesis’ co-advisor and my

Ph.D. thesis advisor, for having guided me during these years. I’d like to

thank Prof. V.S. Subrahmanian at University of Maryland, my Ph.D. thesis’

co-advisor, for having given me the chance to spend several months at his

laboratory and start the challenging projects around which the work pre-

sented in this thesis is built. I’d like to acknowledge Prof. Angelo Chianese,

the other cornerstone of our research group together with Prof. Sansone, for

having helped me to start my experience at University of Naples. I’d like to

thank Prof. Luigi Cordella, chair of Naples’ Ph.D. School in Computer Sci-

ence and Engineering, for dedicating so much of his time to the School. I’d

like to acknowledge Prof. Carlo Sansone, who has guided me in a research

activity that is not mentioned in this work.

I’d also like to acknowledge all friends, colleagues and relatives who

supported me in these years. Finally, I’d like to acknowledge myself for

having had the willingness to pursue this goal.

II

Table of Contents

I State of the Art 1

1 Introduction 2

1.1 Information Retrieval from Large Data Repositories 2

1.1.1 Information versus Data Retrieval 3

1.1.2 Focus of the Thesis . 5

1.2 Information Extraction . 8

1.3 Information Summarization 10

1.3.1 Evaluation Strategies and Metrics 11

1.4 Conclusions . 12

2 Related works 13

2.1 Video Databases . 13

2.1.1 Video Data Management 14

2.1.2 Video Information Retrieval 16

2.1.3 Video Segmentation 17

2.1.4 Video Summarization 21

2.1.4.1 Physical Video Property Based Methods . . 22

2.1.4.2 Semantic Video Property Class 26

2.1.4.3 An Alternative Classification of Summariza-

tion Methods 28

2.2 Text Documents . 29

2.2.1 Text Summarization 29

2.2.2 Automatic Story Creation 31

III

TABLE OF CONTENTS

II Theory 34

3 Extraction and Summarization of Information from Video

Databases 35

3.1 Introduction . 35

3.2 Video Summarization: the CPR Model 36

3.2.1 Formal Model . 36

3.2.1.1 Summarization Content Specification 36

3.2.1.2 Priority Specification 38

3.2.1.3 Continuity Specification 38

3.2.1.4 Repetition Specification 39

3.2.1.5 Optimal Summary 39

3.2.2 Summarization Algorithms 40

3.2.2.1 The Optimal Summarization Algorithm . . . 41

3.2.2.2 The CPRdyn Algorithm 41

3.2.2.3 The CPRgen Algorithm 42

3.2.2.4 The Summary Extension Algorithm (SEA) . 43

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization 44

3.3.1 Overview of PriCA . 45

3.3.2 Details of PriCA Components 48

3.3.2.1 Block Creation Module 48

3.3.2.2 Priority Assignment Module 50

3.3.2.3 Peak Identification Module 50

3.3.2.4 Block Merging Module 56

3.3.2.5 Block Elimination Module 59

3.3.2.6 Block Resizing Module 63

4 Automatic Creation of Stories 66

4.1 Introduction . 66

4.2 Story Schema and Instance 68

4.3 Story Computation Problem 72

4.3.1 Valid and Full Instances 73

4.3.2 Stories . 75

4.3.3 Optimal Stories . 78

IV

TABLE OF CONTENTS

4.4 Story Computation . 80

4.4.1 Restricted Optimal Story Algorithm 81

4.4.2 Genetic Programming Approach 82

4.4.3 Dynamic Programming Approach 82

4.5 Story Rendering . 83

5 Information Extraction from Text Sources 87

5.1 Attribute Extraction . 87

5.1.1 Attribute Extraction from Text Sources 87

5.1.2 Named Entity Recognition 92

5.1.3 Attribute Extraction from Relational and XML Sources 95

III Experiments and Conclusions 97

6 Video Summaries 98

6.1 Implementation . 98

6.2 Experimental Setting . 100

6.3 Qualitative Evaluation . 101

6.4 Execution Times . 103

7 Story System Evaluation 104

7.1 Introduction . 104

7.2 Story Quality . 105

7.2.1 Experimental Setting 105

7.2.2 Non-Expert Reviewers 106

7.2.3 Expert Reviewers . 107

7.3 Execution Times . 110

8 Discussion and Conclusions 112

8.1 Conclusions . 112

8.2 Future Work . 114

V

List of Figures

3.1 Architecture of the PriCA framework 45

3.2 Example of peaks in the priority function 52

3.3 Peaks() algorithm analyzing a peak 54

3.4 Result of running Peaks() Algorithm 55

5.1 Extraction rules . 89

5.2 Data extraction: (a) analyzed sentence; (b) matching rule . . 92

6.1 Indexing and query interface 99

6.2 Summarization interface . 99

6.3 Summarization result . 100

6.4 Summary quality ratings . 102

6.5 Summary creation times . 103

7.1 Non-expert reviewers: (a) Story Value and (b) Prose Quality 106

7.2 Non-expert reviewers: average Story Value and Prose Quality 107

7.3 Expert reviewers: (a) Story Value and (b) Prose Quality . . . 108

7.4 Expert reviewers: average Story Value and Prose Quality . . 108

7.5 Experts vs. non-experts Comparison 109

7.6 Comparison between execution times 110

VI

List of Tables

1.1 Data Retrieval versus Information Retrieval 4

5.1 Recall and precision performance of the Named Entity Recog-

nition Algorithm . 95

VII

Part I

State of the Art

1

Chapter 1

Introduction

1.1 Information Retrieval from Large Data Repos-
itories

Information retrieval (IR) deals with the representation, storage, orga-

nization of, and access to information items. The representation and orga-

nization of the information items should provide the user with easy access

to the information in which he/she is interested. Given a user query, the

key goal of an IR system is to retrieve information which might be useful or

relevant to the user. Unfortunately, characterization of the user information

need is not a simple problem. On the other hand, the explosive growth of

digital technologies has made available huge amounts of data, making the

problem of retrieving information even more complex. Such great amounts

of data also require a new capability for any modern information retrieval

system: the capability of automatically summarizing large data sets in order

to produce compact overviews of them.

Information retrieval is a wide, often loosely-defined term. Unfortunately

the word information can be very misleading. In the context of informa-

tion retrieval, information is not readily measured in the technical meaning

given in Shannon’s theory of communication [57]. In fact, in many cases

one can adequately describe the kind of retrieval by simply substituting

“document” for “information”. Nevertheless, “information retrieval” has

become accepted as a description of the kind of work published by Sparck

Jones [61], Lancaster [34] and others. A perfectly straightforward defini-

2

1.1 Information Retrieval from Large Data Repositories

tion along these lines is given by Lancaster [34]: “Information retrieval is

the term conventionally, though somewhat inaccurately, applied to the type

of activity discussed in this volume. An information retrieval system does

not inform (i.e. change the knowledge of) the user on the subject of his in-

quiry. It merely informs on the existence (or non-existence) and whereabouts

of documents relating to his request.” This definition specifically excludes

Question Answering systems and Semantic Information Processing systems.

It also excludes data retrieval systems such as those used by, for instance,

the stock exchange for on-line quotations.

1.1.1 Information versus Data Retrieval

Data retrieval (DR), in the context of an IR system, consists mainly of

determining which documents of a collection contain the keywords in the

user query which, most frequently, is not enough to satisfy user information

needs. In fact, the user of an IR system is concerned more with retriev-

ing information about a subject than with retrieving data which satisfies a

given query. A data retrieval language aims at retrieving all objects which

satisfy clearly defined conditions such as those in a regular expression or in

a relational algebra expression. Thus, for a data retrieval system, a single

erroneous object among a thousand of retrieved objects means total failure.

For an information retrieval system, however, the retrieved objects might

be inaccurate and small errors are likely to go tolerated. The main reason

for this difference is that information retrieval usually deals with natural

language text which is not always well structured and could be semantically

ambiguous. On the other hand, a data retrieval system (such as a relational

database management system) deals with data that has a well defined struc-

ture and semantics. Data retrieval, while providing a solution to the user

of a database system, does not solve the problem of retrieving information

about a subject or topic. To be effective in its attempt to satisfy user in-

formation needs, the IR system must somehow “interpret” the contents of

the information items (documents) in a collection and rank them according

to a degree of relevance to the user query. This “interpretation” of a doc-

ument content involves extracting syntactic and semantic information from

3

1.1 Information Retrieval from Large Data Repositories

Feature Data Retrieval Information Retrieval

Matching Exact match Partial match, best match
Inference Deduction Induction
Model Deterministic Probabilistic
Classification Monothetic Polythetic
Query language Artificial Natural
Query specification Complete Incomplete
Items wanted Matching Relevant
Error response Sensitive Insensitive

Table 1.1: Data Retrieval versus Information Retrieval

the document text and using this information to match user information

needs. The difficulty is not only knowing how to extract this information

but also knowing how to use it to decide relevance. Thus, the notion of

relevance is central to information retrieval. In fact, the primary goal of an

IR system is to retrieve all the documents which are relevant to a user query

while retrieving as few non-relevant documents as possible.

Table 1.1 lists some of the distinguishing properties of data and infor-

mation retrieval. Let us now consider each item in the table in more details.

In data retrieval we are normally looking for an exact match, that is, we

are checking to see whether an item satisfies or not certain properties. In

information retrieval we usually want to find those items which partially

match the request and then select from them the best matching ones.

The inference used in data retrieval is of the simple deductive kind.

In information retrieval it is far more common to use inductive inference;

relations are only specified with a degree of certainty or uncertainty and

hence our confidence in the inference is variable. This distinction leads

one to describe data retrieval as deterministic but information retrieval as

probabilistic. Frequently Bayes’ Theorem is invoked to carry out inferences

in IR, but in DR probabilities do not enter into the processing.

Another distinction can be made in terms of classifications that are likely

to be useful. In DR we are most likely to be interested in a monothetic clas-

sification, that is, one with classes defined by objects possessing attributes

that are both necessary and sufficient to belong to a class. In IR polythetic

4

1.1 Information Retrieval from Large Data Repositories

classification is used instead. In such a classification each member of a class

will possess only some of all the attributes possessed by all the members of

that class. Hence no attribute is necessary nor sufficient for membership to

a class.

The query language for DR will generally be of the artificial kind, one

with restricted syntax and vocabulary, while in IR natural language is pre-

ferred although there are some notable exceptions. In DR the query is gen-

erally a complete specification of what is wanted, while in IR it is invariably

incomplete. This last difference arises partly from the fact that in IR we

are searching for relevant documents as opposed to exactly matching items.

The extent of the match in IR is assumed to indicate the likelihood of the

relevance of that item. One simple consequence of this difference is that DR

is more sensitive to errors, in the sense that an error in matching will not

retrieve the wanted item, which implies a total failure of the system. In IR

small errors in matching generally do not affect performance of the system

significantly.

1.1.2 Focus of the Thesis

The topic of this thesis is related to the general area of information re-

trieval. In particular the work focuses on extracting and summarizing infor-

mation from large data repositories and presents techniques and algorithms

to identify succinct subsets of larger data sets: such techniques are applied

to different kinds of data. Two major scenarios are considered throughout

the thesis: digital video collections and the world wide web (or any other

collection of text documents). In fact it is well known that digital video

data represent the most voluminous type of data in the field of multimedia

databases. On the other hand, the world wide web represents nowadays a

huge and global information repository, counting billions of documents.

From an IR point of view, both digital video and text documents repre-

sent unstructured data: the information content embedded in such object

is not immediately usable by an IR system. It is easy to access the second

paragraph of a text document or the last 5 minutes of a videoclip, but it is

not that trivial to access the first paragraph that deals with a certain topic

5

1.1 Information Retrieval from Large Data Repositories

or the video segment in which a certain action occurs. Section 1.1.1 pointed

out that, in order to be effective in its attempt to satisfy user information

needs, an IR system must somehow “interpret” the content of the documents

in a collection and rank them according to a degree of relevance to the user

query. This “interpretation” of a document content involves the extraction

of syntactic and semantic information from the document and the ability

to use this information to match user information needs. If we assume that

the primary goal of an IR system is to retrieve all the documents which are

relevant to a user query while retrieving as few non-relevant documents as

possible, an overall interpretation of each document may be enough to select

the relevant documents (an entire text or an entire video).

However with the exponential growth of the amounts of available data, a

second level of abstraction of information from the results of the first round

of IR becomes necessary. That is, the large number of documents returned

by IR systems need to be summarized, in order to reduce the large volume

of information to a short summary or abstract comprising only the most es-

sential items. An overall interpretation of each document is not still enough

to perform this new task, but detailed understanding of any single piece of

information in a document is required: knowledge/information extraction

techniques are thus required to represent the information content of a doc-

ument in a well structured way. Information extraction also enables other

applications such as Question Answering (QA), that allows to get targeted

and precise answers to specific questions.

In this work we present knowledge extraction and summarization tech-

niques tailored to each of the two scenarios mentioned above. The reason for

dealing with such different scenarios is that both of them require to address

similar issues in order to achieve the goal of the summarization task, inde-

pendently from the inherently different nature of the two kinds of data. In

fact, we will show as the same criteria and similar algorithms can be applied

to solve the two problems.

In the video databases context, we will show that the knowledge ex-

traction phase requires the segmentation of videoclips into meaningful units

(shots and scenes) and the identification of events occurring and objects

6

1.1 Information Retrieval from Large Data Repositories

appearing in each unit, while, the summarization task requires the selection

of a subset of those units, such that certain constraints (e.g. the maximum

allowed length for the summary) and properties (e.g. continuity and no

repetition) are satisfied.

In the context of text documents we propose a technique to extract

structured information from natural language text and use such information

to build succinct stories about people, places, events, etc., such that certain

constraints and properties are satisfied.

The major contributions of this work are

• the Priority Curve Algorithm (PriCA) for video summarization;

• the Text Attribute Extraction (TAE) Algorithm for extracting struc-

tured information from natural language text;

• a Named Entity Recognition algorithm (T-HMM) for recognizing in

a set of text documents the entities of interest to a given knowledge

domain;

• three heuristic algorithms (OptStory+, GenStory and DynStory) for gen-

erating stories out of the information collected by the TAE algorithm.

The thesis is organized as follows. The remainder of this chapter in-

troduces the basic concepts of information extraction end summarization.

Chapter 2 describes the state of the art in both video summarization and

automatic story creation, also discussing several related issues. Chapters 3,

4 and 5 present the original contributions of this work. Chapter 3 first in-

troduces the CPR model for video summarization, then presents the PriCA

framework – based on the Priority Curve Algorithm – that integrates video

segmentation, event detection and video summarization capabilities. Chap-

ter 4 describes the theoretical foundation of our story creation framework

and presents three heuristic algorithms for building stories, namely OptStory+,

GenStory and DynStory. The Text Attribute Extraction (TAE) algorithm and

the named entity recognition algorithm (T-HMM) are presented in Chap-

ter 5. An approach to extracting attribute values from relational and XML

7

1.2 Information Extraction

data sources is also presented in this chapter. Chapters 6 and 7 describe

experiments carried out to validate our approach to video summarization

and story creation respectively. Conclusions and discussion about future

developments are reported in Chapter 8.

1.2 Information Extraction

Many people and organizations need to access specific types of informa-

tion in some domain of interest. For example, financial analysts may need to

keep track of joint ventures and corporate mergers. Executive head hunters

may want to monitor the corporate management changes and search for

patterns in these changes. Information about these events is typically avail-

able from newspapers and various newswire services. Information retrieval

systems can be used to sift through large volumes of data and find relevant

documents1 containing the information of interest. However, humans still

have to analyze the documents to identify the desired information. The ob-

jective of Information Extraction (IE) is to address the need to collect the

information (instead of documents containing the information) from large

volumes of unrestricted text or any other kind of data.

The extracted information may be more valuable than the original data

in several ways.

• While the documents returned by information retrieval systems have to

be analyzed by humans, the database entries returned by information

extraction systems can be processed by data processing algorithms.

• Information extraction also allows to answer queries that could be

answered by information retrieval systems.

We now briefly compare information extraction with both information

retrieval and text understanding. Of course some of the following consid-

erations specifically apply to information extraction from text documents,

but similar issues arise for other kinds of data.

1We often use the term document to denote a generic multimedia document – a text
document, a video, etc.

8

1.2 Information Extraction

Information extraction is a much more difficult task than information

retrieval. In fact it involves:

• accurate recognition of the entities in documents: organizations, per-

sons, locations, time, money, etc.;

• co-reference recognition;

• identification of relationships between entities and events;

• domain specific inference.

On the other hand, information extraction is a much easier and more

tractable task than text understanding, because:

• its goal is narrowly focused on extracting particular types of informa-

tion determined by a set of pre-defined extraction criteria;

• the inferences IE systems are required to make are much more re-

stricted than a general natural language understanding system;

• due to its narrow focus, an IE system can largely ignore words or

concepts that are outside its domain of interest.

Message Understanding Conference (MUC) is a DARPA sponsored con-

ference in which participating IE systems are rigourously evaluated. Infor-

mation extracted by the systems from blind test sets of text documents are

compared and scored against information manually extracted by human an-

alysts. Information extraction in the sense of the Message Understanding

Conferences has been traditionally defined as the extraction of information

from a text in the form of text strings and processed text strings which

are placed into slots labeled to indicate the kind of information that they

represent. So, for example, a slot labeled NAME would contain a name string

taken directly out of the text or modified in some well-defined way, such as

by deleting all but the person’s surname. The input to information extrac-

tion is a set of texts, usually unclassified newswire articles, and the output

is a set of filled slots. The set of filled slots may represent an entity with

9

1.3 Information Summarization

its attributes, a relationship between two or more entities, or an event with

various entities playing roles and/or being in certain relationships. Entities

with their attributes are extracted in the Template Element task; relation-

ships between two or more entities are extracted in the Template Relation

task; and events with various entities playing roles and/or being in certain

relationships are extracted in the Scenario Template task.

1.3 Information Summarization

Summarizing is the process of reducing a large volume of information

to a short summary or abstract comprising only the most essential infor-

mation items. Summarizing is frequent in everyday communication, but

it is also a professional skill for journalists and scientific writers. Auto-

mated summarizing functions are needed by internet users who wish to ex-

ploit the information available without being overwhelmed. The primary

application of summarization is thus that of summarizing the set of doc-

uments returned by an information retrieval system. Many other uses of

summarization techniques are possible: information extraction, as opposed

to document-retrieval; automatic generation of comparison charts; just-in-

time knowledge acquisition; finding answers to specific questions; tools for

information retrieval in multiple languages; biographical profiling.

The approach and the end-objective of summarization of documents ex-

plain the kind of summary that is generated. For example, it could be

indicative of what a particular subject is about, or can be informative about

specific details of the same. It can differ in being a “generalized summary”

of a document as against a “query-specific summary”. Summaries may be

classified by any of the following criteria [43]:

Detail: indicative/informative

Granularity: specific events/overview

Technique: extraction/abstraction

Content: generalized/query-based

10

1.3 Information Summarization

Approach: domain(genre) specific/independent

1.3.1 Evaluation Strategies and Metrics

Human judgment of the quality of a summary varies from person to

person. For example, in a study conducted by Goldstein et al. [20], when

a few people were asked to pick the most relevant sentences in a given

document, there was very little overlap of the sentences picked by different

persons. Also, human judgment usually does not find concurrence on the

quality of a given summary. Hence it is difficult to quantify the quality of a

summary. However, a few indirect measures may be adopted that indicate

the usefulness and completeness of a summary [19, 25, 43, 49], such as:

1. Can a user answer all the questions by reading a summary, as he

would by reading the entire document from which the summary was

produced?

2. What is the compression ratio between the given document and its

summary?

3. If it is a summary of multiple documents with temporal dimension,

does it capture the correct temporal information?

4. Redundancy – is any information repeated in the summary?

5. Intelligibility – is the information in the summary easy to understand?

6. Cohesion – are the information items in the summary somehow related

to each other?

7. Coherence – is the information in the summary organized according

to some logic?

8. Readability (depends on cohesion/coherence/intelligibility)

The latter four qualities of summaries are usually difficult to measure.

The last one specifically applies to text summaries while the other ones can

be used to evaluate any kind of summary. A metric is said to be intrinsic or

11

1.4 Conclusions

extrinsic depending on whether the metric determines the quality based on

the summary alone, or based on the usefulness of the summary in completing

another task [19].

For example, the first one above is an extrinsic metric. An example of

intrinsic measure is the cosine similarity of the summary to the document

from which it is generated. This particular measure is not very useful, since

it does not take into account the coverage of information or redundancy.

With such a measure, a trivial way for improving the score would be to take

the entire document as its summary. A metric that is commonly employed

for extractive text summaries is that proposed by Edmundson [14]. Human

judges hand-pick sentences from the documents to create manual-extractive

summaries. Automatically generated summaries are then evaluated by com-

puting the number of sentences common to the automatic and manually

generated summaries. In information retrieval terms, these measures are

called precision and recall. This method is currently the most used method

for evaluating extractive summaries [19].

1.4 Conclusions

This chapter has introduced the general context of the thesis, presenting

the basic concepts of Information Retrieval (IR) as opposed to Data Retrieval

(DR). The goal of the work has then been introduced, pointing out that

the thesis will focus on the extraction and summarization of information

from large data repositories. Two major kinds of data repositories have

been considered to this aim: digital video collections and the world wide

web. The unifying theme of the application of the presented techniques to

such different contexts is also described. Finally the basic concepts of both

information extraction and summarization have been presented, focusing the

discussion mainly on the text documents context, that is the main field where

such techniques have been investigated. More attention will be devoted to

video data in the next chapter.

12

Chapter 2

Related works

2.1 Video Databases

An enormous amount of video data is being generated nowadays all over

the world. This requires efficient and effective mechanisms to store, access,

and retrieve these data. But the technology developed to date to handle

those issues is far from the level of maturity required. Video data, as we

know, would contain image, audio, graphical and textual data.

The first problem is the efficient organization of raw video data available

from various sources. There has to be proper consistency in data in the sense

that data are to be stored in a standard format for access and retrieval. Then

comes the issue of compressing the data to reduce the storage space required,

since the data could be really voluminous. Also, various low-level features

of video data have to be extracted – such as like shape, color, texture, and

spatial relations – and stored efficiently for access.

The second problem is to find efficient access mechanisms. To achieve

the goal of efficient access, suitable indexing techniques have to be adopted.

Indexing based on text suffers from the problem of reliability as different

individuals can analyze the same data from different perspectives. Also,

this procedure is expensive and time-consuming. Nowadays, the most ef-

ficient way of accessing video data is through content-based retrieval, but

this technique has the inherent problem of computer perception, as a com-

puter lacks the basic capability available to a human being of identifying

and segmenting a particular image.

13

2.1 Video Databases

The third problem is the issue of retrieval, where the input could come

in the form of a sample image or text. The input has to be analyzed,

available features have to be extracted and then similarity would have to be

established with the images of the video data for selection and retrieval.

The fourth problem is the effective and efficient data transmission through

networking, which is addressed through Video-on-Demand (VoD) and Qual-

ity of Service (QoS). Also, there is the issue of data security, i.e., data

should not be accessible to or downloadable by unauthorized people. This

is dealt with by watermarking technology which is very useful in protect-

ing digital data such as audio, video, image, formatted documents, and

three-dimensional objects. Then there are the issues of synchronization and

timeliness, which are required to synchronize multiple resources like audio

and video data.

2.1.1 Video Data Management

With the rapid advancement and development of multimedia technology

during the last decade, the importance of managing video data efficiently

has increased tremendously. To organize and store video data in a standard

way, vast amounts of data are being converted to digital form. Because

the volume of data is enormous, the management and manipulation of data

have become difficult. To overcome these problems and to reduce the stor-

age space, data need to be compressed. Most video clips are compressed

into a smaller size using a compression standard such as JPEG or MPEG,

which are variable-bit-rate (VBR) encoding algorithms. Data compression

is an active research field, together with the transmission of video data over

networking infrastructures. For instance, Video-on-Demand systems (VoD),

which provide services to users according to their conveniences, have scala-

bility and Quality of Service (QoS) issues because of the necessity to serve

numerous requests for many different videos with the limited bandwidth

of the communication links. To solve these problems, two procedures have

been in operation, scheduled multicast and periodic broadcast. In the first

one, a set of viewers arriving in close proximity of time will be collected and

grouped together, whereas in the second one, the server uses multiple chan-

14

2.1 Video Databases

nels to cooperatively broadcast one video and each channel is responsible

for broadcasting some portions of the video.

The abstraction of a long video is quite often of great use to the users

in finding out whether it is suitable for viewing or not. It can provide users

of digital libraries with fast, safe, and reliable access to video data. There

are two ways available for video abstraction, namely, summary sequences,

which give an overview of the contents and are useful for documentaries,

and highlights, which contain the most interesting segments and are useful

for movie trailers. The video abstraction can be achieved in three steps,

namely, analyzing video to detect salient features, structures, patterns of

visual information, audio and textual information; selecting meaningful clips

based on detected features; and synthesizing selected video clips into the

final form of the abstract [33]. Synchronization is a very important aspect

of the design and implementation of distributed video systems. To guarantee

Quality of service (QoS), both temporal and spatial synchronization related

to the processing, transport, storage, retrieval, and presentation of sound,

still images, and video data are needed [11].

With the enormous volume of digital information being generated in

multimedia streams, results of queries are becoming very voluminous. As

a result, the manual classification/annotation in topic hierarchies through

text creates an information bottleneck, and it is becoming unsuitable for

addressing users information needs. Creating and organizing a semantic

description of the unstructured data is very important to achieve efficient

discovery and access of video data. But automatic extraction of semantic

meaning out of video data is proving difficult because of the gap existing

between low-level features like color, texture, and shape, and high-level se-

mantic descriptions like table, chair, car, house, and so on [75]. Luo et al.

[39] have presented a scheme for object-based video analysis and interpreta-

tion based on automatic video object extraction, video object abstraction,

and semantic event modeling. Although plenty of research works have been

devoted to this problem to date, the gap still remains.

15

2.1 Video Databases

2.1.2 Video Information Retrieval

For efficient video information retrieval, video data has to be manip-

ulated properly. The most common techniques applied to video retrieval

are:

1. shot boundary detection, where a video stream is partitioned into var-

ious meaningful segments for efficient managing and accessing of video

data;

2. key frames selection, where summarization of information in each shot

is achieved through selection of a representative frame that depicts the

various features contained within a particular shot;

3. low-level feature extraction from key frames, where color, texture,

shape, and motion of objects are extracted for the purpose of indexing;

4. information retrieval, where a query is provided by the user and then,

based on this, a search is carried out through the database to find

matchings with the stored information [15].

Content-based image retrieval, which is essential for efficient video infor-

mation retrieval, is emerging as an important research area with application

to digital libraries and multimedia databases using low-level features like

shape, color, texture, and spatial locations. Manjunath and Ma [44] focused

on the image processing aspects and, in particular, on the use of texture in-

formation for browsing and retrieval of large image data. They also present

an application for browsing large air photos.

Focusing has been given to the use of motion analysis to create visual

representations of videos that may be useful for efficient browsing and in-

dexing in contrast with traditional frame-oriented representations. Two ma-

jor approaches for motion-based representations have been presented. The

first approach demonstrated that dominant 2D and 3D motion techniques

are useful for computing video mosaics through the computation of domi-

nant scene motion and/or structure. However, this may not be adequate

if object-level indexing and manipulation are to be accomplished efficiently.

16

2.1 Video Databases

The second approach presented addresses this issue through simultaneous

estimation of an adequate number of simple 2D motion models. A uni-

fied view of the two approaches naturally follows from the multiple model

approach: the dominant motion method becomes a particular case of the

multiple motion method [56]. The problem of retrieving images from a

large database is also addressed using an image as a query. The method

is specifically aimed at databases that store images in JPEG format and

works in the compressed domain to create index keys. A key is generated

for each image in the database and is matched with the key generated for

the query image. The keys are independent of the size of the image. Images

that have similar keys are assumed to be similar, but the similarity has no

semantic [59]. Another paper provides a state-of-the-art account of Visual

Information Retrieval (VIR) systems and Content-Based Visual Information

Retrieval (CBVIR) systems [45]. It provides directions for future research

by discussing major concepts, system design issues, research prototypes, and

currently available commercial solutions. Then a video-based face recogni-

tion system by support vector machines is presented. Marques and Furht

[45] used stereovision to coarsely segment the face area from its background

and then used a multiple-related template matching method to locate and

track the face area in the video to generate face samples of that particular

person.

2.1.3 Video Segmentation

The first step in indexing video databases (to facilitate efficient access)

is to analyze the stored video streams. Video analysis can be classified

into two stages [55]: shot boundary detection and key frames extraction.

The purpose of the first stage is to partition a video stream into a set of

meaningful and manageable segments, whereas the second stage aims to

abstract each shot using one or more representative frames. In this section

we will discuss the problem of shot boundary detection, while the problem

of selecting key frames will be discussed in Section 2.1.4.

In general, successive frames in motion pictures bear great similarity

among themselves, but this generalization is not true at the boundaries of

17

2.1 Video Databases

shots. A frame at a boundary point of a shot differs in background and

content from its successive frame that belongs to the next shot. Two frames

at a boundary point will differ significantly as a result of switching from

one camera to another, and this is the basic principle upon which most au-

tomatic algorithms for detecting scene changes depend. Due to the huge

amount of data contained in video streams, almost all of them are trans-

mitted and stored in compressed format. While there are large numbers of

algorithms for compressing digital video, the MPEG format [48] is the most

famous one and the current international standard. In MPEG, spatial com-

pression is achieved through the use of a Discrete Cosine Transform (DCT)

based on an algorithm similar to the one used in the JPEG standard [52]. In

this algorithm, each frame is divided into a number of blocks (8× 8 pixel),

then the DCT transformation is applied to each block. The produced coef-

ficients are then quantized and entropy-encoded, a technique that achieves

the actual compression of the data. On the other side, temporal compres-

sion is accomplished using a motion compensation technique that depends

on the similarity between successive frames on video streams. Basically, this

technique codes the first frame of a video stream (I frame) without reference

to neighboring frames, while successive frames (P or B frames) are generally

coded as differences to the reference frame(s). Considering the large amount

of processing power required in the manipulation of raw digital video, it be-

comes a real advantage to work directly upon compressed data and avoid

the need to decompress video streams before manipulating them.

Video data are rich sources of information and in order to model these

data, the information content of the data has to be analyzed. As men-

tioned before, video analysis is divided into two stages. The first stage is

the segmentation of the video sequence into a group of shots (shot bound-

ary detection). Generally speaking, there are two trends in the literature to

segment video data. The first one works in the uncompressed domain, while

the other one works in the compressed domain. The first trend will be dis-

cussed first. Methods in the uncompressed domain can be broadly classified

into five categories: template-matching, histogram-based, twin-comparison,

block-based, and model-based techniques. In template-matching techniques

18

2.1 Video Databases

[26, 74], each pixel at the spatial location (i, j) in frame fm is compared with

the pixel at the same location in frame fn , and a scene change is declared

whenever the difference function exceeds a pre-specified threshold. Using

this metric, it becomes difficult to distinguish between a small change in a

large area and a large change in a small area. Therefore, template-matching

techniques are sensitive to noise, object motion, and camera operations. One

example of the use of histogram-based techniques is presented in [66], where

the histogram of each video frame and a difference function S between fn

and fm are computed. A cut is declared if S is greater than a threshold.

That technique uses equation 2.1 to compute the difference function and

declare a cut if the function is greater than a threshold.

S(fm, fn) =
N

∑

i=1

|H(fm, i)−H(Fn, i)| (2.1)

The rationale behind histogram-based approaches is that two frames

that exhibit minor changes in the background and object content will also

show insignificant variations in their intensity/color distributions. In addi-

tion, histograms are invariant to image rotation and change slowly under

the variations of viewing angle, scale, and occlusion [63]. Hence, this tech-

nique is less sensitive to camera operations and object motion compared

to template matching based techniques. Another technique that is called

twin comparison has been proposed by Zhang, Kankanhalli and Smoliar

[74]. This technique uses two thresholds, one to detect cuts and the other to

detect potential starting frames for gradual transitions. Unfortunately, this

technique works upon uncompressed data and its inefficiency is the major

disadvantage. A different trend to detect shot boundary is called block-

based [28] and uses local attributes to reduce the effect of noise and camera

flashes. In this trend, each frame fm is partitioned into a set of r blocks and

rather than comparing a pair of frames, every sub-frame in fm is compared

with the corresponding sub-frame in fn. The similarity between fn and

fm is then measured. The last shot boundary detection technique working

upon uncompressed data is termed model-based segmentation [28], where

different edit types, such as cuts, translates, wipes, fades, and dissolves are

19

2.1 Video Databases

modeled by mathematical functions. The essence here is not only identifying

the transition but also the type of the transition.

On the other hand, methods for detecting shot boundaries that work

in the compressed domain have been investigated. The main purpose of

works in this trend is to increase efficiency. Again, we can roughly divide

these methodologies into three categories. The first category [7, 35, 73] uses

DCT coefficients of video-compression techniques (Motion JPEG, MPEG)

in the frequency domain. These coefficients relate to the spatial domain,

hence they can be used for scene change detection. In [7], shot boundary

detection is performed by first extracting a set of features from the DC frame.

These features are placed in a high-dimensional feature vector that is called

the Generalized Trace (GT). The GT is then used in a binary regression

tree to determine the probability that each frame is a shot boundary. Yeo

and Liu [73] use the pixel differences of the luminance component of DC

frames in MPEG sequences to detect shot boundaries. Lee et al. [35] derive

binary edge maps from AC coefficients and measure edge orientation and

strength using AC coefficients correlations, then match frames based on

these features. The second category makes use of motion vectors. The

idea is that motion vectors exhibit relatively continuous changes within a

single camera shot, while this continuity is disrupted between frames across

different shots. Zhang et al. [74] have proposed a technique for cut detection

using motion vectors in MPEG videos. Their approach is based on counting

the number of motion vectors M in predicted frames. In P-frames, M is

the number of motion vectors, whereas in B-frames, M is the smaller of

the counts of the forward and backward nonzero motion. Then, M < T

will be an effective indicator of a camera boundary before or after the B

and P-frames, where T is a threshold value close to zero. The last category

working into the compressed domain merges the above two trends and can

be termed hybrid Motion/DCT. In these methods, motion information and

the DCT coefficients of the luminance component are used to segment the

video [46]. Other approaches that cannot be categorized into any of the

above two classes are reviewed below. Vasconcelos and Lippman [69] have

modeled the time duration between two shot boundaries using a Bayesian

20

2.1 Video Databases

model and the Weibull distribution, then they derived a variable threshold

to detect shot boundaries. A knowledge-based approach is proposed by

Meng, et al. [46], where anchorperson shots are found by examining intra-

shot temporal variation of frames. In order to increase the robustness of

the shot boundary detection, Hanjalic and Zhang [27] proposed the use of

statistical model to detect scene changes. In summary, techniques that work

upon uncompressed video data lack the necessary efficiency required for

interactive processing. On the other hand, although the other techniques

that deal directly with compressed data are more efficient, their lack of

reliability is usually a common problem.

2.1.4 Video Summarization

The growing availability of large collections of video data creates a strong

requirement for efficient tools to automatically summarize videos. Such

tools automatically create a short version or subset of key-frames which

contains as much information as possible as the original video. Summaries

are important because they can provide rapidly users with some information

about the content of a large video or set of videos. From a summary, the

user should be able to evaluate if a video is interesting or not, for example

if a documentary contains a certain topic, or a film takes partly place in

certain location. In the corporate arena, there is growing need for video

summarization. For instance, a company that uses video technology to

secure its buildings may wish to summarize the surveillance videos so that

only important events are included in the summary. An online education

courseware seller may wish to create brief summaries of educational videos

that focus on the most exciting snippets of the course in question. A sports

organization such as the National Basketball Association in the USA or the

International Federation of Football Association (FIFA) may wish to create

summaries consisting of a few game highlights so that these summaries can

be shown to potential customers who would subsequently buy the whole

video. Military organizations may wish to summarize airborne surveillance

video so that high priority events such as missile firings or suspicious vehicle

activities can be detected. Large movie databases such as the Internet Movie

21

2.1 Video Databases

Database (IMDb) or movie sellers may wish to automatically create movie

trailers.

Automatic summarization is subject to very active research, and several

approaches have been proposed to define and identify what is the most

important content in a video. However, most approaches currently have the

limitation that evaluation is difficult, so that it is hard to judge the quality

of a summary, or, when a performance measure is available, it is hard to

understand what the interpretation of this measure is.

In general, a summary of a video must satisfy the following three prin-

ciples first enunciated by Fayzullin et al. [17]. The video summary must

contain high priority entities and events from the video. For example, a

summary of a soccer game must show goals, spectacular goal attempts, as

well as any other notable events such as the ejection of a player from the

game, any fistfight and so on. In addition, the summary itself should exhibit

reasonable degrees of continuity. Jitter must be absent. A third criterion is

that the summary should be free of repetition. For example, it is common

in soccer videos for the same goal to be replayed several times. It is not

that easy to automatically detect that the same event is being shown over

and over again. Even more difficult is to detect events with similar features,

that can be considered repetitive. These three tenets, named the CPR (Con-

tinuity, Priority and no Repetition), form the basic core of all strong video

summarization methods. The video summarization literature contains two

broad classes of methods to summarize video. In the first class, that we

call the physical video property based class, physical properties of the video

stream are used to create a summary. The second class, that we call the

semantic video property based class, tries to use semantic information about

the content of the video in order to determine which frames or blocks of the

video must be included.

2.1.4.1 Physical Video Property Based Methods

Most existing video summarization systems start with key frame extrac-

tion. In this technique, certain properties of the frames are used to identify

them as key frames. For instance, one can consider frames with a lot of

22

2.1 Video Databases

motion or abrupt color changes as key frames (while avoiding frames with

camera motion and special effects). The detected key frames can either be

inserted into a summary as they are or used to segment the video. For ex-

ample, video segmentation algorithms [37] may be used to “split” the video

into homogeneous segments at key frames. One can then construct a sum-

mary by selecting a certain number of frames from each of these segments

and concatenating them together.

The MoCA [36] system composes film previews by picking special events,

such as zooming of actors, explosions, shots, etc. In other words, image

processing algorithms are used to detect when selected objects or events

occur within a video and then some of the frames in which these events

occur end up in the summary. The authors propose an approach to the

segmentation of video objects based on motion cues. Motion analysis is

performed by estimating local orientations in the spatio-temporal domain

using the three-dimensional structure tensor. These estimates are integrated

into an active contour model, thus stopping the evolving curve when it

reaches the moving objects boundaries. Segmented video objects are then

classified by means of the contours of its appearances in successive video

frames. The classification is performed by matching curvature features of

the video object contour against a database containing preprocessed views

of prototypical objects. Object recognition can be performed on different

levels of abstraction.

Yahiaoui, Merialdo et al. [72] propose an automatic video summarization

method in which they define and identify what is the most important content

in a video by means of similarities and differences between videos. They

identify in this way what is common, what is unique and how they differ.

Comparison and classification representations of the video content is needed

to pursuit this goal mainly because the same information often appears in

slightly different forms in the different video segments. The elimination

of redundant information across the set of videos in a TV series allows to

provide concise image summaries. The proposed approach is based on the

extraction of feature vectors from the sequence of frames and in particular

the set of analyzed features are basically the combination of color histograms

23

2.1 Video Databases

applied on different portions of the frame. These vectors are used for the

clustering procedure that produces classes of video frames with expected

similar visual content. The frequency of occurrence of frames from each

video within classes allows to compute the importance of the various classes.

Once video frames have been clustered, the video could be described as sets

of frame classes. The global summary is constructed with the representative

images of video content selected in the set of most pertinent classes. They

also suggest a new criterion to evaluate the quality of the summaries that

have been created, through the maximization of an objective function.

Shao et al. [58] propose an approach to automatically summarize music

videos, based on an analysis of both video and audio tracks. The musical

track is separated from the visual track and is analyzed in order to evaluate

the linear prediction coefficients, the zero crossing rates, and Mel-Frequency

Cepstral Coefficients (MFCCs). Based on the computed features, and using

an adaptive clustering method, they group the music frames and generate

a structure of the music content. The results of the previous procedure

are crucial for the generation of the summaries that are built in terms of

the detected structure and in terms of a domain-based music knowledge.

After the music summarization, they turn the raw video sequences into a

structured data set in which boundaries of all camera shots are identified and

visually similar shots are grouped together. Each cluster is then represented

by the shot with the longest length. A video summary is generated by

collecting all the representative shots of the clusters. The final step is the

alignment operation that aims to partially align the image segments in the

video summary with the associated music segments. The authors evaluated

the quality of the summaries through a subjective user study and compared

the results with those obtained by analyzing either audio or video track only.

The subject enrolled in the experiments rated conciseness and coherence of

the summaries on a 1 to 5 scale. Conciseness pertains to the terseness of

the music video summary and how much of the music video captures the

essence of the music video. Coherence instead pertains to the consistency

and natural drift of the segments in the music video summary.

DeMenthon et al. [13] represent a changing vector of frame features

24

2.1 Video Databases

(such as overall macroblock luminance) with a multi-dimensional curve and

applied a curve simplification algorithm to select key frames. In particular

they extend the classic binary curve splitting algorithm, that recursively

splits a curve into curve segments until these segments can be replaced by

line segments. This replacement can occur if the distance from the curve

of the segment is small. They show how to adapt the classic algorithm

for splitting a curve of dimension N into curve segments of any dimension

between 1 and N . The frames at the edges of the segments are used as

key frames at different levels of detail. While this approach works well for

the key frame detection, it does not consider the fact that certain events

have higher priorities than others, and that continuity and repetition are

important.

Ju et al. [32] propose another key frame selection approach that chooses

frames based on motion and gesture estimation. Focusing the attention on

the constrained domain of video sequences showing presentations in which

the camera is focused on the speaker’s slides, they estimate the global im-

age motion between every two consecutive frames using a robust regres-

sion method. The extracted motion information is used to evaluate if a

sequence of consecutive frames represents the same slide. The detected

frame sequences are processed to extract the key frames used to represent

the slides shown during the presentation. Computing a pixel difference be-

tween the key frames and the correspondent frames in the “stabilized” image

sequences, they are able to detect the image regions containing potential ges-

tures. Tracking these gestures by means of a deformable contour model and

analyzing the shape and the motion over the time, they recognize the point-

ing gestures and recover the location on the slide to which the speaker is

referring.

Zhou et al. [70] attempt to analyze video content, extract and cluster

features to classify video semantically. Using an interactive decision-tree

learning method, they define a set of if-then rules that can be easily applied

to a set of low-level feature matching functions. In particular, the set of low

level features used in the proposed framework are motion, color and edge

features, that are automatically extracted from a video clip. Sample video

25

2.1 Video Databases

clips from the different semantic categories are used to train the classification

system by means of the chosen low level features. The set of rules in the

decision tree is defined as a combination of appropriate features and the

relative thresholds that are automatically defined in the training process.

They then apply their rule-based classification system to basketball videos.

Ma et al. [41] present a generic framework for video summarization based

on estimated user attention. They construct video summaries modeling how

user’s attention is attracted by motion, objects, audio and language when

he/she is watching a video program. For each frame in a video an attention

value is computed and the result for a given video is an attention curve

that allows to determine which frame or which sequence of frames is more

likely to attract the user’s attention. In this way, the optimal number of

key frames in a video shot is determined by the number of wave crests on

the attention curve. They then include in their summaries frames to which

users pay a good deal of attention.

2.1.4.2 Semantic Video Property Class

This class of video summarization algorithms tries to perform elemen-

tary analysis of the video’s semantic content and then to use this data, in

conjunction with information about the user content preferences, to deter-

mine exactly which frames should be included into the summary and which

frames should not.

The Video Skimming System [71] from Carnegie Mellon University finds

key frames in documentaries and news-bulletins by detecting important

words in the accompanying audio. The authors propose a method to ex-

tract the significant audio and video information and create a “skim” video

which represents a very short synopsis of the original. The goal of this work

is to show the utility of integrating language and image understanding tech-

niques for video skimming by extraction of significant information, such as

specific objects, audio keywords and relevant video structure. The resulting

skim video is much shorter, where compaction is as high as 20:1, and yet

retains the essential content of the original segment.

In contrast to the above works, the CPR system of Fayzullin et al. [17]

26

2.1 Video Databases

provides a robust framework within which an application developer can spec-

ify functions that measure the continuity c(S), and the degree of repetition

r(S) in a video summary S. The developer can also specify functions to

assess the priority of each video frame p(f) (or more generally, if the video

is broken up into a sequence of blocks, the priority p(b) of each block b). The

priority of the summary p(S) can then be set to the sum of the priorities

of all blocks in S. The developer can assign weights to each of the three

functions and create an objective function w1 · c(S) + w2 · p(S)− w3 · r(S).

Given the maximal desired size k of a summary, the system tries to find

a set S of video blocks such that the size of S is less than or equal to k

blocks and such that the objective function w1 · c(S) + w2 · p(S)−w3 · r(S)

is maximized. Authors show that the problem of finding such an “optimal”

summary is NP-complete and proceed to provide four algorithms. The first

is an exact algorithm that takes exponential time but finds an S that does

in fact maximize the value of the objective function. Other three algorithms

may not return the best S but run in polynomial time and find summaries

that are often as good as the ones found by the exact algorithm. Some exam-

ples of the continuity functions, repetition functions, and priority functions

provided by Fayzullin et al. [17] include:

• Continuity can be measured by summing up the numbers of common

objects shared by adjacent summary blocks, divided by the total num-

bers of objects in adjacent blocks. Thus, the more objects are shared

between adjacent summary blocks, the more continuous the summary

is. To measure continuity (or, rather, discontinuity) one can also sum

up color histogram differences between adjacent blocks. The lower is

this sum, the more continuous is the summary.

• Repetition can be computed as the ratio of the total number of objects

occurring in the summary to the number of distinct objects. Alter-

natively, one can consider repetition to be inversely proportional to

standard deviation of the color histogram in summary blocks. The

less color changes occur in a summary, the more repetitive this sum-

mary is going to be.

27

2.1 Video Databases

• Priority of a block can be computed as the sum of user-defined prior-

ities for objects occurring in the block or based on a set of rules that

describe desired combinations of objects and events.

2.1.4.3 An Alternative Classification of Summarization Methods

Another way to classify the approaches to video summarization is to

distinguish between Reasoning Based and Measure Based Summarization,

as described in the following.

• Reasoning Based Summarization. Reasoning based approaches use

logic or neural algorithms to detect certain combinations of events

based on the information from different sources (audio, video, natural

language). Examples of such approaches are video skims from the

Informedia Project by Wactlar et al. [71] and movie trailers from the

MoCA project by Lienhart et al. [36]. Sometimes multiple features

of a video stream are employed simultaneously: the video analysis

is combined with the audio analysis (speech, music, noise, etc.) and

even with the textual information contained in closed captions. The

heuristics used to identify video segments of interest with respect to

all these features are encoded with logical rules or neural networks.

• Measure Based Summarization. Measure based approaches use various

importance and similarity measures within the video to compute the

relevance value of video segments or frames. Possible criteria include

duration of segments, inter-segment similarities, and combination of

temporal and positional measures. These approaches can be exempli-

fied by the use of SVD (Singular Value Decomposition) by Gong and

Liu [21], or the shot-importance measure by Uchihashi and Foote [67].

It is worth noting that most systems summarize video by key-frame

extraction. For example, the Video Skimming System [71] finds key frames

in documentaries and news-bulletins by detecting important words in the

accompanying audio. Systems like MoCA [36] compose film previews by

picking special events, such as zooming of actors, explosions, shots, etc.

28

2.2 Text Documents

In conclusion, despite the vast amount of work on video databases, and

the existing work on summarizing video, there is no commonly accepted

solution to the problem of automatically producing video summaries that

take both content and user interest into account and scale to massive data

applications.

2.2 Text Documents

2.2.1 Text Summarization

The goal of text summarization is to take one or more textual documents,

extract content from them and present the most important content to the

user in a concise way. Text summaries may be roughly classified into two

main categories. They may be a collection of sentences carefully picked from

the document or can be formed by synthesizing new sentences representing

the information in the documents.

Sentence extraction methods for summarization normally work by scor-

ing each sentence as a candidate to be part of summary, and then selecting

the highest scoring subset of sentences. Some features that often affect the

candidacy of a sentence for inclusion in a summary are listed in the following

[14, 19].

Keyword occurrence Sentences containing keywords that are most often

used in the document usually represent the topic of the document.

Title keyword Sentences containing words that appear in the title are also

indicative of the topic of the document.

Location heuristic In newswire articles, the first sentence is often the

most important sentence; in technical articles, the last couple of sen-

tences in the abstract or those from conclusions are informative of the

findings in the document.

Indicative phrases Sentences containing key phrases like “this report...”

usually give an overview of the document.

29

2.2 Text Documents

Short-length cutoff Short sentences are usually not included in a sum-

mary.

Upper-case word feature Sentences containing acronyms or proper names

are usually included in a summary.

Pronouns Pronouns such as “she, they, it” cannot be included in a sum-

mary unless they are expanded into corresponding nouns.

Redundancy in summary Anti-redundancy was not explicitly taken into

account by earlier systems, but forms a part of most of the current

summarizers. This score is computed dynamically as the sentences

are included in the summary, to ensure that there is no repetitive

information in the summary. The following are two examples of anti-

redundancy scoring, when a new sentence is added to the summary:

• Scale down the scores of all the sentences not yet included in the

summary by an amount proportional to their similarity to the

summary generated so far [20, 53].

• Recompute the scores of all the remaining sentences after remov-

ing the words present in the summary from the query/centroid

of the document [22].

Abstraction of documents by humans is complex to model as is any

other information processing by humans. The abstracts differ from person

to person, and usually vary in the style, language and details. The pro-

cess of abstraction is complex to be formulated mathematically or logically

[31]. In the last decade some systems have been developed that generate

abstractions using the latest natural language processing tools. These sys-

tems extract phrases and lexical chains from the documents and fuse them

together with generative tools to produce a summary (or abstraction). A

relatively less complex approach is to create an extractive summary in which

sentences from the original documents are selected and presented together

as a summary.

Both extractive and abstractive methods give rise to some problems. In

the first case:

30

2.2 Text Documents

• Extracted sentences usually tend to be longer than average. Due to

this, part of the segments that are not essential for summary also get

included, consuming space.

• Important or relevant information is usually spread across sentences,

and extractive summaries cannot capture this (unless the summary is

long enough to hold all those sentences).

• Conflicting information may not be presented accurately.

In the case of abstractive methods:

• It has been shown that users prefer extractive summaries instead of

glossed-over abstractive summaries. This is because extractive sum-

maries present the information as it is by the author, and would allow

the users to read between the lines information.

• Sentence synthesis is not a well-developed field yet, and hence the

machine generated automatic summaries would result in incoherence

even within a sentence. In case of extractive summaries, incoherence

occurs only at the border of two sentences.

2.2.2 Automatic Story Creation

A completely different approach to present information derived from

textual data sources is the generation of narrative stories. According to the

Oxford English Dictionary a story is “a narrative, true or presumed to be

true, relating to important events and celebrated persons of a more or less

remote past; a historical relation or anecdote”. From a computational point

of view a story may be thought as a collection of known facts about a given

entity – a person, an event, etc. – that may be delivered to the user in the

form of an interactive presentation or rendered as natural language text.

There is a rich body of work on creating stories in the non-database

literature, mainly in the Artificial Intelligence field. Many of the proposed

approaches focus on specific audiences (e.g. children) and many authors

aim at creating virtual environments where virtual characters interact, thus

creating stories.

31

2.2 Text Documents

The Virtual Storyteller [65] is a framework for story creation by co-

operating intelligent agents. In this framework, a collection of agents is

responsible for the creation of different story levels: plot, narrative, and

presentation. In the Virtual Storyteller, plots are automatically created

based on the actions of autonomous characters whose plot creation is only

constrained by general plot requirements. This approach lacks the disad-

vantages of pure character-based plot development, where the characters

are fully autonomous, and of scripted approaches, where the plot content is

predefined and the characters have no autonomy at all.

Szilas [64] proposes an approach to interactive drama where a “virtual

narrator” chooses the actions to be performed in the story, based on several

narrative criteria including consistency and progression (“how much the

action makes the intrigue evolve, rather than stagnate” [64]). This is similar

to the task of the director in the Virtual Storyteller. An important difference

is that the approach of Szilas is not character-based. Instead, the candidate

actions originate from a story grammar (‘narrative logic’ in Szilas’ terms).

The narrative logic ensures that the candidate actions fit into the general

plot structure, and the virtual narrator judges their effect on the user.

The Teatrix system for virtual drama [42] is designed for collaborative

story creation by children. In Teatrix, some of the story characters are

controlled by the children using the system; the other characters are au-

tonomous agents. There is also an omniscient director agent which can

insert new items and characters into the story world, and which can control

the characters’ actions on behalf of the story coherence. The director can-

not control the children’s characters. The main difference with the Virtual

Storyteller is that in Teatrix, the character and director agents function as

aids in the children’s story creation process, rather than creating the story

by themselves.

In [68], Bers et al. present the SAGE system, a computational story-

telling environment, that allowed young cardiac patients at the Boston’s

Children’s Hospital to tell personal stories and create interactive charac-

ters, as a way of coping with cardiac illness and hospitalizations. In order

to support children in creating their own characters, a visual programming

32

2.2 Text Documents

language was developed to design and program: (1) the scripts that are used

by the storyteller, (2) the conversational structure or flow of the interaction,

(3) the body behaviors of the interactive toy, which behaves as the pet as-

sistant of the storyteller, and (4) the database of tales that are offered in

response by the character. SAGE also has multimedia capabilities allowing

children to record their own stories and to draw their own characters.

In conclusion, all the approaches discussed above have a very different

goal than ours, because they either focus on having humans create a story,

or provide some kind of action specification for the agents involved in the

story and allow the story to develop having a non-deterministic outcome.

Our goal is to collect all the available information about given entities from

different data sources and create stories about them by selecting proper

subsets of the known facts and possibly rendering those facts in English or

any other language. Our approach to story creation is thus more similar to

text summarization than automatic storytelling.

33

Part II

Theory

34

Chapter 3

Extraction and
Summarization of
Information from Video
Databases

3.1 Introduction

The video summarization algorithm proposed in this thesis retains the

core idea from [17] that the CPR criteria are important to achieve good qual-

ity summaries. However, the algorithm uses a completely different approach

to the problem of finding good summaries fast. It completely eliminates

the objective function upon which the previous algorithms were based, but

captures the same intuitions in a compelling way. Section 3.2 introduces

the CPR model, while Section 3.3 presents our Priority Curve Algorithm

(PriCA). In particular Section 3.2.2 describes the three CPR-based algo-

rithms presented in [16]. We describe the details of these algorithms for

two reasons: i) we have implemented such algorithms in our video sum-

marization framework and compared the performance of the Priority Curve

Algorithm against them; ii) the algorithms we designed for automatically

creating stories use similar approaches.

Information extraction issues are discussed as part of the description of

the PriCA framework, that integrates all the video management function-

alities discussed in Chapter 2 – namely video segmentation, video event

35

3.2 Video Summarization: the CPR Model

detection, information extraction and video summarization. Experiments

on a prototype of the PriCA system are discussed in Chapter 6.

3.2 Video Summarization: the CPR Model

3.2.1 Formal Model

The model assumes that every video v has a length lenv describing the

number of frames in the video – the frames in a video of length lenv are

labeled 1, . . . , lenv. In many cases, a sequence of contiguous frames might

be considered as a block and then summaries might be created based on

determining which blocks (rather than frames) to include in the summary.

The advantage of this approach is that the number of blocks in a video is

much smaller than the number of frames. The CPR model applies to both

frames and blocks.

3.2.1.1 Summarization Content Specification

One of the most important issues of video summarization is to specify

what should be included in the summary. In this section, the concept of

summary content specification is presented.

Definition 3.1 (k-summary). Suppose v is a video, k ≥ 0 is an integer, and

S ⊆ {1, . . . , lenv} is a set of frames, whose cardinality is card(S) ≤ k. Then

S is called a k-summary of v.

In other words, a k-summary of a video is any set of k or fewer frames

from the video. The desired content of a summary is specified using a logical

language which contains a unary predicate called insum that takes a frame

as input. If f is either a frame number or a variable ranging over frames,

then insum(f) is called an insum-atom. When insum(f) is true, this means

that frame f is of interest for inclusion in the summary. Of course, not

all frames of interest may be included in the summary. Furthermore, some

frames may be included in the final summary even if there is no interest in

them because they may be required to ensure continuity of the produced

summary.

36

3.2 Video Summarization: the CPR Model

The model assumes that the video database on top of which the sum-

marization tools are built supports the following API functions:

• findframe(v, X): when X is either an object or an activity, this function

returns the set of frames in the video v containing X.

• findobj(v, f): given a video v and a frame f , this returns the set of all

the objects occurring in frame f of video v.

• findact(v, f): this is similar to the previous function except that it

returns all activities occurring in frame f of video v.

Definition 3.2 (video call). Suppose vc is a video database API function,

and t1, . . . , tn are either arguments to vc (of the right type) or variables

ranging over the values of the appropriate type. Then vc(t1, . . . , tn) is called

a video call.

Definition 3.3 (video atom). If vc(t1, . . . , tn) is a video call and X is ei-

ther a constant or a variable of the same type as vc’s output, then (X ∈

vc(t1, . . . , tn)) is called a video atom. Likewise, if X, Y are either frames or

variables ranging over frames and d is an integer, after(X, Y, d), before(X, Y, d),

and near(X, Y, d) are video atoms.

Membership predicates are used to require the presence of a certain

object or activity in a frame, or to bind a variable to objects or activities in

a frame. For example, X ∈ findact(v, f) allows the variable X to be bound

to any activity in frame f of video v. The before, after, and near predicates

are used to ensure continuity by requiring that some frames occur near each

other and in a certain order. Intuitively, a frame X satisfies before(X, Y, d)

iff X occurs in the interval of frames starting at Y − d and ending at Y .

after(X, Y, d) is equivalent to before(Y, X, d) and near(X, Y, d) is equivalent

to after(X, Y, d) ∨ before(X, Y, d).

Definition 3.4 (video condition). If va1, . . . , van are video atoms and E

is a conjunction of equalities , then % = va1 ∧ . . . ∧ van ∧ E is a video

condition.

37

3.2 Video Summarization: the CPR Model

For example, X ∈ findobj(v, f) ∧ X ∈ findobj(v, f
′
) is true for all objects

X that appear both in frame f and frame f
′
of video v.

Definition 3.5 (summarization rule). A summarization rule is an expres-

sion of the form A← % ∧ A1 ∧ . . . ∧ Am, where % is a video condition, and

A, A1, . . . , Am are insum-atoms.

Intuitively, the above rule says that if % is true and A1, . . . , Am are of

interest for inclusion in a k-summary, then A is also of interest for inclusion

in the k-summary.

A video summary content specification V is a finite set of summarization

rules. Based on these rules, a finite set Der(V) of instantiated insum-atoms

can be derived. These atoms are the ones deemed to be of interest for

inclusion in a summary.

Definition 3.6 (valid k-summary). Suppose V is a video summary content

specification. A k-summary S is valid w.r.t. V iff S ⊆ Der(V).

The above definition says that for a k-summary to be valid, the inclusion

of each frame must be justified by some rule in the summary specification.

3.2.1.2 Priority Specification

The most important consideration when computing a summary is how

appropriate the summary content is to the user. To express this character-

istic, the model introduces the concept of priority.

Definition 3.7 (priority function). Suppose v is a video, k ≥ 0 is an integer,

and Σ is the set of k-summaries of v. A priority function w.r.t. v is a

mapping pri : Σ→ <+.

Priority functions can be explicitly stated in many ways. The simplest

way to define a priority function is to assign a priority pri(f) to each frame

f and then compute the priority of a set S of frames as pri(S) = Σf∈Spri(f).

3.2.1.3 Continuity Specification

Continuity is an important criterion to be taken into account when com-

puting an appropriate summary. For example, consider a soccer match with

38

3.2 Video Summarization: the CPR Model

one goal. To show the goal effectively, a summary should probably include

a segment of video both just before and just after the goal.

Definition 3.8 (continuity function). Suppose v is a video, k ≥ 0 is an

integer, and Σ is the set of k-summaries of v. A continuity function w.r.t.

v is a mapping χ : Σ→ <+.

Different summarization applications may use different instances of this

general definition. For example, a notion of distance between frames can be

used to define the continuity function. The more similar any two contiguous

frames in the summary are, the more continuous the summary is.

3.2.1.4 Repetition Specification

The third important property of a summary is that it must not contain

repetitive information. A video spanning 90 minutes will probably have at

least a few key scenes. Summaries should probably show clips of each of

these scenes, rather than just one. The goal of a repetition specification is

to avoid repetitions.

Definition 3.9 (repetition function). Suppose v is a video, k ≥ 0 is an

integer, and Σ is the set of k-summaries of v. A repetition function w.r.t. v

is a mapping ρ : Σ→ <+.

As in the case of continuity functions, repetition functions are very gen-

eral in nature and can be defined in several ways. For example, a notion of

distance between frames can be used to define the repetition function. The

more distant frames in the summary are, the less repetitive the summary is.

Alternatively the frequency of occurrence of objects/actions in the summary

can be used to evaluate the degree of repetition: the more often the same

object/action appears in the summary, the more repetitive the summary is.

3.2.1.5 Optimal Summary

It is easy to see that the continuity, priority, and repetition criteria may

be in conflict with each other. For example, while choosing more adjacent

frames improves continuity, it may also lead to increased repetition. In order

39

3.2 Video Summarization: the CPR Model

to define what an optimal summary is, we first need a way of evaluating a

summary that allows the user to specify relative importance of these three

criteria.

Definition 3.10 (summary evaluation). Suppose V is a video summary

content specification, S is the set of all the summarizations of a given video

v, and α, β, γ ≥ 0 are integers. A summary evaluation is a function eval :

S → <, of the form eval(S) = α · χ(S) + β · pri(S)− γ · ρ(S). The summary

evaluation eval is called monotonic iff whenever S ⊆ S
′
, eval(S) ≤ eval(S

′
).

In the above definition, the constants α, β, γ denote the respective im-

portance to be given to continuity, priority, and repetition criteria.

Definition 3.11 (k-summary computation problem). Suppose V is a video

summary content specification. A k-summary S is optimal w.r.t. V and a

summary evaluation eval(S) iff (i) it is valid w.r.t. V and (ii) there is no

other valid k-summary S
′
w.r.t. V such that eval(S) < eval(S

′
).

Theorem 3.1. Computing an optimal k-summary is NP-complete.

The proof is by a reduction of the knapsack problem [10] to the optimal

k-summary computation problem.

3.2.2 Summarization Algorithms

This section describes the three CPR based algorithms presented in [16].

We first introduce a summarization algorithm called CPRopt which finds

an optimal k-summary without making any assumptions about the priority,

continuity, and repetition functions. However, as the optimal k-summary

computation problem is NP-complete, this algorithm takes an exponential

amount of time (w.r.t. the length of a video) which is clearly unacceptable.

As a consequence, three alternative heuristic k-summarization algorithms

have been designed and implemented. The first algorithm (CPRdyn) is based

on dynamic programming, the second (CPRgen) is based on genetic program-

ming, while the third algorithm called the Summary Extension Algorithm

(SEA for short) is based on the summary extension concept.

40

3.2 Video Summarization: the CPR Model

3.2.2.1 The Optimal Summarization Algorithm

The CPRopt algorithm starts by computing the set of all insum-atoms in

Der(V). This step can be executed in time linear to the number of frames

in the video v. The algorithm then considers all subsets of Der(V) that

contain k or less frames. Each of these subsets is a valid k-summary w.r.t.

V. The eval() function is then applied to these subsets and the one with the

maximal eval() value is chosen. As the set of all subsets of size k need to be

stored, the CPRopt has exponential space and time complexity – this is not

a surprise as the problem of finding an optimal summary has been shown to

be NP-complete.

Procedure CPRopt(V,k)

V is a video summary content specification

k is a desired summary length

begin

V := ∅

∆ := ∅

repeat

// A, A1, . . . , An are variable-free

V := V ∪∆

∆ := ∅

for each rule A← % ∧ A1 ∧ . . . ∧ An in V do

if % ∧ {A1, . . . , An} ⊆ V then ∆ := ∆ ∪ {A}

end for

until ∆ \ V = ∅

Σ := {S | S ⊆ V ∧ card(S) ≤ k}

BestS := S ∈ Σ such that α · χ(S) + β · pri(S)− γ · ρ(S) is maximal

return BestS

end.

3.2.2.2 The CPRdyn Algorithm

The CPRdyn algorithm is based on dynamic programming [10]. The al-

gorithm maintains a variable vcurrent describing the best solution found so

far. Initially, vcurrent consists of k randomly chosen frames which are deriv-

able from V. The algorithm changes vcurrent in each iteration by checking to

see whether replacing a frame in vcurrent by a frame which is not in vcurrent

will lead to a better summary. CPRdyn can be summarized as follows. The

41

3.2 Video Summarization: the CPR Model

space complexity of CPRdyn is linear in the number of frames, while the time

complexity is exponential in k (which is much better than being exponential

in the number of frames).

Procedure CPRdyn(V,k)

V is a video summary content specification

k is a desired summary length

begin

// Fill vcurrent with k randomly selected frames from Der(V).

vcurrent := {fi | i ∈ [1, k] ∧ fi ∈ Der(V)}

// Put the remaining frames into vc.

vc := Der(V)− vcurrent

while vc 6= ∅

subs := false

r := 1

while r ≤ k and subs = false

// Build a new tentative solution by replacing fr with a frame from vc.

vtentative := (vcurrent \ {fr}) ∪ {first(vc)}

if eval(vcurrent) < eval(vtentative) then

vcurrent := vtentative

add fr to the tail of vc

subs := true

else

r := r + 1

end if

end while

remove first(vc) from vc

end while

return vcurrent

end.

It is important to note that the CPRdyn algorithm will only consider

summaries whose length is exactly k frames. While this may look like a se-

rious limitation, it is not, as long as the eval() function used in the algorithm

is monotonic.

3.2.2.3 The CPRgen Algorithm

The CPRgen algorithm uses a genetic programming approach [10] to

compute a k-summary. The algorithm starts by creating a random popu-

lation of summaries and rates population members according to the value

of eval(). A mutation operator is applied to a random population member

and the member with the smallest eval() value is eliminated. The algorithm

42

3.2 Video Summarization: the CPR Model

stops when the variation of the eval() values within the population is less

than a threshold δ or when the maximal number of iterations is reached.

CPRgen’s time complexity is O
(

lenv
2

k2 ×N2
)

, while its space complexity is

O
(

lenv
2

k

)

.

Procedure CPRgen(V,k,N ,δ)

V is a video summary content specification

k is a desired summary length

N is the desired number of iterations

δ is the desired fitness threshold

begin

R :=
˚

lenv

k

ˇ

compute an initial population of random solutions V := (vi)i=1...R with frames from

Der(V)

for j ∈ [1, N]

for i ∈ [1, R]

v := a solution randomly chosen among the ones in V

select a frame f from the video

if f ∈ v then

choose another frame from the video

insert the new frame in v eliminating f

add v to the population of solutions V

eliminate from V the solution with the smallest fitness

if maxv1,v2∈V |eval(v1)− eval(v2)| ≤ δ then

return best solution from V

end if

end if

end for

end for

return the best solution from V

end.

3.2.2.4 The Summary Extension Algorithm (SEA)

SEA extends the CPR model as follows:

• rules in a content specification V are assigned a weight;

• summaries are sets of frame coverage pairs (f, p), where p ∈ [0, 1] quan-

tifies how well the frame f satisfies the summary content specification

V;

43

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

• video calls return sets of frame coverage pairs, instead of just frames.

The CPR model is a special instance of the SEA model, in which all

the specification rules have weight 1, and all the frame coverage pairs in

a summary have p = 1. The Summary Extension Algorithm is based on

a complex model. Furthermore, differently from the CPRgen and CPRdyn

algorithms, we do not have any story creation algorithm based on similar

principles. We thus omit a detailed description of SEA. We just mention

that SEA is a greedy breadth-first search algorithm with the branching factor

limited to N . It is based on the concept of Valid Summary Extension. Given

a summary S a Valid Summary Extension of S w.r.t. a video summary

content specification V – V SE(V, S) – is the set of frames f such that

the value of inserting f into S is greater than 0. A function is defined to

compute the value of inserting a frame into a summary. Such function takes

into account the weight of the rule that justify the insertion of the frame in

the summary and coverage of the frame itself. Frames in the valid summary

extension are used for attempting to improve current solutions.

The space complexity of SEA is linear w.r.t. the number of new (i.e.

not occurring in S) answers returned by V SE() and exponential w.r.t. N .

The time complexity is exponential w.r.t. both N and the number of new

answers returned by V SE().

3.3 The Priority Curve Algorithm (PriCA) for Video
Summarization

In this section, we describe the PriCA (Priority Curve Algorithm) system

for video summarization. The proposed summarization algorithm retains the

core ideas on which the CPR model is based but uses a completely different

approach to the problem of finding good summaries fast. We first provide an

overview of PriCA components and then describe the components in detail.

The term PriCA will be use to denote both the algorithm and the whole

framework.

Given an input video v containing lenv frames, and an integer 0 < k ≤

lenv which indicates the maximal summary length that the user wishes to

44

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

Assignment
Block Priority

Creation
Peak

Detection

Block
Resizing

Block
Elimination

Block
Merging

Summary

Video

Figure 3.1: Architecture of the PriCA framework

see, PriCA finds a set of exactly k frames from the video. It attempts to

ensure that these frames contain high priority objects and events in them

(for example, when summarizing a soccer video, it might attempt to find

frames containing goals, red cards, and other notable events from the game).

It also attempts to ensure that the summary is not full of jitter by picking

continuous portions of the video. Last, but not least, it attempts to eliminate

repetition.

3.3.1 Overview of PriCA

PriCA is a complex system consisting of many parts. Fortunately, many

of these parts can be implemented using standard image processing algo-

rithms. Figure 3.1 shows the key components of PriCA. In the rest of this

section, we describe the overall functions of the PriCA system. In particular,

we will show how some of these components (such as block creation and

priority assignment) can be built directly using standard image processing

methods, while others (such as block merging, elimination, and resizing)

require new contributions. Section 3.3.2 describes the details of the new

components. In certain places, we will see that a mix of video and audio

(and if available accompanying text) can be profitably used. We will use

an application we have built for summarizing soccer video to illustrate our

techniques. PriCA components are presented in the following.

Block creation The first part of PriCA is a block creation component that

takes a video file as input and automatically splits the video file into

blocks. This can be done in one of many ways. In the first way, the

person interested in summarizing a collection of videos simply says

45

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

that each block is a certain number of frames (e.g. he/she may say

that a block is a collection of 1800 frames, representing one minute of

the video at a playback rate of 30 frames per second).

Alternatively, we may use any classical video segmentation algorithm

to split the video into a set of blocks. Each block is a segment re-

turned by the segmentation algorithm. The video is thus represented

as a sequence of blocks, possibly of varying sizes. In our video summa-

rization application, video segmentation is done by adopting the shot

detection approach proposed by Boccignone et al. [5], that improves

the formal model for video summarization introduced in [3].

A third method is to use audio streams associated with video in order

to perform the desired segmentation. For example, every time we

detect a new speaker, we may create a new segment. Thus for example,

if person p1 speaks during the first 100 frames of the video followed by

person p2 for another 40 frames followed by person p3 for 200 frames,

we would have three segments of video segmented by audio. There are

numerous speaker recognition algorithms [9] in the literature.

A fourth method for video segmentation is to use the audio once again:

the key difference this time is that we associate a vector with each

audio-slice (which is a fixed duration of audio – usually a very small

duration). This vector captures important audio properties such as

pitch, intensity, loudness, etc. When two consecutive audio-slices have

vectors whose Euclidean distance is below a distance threshold, we

merge the slices together and evaluate the vector of the merged slice.

We then check whether the merged slice can be merged with the next

audio slice and so on. When this is not possible, we have a completed

segment and the new slice forms the initial part of a new segment.

Priority assignment The segmented video is then fed into a priority as-

signment module which examines each block and assigns a priority to

it. For example, the person summarizing a soccer video may specify

priorities as follows: goal→ 10, red card→ 7, yellow card→ 6, corner

kick → 3, fight → 10, and so on. The priority assignment component

46

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

can also be implemented in many ways. In our soccer video summa-

rization application, for example, the priority assignment is done by

using image processing algorithms for events such as goal shot detec-

tion or red card detection [8]. Alternatively, in a military surveillance

application that wants to assign high priority to gunshot detection in

a video, an image analysis algorithm that identifies gunshots or explo-

sions may be used to assign high priorities to such events. In a civilian

surveillance application, high priority might indicate events denoting

the entry or exit of a person into or from a monitored site. As a last

resource, a video can also be annotated by a human being.

Peak detection Once the priorities have been assigned to each block, block

IDs (increasing with time), together with their priorities, are shipped

to the peak detection module. This module creates a graph whose x

axis consists of block IDs, and whose y axis shows the priority of each

block. The Peaks() algorithm we have developed can find peaks in

this priority curve. Figure 3.2 shows an example graph and the peaks

involved. Intuitively, a peak consists of a sequence of blocks containing

high priority events.

Block merging The set of blocks thus identified in each peak is then

shipped to the block merging module that examines these blocks and

tries to determine if any of them can be merged. For example, it may

turn out that there may be three blocks – the first containing the

play just before a goal, the second containing the goal itself, while the

third shows the post goal celebration. The block merging algorithm

uses rules to determine conditions under which multiple contiguous

blocks can be merged together into a new block (whose priority equals

the sum of the priorities of the blocks being merged).

Block elimination The set of blocks produced after merging is then shipped

to a block elimination module. This module eliminates blocks whose

priority is too low. For example, it may turn out that 10 merged

blocks are returned after the block merging algorithm and these 10

blocks have a total of 5000 frames. If we want a summary consisting

47

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

of just 3600 frames, we may want to re-examine whether a block of rel-

atively low priority should be eliminated. For example, if we compute

the average priority of the 10 blocks above to be 25 and the standard

deviation to be 3, then we may want to eliminate all blocks with a pri-

ority under 16 (this is the classical statistical model which says that

for a normal distribution, most objects in the distribution must occur

within 3 standard deviations of the mean). Other statistical rules can

also be used here.

Block resizing The next component is the block resizing component. For

example, even after eliminating “low value” blocks above, it may turn

out that we still have 8 blocks containing a total of 4500 frames. This

must somehow be reduced to 3600. The block resizing component

eliminates frames from the blocks in proportion to the priorities of the

blocks involved. For example, let us say that the total priorities of

all the 8 blocks is 800, and that a particular block (containing 1500

frames) has priority 200. Thus, this block accounts for a quarter of the

entire priority of the 4500 frame sample. As a consequence, the block

should be allowed to contribute a quarter of the 3600 frames allowed

in the summary, i.e. 900 frames should be chosen from this block for

inclusion in the summary. Our block resizing algorithm will show how

to select the best 900 frames from the 1500 frame block. The block

resizing component sequences the resized blocks together to create the

final summary.

3.3.2 Details of PriCA Components

In this section, we describe how to implement each module of the PriCA

algorithm. Some of these modules, such as block creation and priority assign-

ment, can be implemented using classical image processing and recognition

algorithms, while others require original algorithms.

3.3.2.1 Block Creation Module

The block creation module can be implemented using any number of

methods including classical segmentation algorithms which have been ex-

48

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

tensively studied in the literature, as discussed in Chapter 2. Hence, we are

only going to describe our implementation of this module.

We have been working with soccer videos and have chosen to segment

them by shot boundaries. In spite of the long research history, the prob-

lem of the shot boundary detection has not been completely solved yet.

Sports video is arguably one of the most challenging domains for robust

shot boundary detection due to

1. strong color correlation between shots, due to a single dominant back-

ground color (soccer field);

2. large camera and object motions;

3. cuts and gradual transitions (such as fades and dissolves) often present

in sports video clips.

To detect shots in soccer videos, we have adapted an algorithm from [5],

based on the observation that frames belonging to the same shot are more

similar than frames from different shots. The heart of the algorithm is based

on the biological mechanisms of visual attention. The term “attention” cap-

tures the cognitive functions that are responsible for filtering out unwanted

information and bringing to consciousness what is relevant for the observer

[29]. Boccignone et al. [5] propose a novel similarity function based on a

combination of the scanpath structure (which describes how the eye focuses

on different parts of an image – the so called Focuses of Attention, FOAs for

short) and color, texture, and shape features of FOAs of each single frame.

The proposed scheme allows the detection of both cuts and dissolves

between shots using a single technique, rather than a set of dedicated meth-

ods. Also, it is well grounded in visual perception theories and allows us to

overcome usual shortcomings of many other techniques proposed so far. Fur-

ther, the proposed focus of attention representation is robust with respect

to smooth view changes.

49

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

3.3.2.2 Priority Assignment Module

The priority assignment module can be implemented using classical ob-

ject/event recognition algorithms [4] which have been extensively studied in

the literature. Hence, we will limit the following discussion to our imple-

mentation of this module.

Automatic event detection in soccer videos is an open problem actively

addressed by several sports institutions. In this paper, we are interested in a

simple detection of such events as “goal”, “celebration”, “yellow card”, and

“red card”. To detect these events, we have used the strategy proposed in [8].

These algorithms aim to aggregate the shots, extracted in the preliminary

shot detection stage, in order to form scenes characterized by the presence

of goal actions and match highlights. Each frame of the extracted shot is

analyzed using a feed-forward neural network with a back-propagation algo-

rithm. The network has been trained considering geometric features, colors

and texture, the presence of players (foreground, portrait or whole figure),

detection of the ball, of the field and of the goal-mouth, detection of red

and yellow cards. Particular attention is given to the audio analysis in or-

der to improve the detection or to detect relevant events such as goals and

celebration: in fact, it is not difficult to believe that in a scene containing

a “celebration” following a goal, the audio signal is inevitably higher than

in normal actions of the game. In particular we have adopted a simple but

efficient RMS calculus. Eventually, the goal event has been characterized

through simple reasoning about the conjunctive simultaneous presence of

several detected events, such as the presence of the player (foreground, por-

trait or whole figure), of the ball, of the field and of the goal area and of the

celebration.

3.3.2.3 Peak Identification Module

Let b1, . . . , bn be the blocks in the video (e.g. after the segmentation

process). Let pi denote the priority of block bi.

Definition 3.12 ((r, s)-peak). Suppose b1, . . . , bn is a video, r ∈ (0, n/2] is

an integer and s ∈ [0, 1] is a real number. Blocks bj , . . . , bj+r are said to be

50

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

an (r, s)-peak iff
∑

j≤i≤j+r pi
∑

j− r
2
≤i≤j+ 3r

2
pi
≥ s

Suppose we wish to check if a sequence of r blocks S1 = bj , . . . , bj+r,

constitutes a peak. The above definition looks at r
2 blocks before the se-

quence as well as r
2 blocks after the sequence, i.e. the sequence S2 =

bj− r
2
, . . . , bj , . . . , bj+r, . . . , bj+ 3r

2
is considered. This latter sequence S2 is

of width 2r. We sum up the priorities of all blocks in S2 – let us call this

sum s2. Likewise, we sum up the priorities of all blocks in S1 and call this

priority s1. Clearly, s1 ≤ s2. If s1
s2

exceeds or equals s, then we decide that

the contribution of the priorities of the peaks in S1 is much larger than that

in S2 and so S1 constitutes a peak.

It is important to note that r and s must be chosen by the application

developer1. We discuss four cases below:

• r, s both large: When r and s are both large, we find segments that

are big (i.e. consist of a large number of blocks) where the priority is

very high throughout this large segment. The disadvantage of having

a large r is that “local” peaks in a sequence of r blocks may get missed.

• r large, s small: This option is not a very good one. If one chooses

s to be small, the number of sequences of blocks recognized as (r, s)-

peaks will be very large.

• r small, s large: In contrast to the first case above, peaks in this case

will consist of a relatively small number of blocks, but the peaks are

unlikely to contain further subpeaks within them (which can happen

in the first case above). When r is small, one may be tempted to infer

that lots of (r, s)-peaks will be found – however, this really depends

on s. When s is large, it seems unlikely that lots of (r, s)-peaks will

be found unless the priority of blocks is more or less even throughout

the video.

1Sometimes we use the term application developer to denote the person who is in charge
of setting up the prototype for a particular application. We do not expect the end user to
tune certain parameters.

51

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

2

4

6

8

10

2

4

6

8

10

priority

blocks

peaks with r=6,s=0.65

priority

blocks

peaks with r=4,s=0.6

0.66 0.63 0.610.6

0.680.78

Figure 3.2: Example of peaks in the priority function

• r, s both small: We do not recommend this option – small values of

both r and s are likely to produce a vast number of (r, s)-peaks.

Our recommendation is to pick r small (but not too small) and s large.

Figure 3.2 shows two examples of peaks corresponding to (r, s) values of

(6, 0.65) and (4, 0.6) respectively. Dotted rectangles signify peaks, with s-

values shown for the most significant peaks. As seen from the figure, peaks

often occur in clusters. While the upper graph corresponds to wide (r = 6)

peaks, parameters in the lower graph allow for narrower (r = 4) and slightly

lower (s = 0.6 as opposed to s = 0.65) peaks. This is consistent with our

discussion above that when s drops in value, the number of peaks goes up.

As result, the lower graph contains more peaks and smaller clusters.

Here is a simple algorithm that, given a sequence of video blocks and r, s

values, will find all blocks that belong to (r, s)-peaks:

Algorithm Peaks(v,r,s)

v is a sequence of card(v) block-priority pairs

52

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

r is the peak width

s is the peak height

begin

Res := ∅

for each j ∈ [r, card(v)− r] do

center := 0

total := 0

for each 〈 bi, pi 〉 ∈ v such that i ∈ (j − r, j + r] do

total := total + pi

end for

for each 〈 bi, pi 〉 ∈ v such that i ∈
`

j − r
2
, j + r

2

˜

do

center := center + pi

end for

if center
total

≥ s then

Res := Res ∪ {〈 bi, pi 〉 ∈ v | i ∈
`

j − r
2
, j + r

2

˜

}

end if

end for

return Res

end.

The Peaks() algorithm slides a 2r-wide window along a sequence of

blocks, computing the total sum of block priorities in that window (total).

It then computes the sum of block priorities in a narrower r-wide window

in the middle of the 2r-wide window (center). When the ratio of these two

sums center
total

exceeds the threshold s, all blocks in the r-wide window are

picked as a peak.

Example 3.1. Consider the very small fragment shown in Figure 3.3. At

some time, the Peaks() algorithm will focus its window of length 2r on the

segment from j − r
2 to j + 3r

2 shown in the figure. It will compute the sum

of the priorities of the blocks in the entire window of length 2r (which is

5 + 41 + 8 = 54) as well as the sum of the priorities of the window of length

r in the center of the window of length 2r – the priority there is 41. As a

consequence, the ratio of these is 41
54 = 0.76. If 0.76 exceeds the threshold s

that has been chosen, then the sequence of blocks from j to j+r is considered

a peak.

Example 3.2. Consider the 35 block sequence shown in Figure 3.4. We now

describe how the Peaks() algorithm finds the peaks in this figure. Suppose

r = 6 and s = 0.8.

53

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

jj−r/2 j+r j+3r/2

sum=41sum=5 sum=8

41/(5+41+8)=0.76

Figure 3.3: Peaks() algorithm analyzing a peak

• Window from 1 − 12: We initially start by looking at the first 12

blocks. The sum of the priorities of these 12 blocks is 59. If we look

at the window of size 6 centered at the middle of the first 12 blocks

(these are the blocks 4− 9), the sum of the priorities is 36. The ratio,

36
59 is below s = 0.8.

• Window from 2 − 13: We now slide the window of length 2r one

place to the right. At this time, the sum of the 12 block window is 60

and the sum of the 6 center blocks (blocks 5− 10) is 44. The ratio is

therefore 44
60 which is below s = 0.8.

• Window from 3 − 14: We now slide the window of length 2r one

place to the right. At this time, the sum of the 12 block window is

58 and the sum of the 6 center blocks (blocks 6− 11) is 48. The ratio

is therefore 48
58 which is greater than s. Therefore, blocks 6 − 11 are

returned as a peak.

The algorithm continues in a similar fashion, finding peaks in blocks

18− 23 (r = 25
29) and 28− 33 (r = 39

48).

Example 3.3. Let us now see what happens with Example 3.2 when the

threshold s is dropped to 0.4.

54

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

2

4

6

8

10

priority

blocks

peaks

15 20105 25 30

Figure 3.4: Result of running Peaks() Algorithm

• Window from 1− 12: The ratio, 36
59 , for the first 12 blocks is above

s = 0.4. Hence, blocks 4− 9 are returned as a peak.

• Window from 2 − 13: We now slide the window of length 2r one

place to the right. The ratio 44
60 also indicates a peak, as it is bigger

than s = 0.4. Thus, we also return blocks 5− 10.

• Window from 3 − 14: We now slide the window of length 2r one

place to the right. Again, the ratio 48
58 indicates a peak, returned as

6− 11.

As one can see, the peaks detected by the algorithm in this case are

much wider than the peaks in Example 3.2. In fact, most blocks shown in

Figure 3.4 will be selected as peaks. This is a typical result of lowering the

detection threshold s.

The Peaks() algorithm has complexity of O(r · card(v)) – hence it is

linear with respect to the number of input blocks.

Note that the performance of the Peaks() algorithm can be improved

by avoiding computation of center and total iteratively in each iteration

of the outer loop. After the first iteration of the outer loop, these values

can be updated in constant time. Though including these optimizations

complicates the algorithm somewhat, it is well worth doing – as shown in

the algorithm OptPeaks() below.

55

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

Algorithm OptPeaks(v,r,s)

v is a sequence of block-priority pairs

r is the peak width

s is the peak height

begin

Res := ∅

center := 0

total := 0

for each 〈 bi, pi 〉 ∈ v such that i ∈ [1, 2 · r] do

total := total + pi

end for

for each 〈 bi, pi 〉 ∈ v such that i ∈
`

r
2
, 3r

2

˜

do

center := center + pi

end for

if center
total

≥ s then

Res := Res ∪ {〈 bi, pi 〉 ∈ v | i ∈
`

r
2
, 3r

2

˜

}

end if

for each j ∈ [2 · r + 1, card(v)] do

total := total + pj − pj−2·r

center := center + pj− r

2
− pj− 3r

2

if center
total

≥ s then

Res := Res ∪ {〈 bi, pi 〉 ∈ v | i ∈
`

j − 3r
2

, j − r
2

˜

}

end if

end for

return Res

end.

The OptPeaks() algorithm has complexity of O(card(v)) – hence while

its complexity is linear with respect to the number of input blocks, it does

not depend on the window size r as in the case of Peaks()’s complexity.

3.3.2.4 Block Merging Module

The peak identification algorithm discards blocks that are not (r, s)-

peaks for the selected r, s values. Let Peaks(v, r, s) be the set of all blocks

from the original video that contain peaks.

Consider the set {(bi, bi+1) |bi, bi+1 ∈ Peaks(v, r, s)} of all pairs of blocks

that are adjacent to each other. In general when adjacent blocks are peaks,

there is some possibility that they may describe the same event. For ex-

ample, in our soccer video summarization application, we may have one

block (peak block) that describes a goal event. The camera may have been

switched to another block that also describes the same goal – however, the

56

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

segmentation algorithm creating the blocks may treat these events as dif-

ferent events when in fact they describe the same event. This may be due

to the fact that the segmentation algorithm is based on shot detection algo-

rithms or other similar algorithms that solely use visual features to detect

segments. The main goal of the block merging module is to merge adjacent

blocks that may be very similar, so that repeating blocks can be treated as

a single block in the later processing steps (such as resizing).

A block similarity function is a function sim that takes two blocks as

input and returns a non negative real number as output. The bigger the

number returned, the more similar the blocks are considered to be. There

are many ways in which we could implement block similarity functions. Here

are a few examples:

1. simidiff . One possibility is that we could use any classical image

differencing algorithm idiff [23] to return the similarity between two

frames and we could set the similarity between the two blocks to be

the similarity between the two most similar frames, drawn from each

block.

2. simrandom idiff . An alternative is that the similarity algorithm ran-

domly selects k frames from each block (where k is set to some small

number) and then finds two frames, one from each block, that are

maximally similar. This is a variant of the above algorithm.

3. simaudio. We could use an audio detection algorithm that extracts the

audio associated with each frame and then uses audio features such as

pitch, loudness, etc. to associate a vector with the entire block. The

similarity between the two blocks is some function that is inversely

proportional to the Euclidean (or other) distance measure between

the two blocks.

4. simtext. In the event that the videos in question have an accompanying

text transcript, we could identify the text blurb associated with each

of the two blocks and set the similarity of the two blocks to be equal

to the similarity between the two text transcripts using any classical

57

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

method to evaluate similarities between text documents.

5. simkeywords. Suppose we have a given set K of keywords of interest.

For each block b, we associate a vector ~b of length |K| – the i’th entry

in the vector denotes the frequency of occurrences of the i’th keyword

(or its synonyms). We then merge two adjacent blocks b1, b2 iff the

Euclidean distance between their associated vectors is below a given

threshold. Note that the keyword vector can be replaced by other

vectors traditionally used in information retrieval [62].

6. simvec. As is often common in image processing, we could associate

a color and/or texture histogram with each block and return the sim-

ilarities between the histograms using root mean squared distance or

the L1 metric [63].

To define the block merging process, let us remark that Peaks(v, r, s)

returns a set of block-priority pairs of the form 〈 bi, pi 〉 – as opposed to

a set of blocks – and assume that adjacent blocks can be concatenated

with the ⊕ operator. The block merging algorithm then takes as input,

any block similarity function between blocks (those listed above are just a

few examples, many others are also possible), together with a set of block-

priority pairs, and returns a new set of merged blocks-priority pairs, as

follows.

Algorithm Merge(v,sim(),d)

v is a sequence of block-priority pairs

sim() is a similarity function on blocks

d is the merging threshold

begin

Res := ∅

B := first block-priority pair 〈 b1, p1 〉 ∈ v

for each 〈 bj , pj 〉, 〈 bj+1, pj+1 〉 ∈ v do

if sim(bj , bj+1) ≥ d then

B := 〈B.b⊕ bj+1, B.p + pj+1 〉

else

add B to the tail of Res

B := 〈 bj+1, pj+1 〉

end

end for

add B to the tail of Res

58

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

return Res

end.

The Merge() algorithm considers all pairs of blocks bj , bj+1, concate-

nating them together into a bigger block B.b, as long as sim(bj , bj+1) value

stays above the threshold d. The priority B.p of the newly merged block is

computed as the sum of individual priorities of its parts.

Example 3.4. Let us continue with Example 3.2. The peaks identified are

6− 11, 18− 23, and 28− 33. The Merge() algorithm merges these blocks as

follows. For the sake of this example, let us define sim(b1, b2) = 1− |p1−p2|
p1+p2

,

where p1 and p2 are priorities of blocks b1 and b2 respectively, and set the

threshold d = 0.9. Given these parameters, blocks 8 − 10 will be merged

into a single new block with p = 28 and so will blocks 19 − 21 (p = 16),

28 − 29 (p = 11), and 30 − 32 (p = 33). Thus, the total number of blocks

decreases from 18 to 11 after merging.

The Merge() algorithm has linear complexity with respect to the number

of blocks in its input.

3.3.2.5 Block Elimination Module

Suppose B is the set of blocks from the original video after the block

merging step has been applied to the set of blocks in Peaks(v, r, s). In the

block elimination module, we would like to remove from this set all blocks

whose priorities are less than a certain threshold. In addition, we would

like to consider eliminating blocks that are repetitive. For example, in our

soccer application, we may have replays of a goal long after the goal was

scored. Both the original goal and the later replay may have high priorities,

but our summary should probably not include both of them.

The block elimination module may use a similarity function similar to

those used in the block merging module to first identify similar blocks. Any

similarity function sim designated by the application developer may be used

here in the following manner.

We say that blocks b1, b2 are equivalent, denoted b1 ∼ b2, w.r.t. sim

iff sim(b1, b2) ≥ t for some threshold t. In other words, the blocks are

59

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

considered similar if the similarity function assigns them a similarity score

that exceeds a given threshold.

One may think that the ∼ is an equivalence relation, but in general it

may not be so. The reason for this is that the fact that the similarity between

b1 and b2 exceeds threshold t and the fact that the similarity between b2 and

b3 exceeds threshold t does not imply that the the similarity between b1 and

b3 exceeds threshold t. As a consequence, we need to define the concept of

a cluster w.r.t. a threshold t.

Definition 3.13 (t-cluster). Suppose B is a set of blocks and sim is a

similarity function. A t-cluster of B is any set B ⊆ B such that for all

b1, b2 ∈ B, sim(b1, b2) ≥ t.

In other words, a t-cluster consists of blocks that are highly similar to

each other (i.e. have similarity level t or more according to the selected

similarity function).

Given a set of blocks B returned by the block merging module, our

goal is to split B into t-clusters. The key idea is that when a cluster has

lots of blocks, it may be possible to just retain one of those blocks rather

than keeping all of them as these blocks are all deemed to be similar. This

introduces the concept of a t-partition given below.

Definition 3.14 (t-partition). A t-partition of B is a set B1, . . . ,Br where

B1 ∪ . . . ,∪Br = B and Bi ∩ Bj = ∅ and for all 1 ≤ i ≤ r, Bi is a t-cluster.

Intuitively, a t-partition splits a set of blocks into clusters Bi such that

each cluster is a t-cluster. It is easy to see that a valid t-partition of B

simply consists of the set { {b} | b ∈ B }. In other words, if we simply split

B by taking each element of B and making it into a singleton set cluster,

we would have a valid t-partition. Clearly, this defeats our intent to group

multiple blocks together. To ensure this, we need to define the concept of a

maximal t-partition.

Definition 3.15 (maximal t-partition). Suppose B1, . . . ,Br is a t-partition

of B. We say that B1, . . . ,Br is a maximal t-partition iff there are no 1 ≤

i < j ≤ r such that Bi ∪ Bj is also a t-cluster.

60

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

A maximal t-partition forces clusters that can possibly be merged to in

fact be merged.

Our goal now is to first find a maximal t-cluster of B where B is the set of

blocks returned by the block merging step. This is relatively easy: suppose

B = {b1, . . . , bm}. We first put b1 into a cluster by itself and then we check

if b2 has similarity level t or more with this cluster. If so, we add b2 into

the cluster – if not, we go on to b3. This process is repeated till we add as

many blocks to the cluster associated with b1 as possible while ensuring that

this cluster is a t-cluster. We then continue to repeat this process to create

clusters with the blocks not in this initial cluster. Finally, the process is

completed by selecting one block from each cluster and eliminating all other

blocks, as shown in the following algorithm.

Algorithm Cluster(v,t)

v is a sequence of block-priority pairs

t is the clustering threshold

begin

Res := ∅

while v 6= ∅ do

B := ∅

for each b ∈ v do

if minb′∈Bsim(b, b′) ≥ t then

B := B ∪ {b}

v := v \ {b}

end if

end for

Res := Res ∪ {highest priority block from B}

end while

return Res

end.

It is easy to see that the complexity of the Cluster() algorithm above

is proportional to the number of blocks in the input to the algorithm – as

such Cluster() runs very fast indeed.

Once the clusters are identified, our block elimination module picks one

element from each cluster. In a sense, this one element is a representative of

that cluster. Selecting an element from a given cluster can be done in many

possible ways:

61

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

1. Random selection. One option is to randomly choose any member of

the cluster.

2. Prioritized selection. Another option is to select a member of the

cluster that has maximal priority. This strategy has the advantage

that even though all blocks in a cluster are similar, one may have

slightly higher priority than another and we might as well choose it.

3. Prioritized ratio selection. Another option is to select a member of a

cluster that has the maximal priority vs. size ratio. As blocks can have

varying sizes, it may turn out that the block with the largest priority

is also pretty large – in this case, it may be better to choose a smaller

block with fairly high priority as this smaller block contributes less

frames towards the overall summary, thus allowing blocks from other

clusters to be utilized.

4. Size-oriented selection. Another option is to merely be parsimonious

and say that the block with the smallest size in each cluster will be

selected.

Other strategies are also possible: rather than selecting one block from

each cluster, we may be able to select multiple blocks. It could well be

the case that a given B has only five clusters. In this case, any of the

mechanisms to select a single block from each cluster yields a total of five

blocks and it is conceivable that these five blocks don’t jointly account for

the total summary length. Consider any strategy to select blocks from a

cluster, and suppose we have split B into clusters B1, . . . ,Br. In this case,

we could iteratively make one pass through the clusters B1, . . . ,Br and select

a block from each cluster. If at the end of this, the total size of the selected

blocks is below k×sf where sf ≥ 1 is some scaling factor, then we continue

to select blocks from the clusters B1, . . . ,Br till this condition is violated.

At this point, we stop and return all the selected blocks – let S denote this

set. It is admissible for the scaling factor to be greater than or equal to 1

because the last component of our architecture may resize blocks if needed.

After removing repetitions, our block elimination module computes the

62

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

mean µ and standard deviation σ for the priorities of blocks in S. Given a

real number m ≥ 0, let us define a function Drop(S, m) that drops from S

all blocks whose priorities are less than µ−mσ. Thus, the result of

Drop(Cluster(Merge(Peaks(v, r, s), d), t), m)

will be a set of all non-repeating high-priority merged peaks taken from v,

with respect to the r, s, d, m parameters. Alternatively we may apply the

Drop() algorithm to the result of Merge(), before clustering blocks.

Example 3.5. Let us continue with Example 3.4 and assume that there are

no repetitive blocks. The average priority of the peaks is µ = 122
11 = 11 and

the standard deviation is σ =
√

1089
11 = 10.4. If we choose m = 0.25 and

thus delete all blocks whose priorities are less than 8.4, the remaining blocks

will be 8− 10, 19− 21, 28− 29, and 30− 32. Notice that these are merged

blocks whose priorities have been bumped up during the merging process.

Due to its iterative nature, the Drop() algorithm has complexity of

O(card(v)) – hence it is linear with respect to the number of input blocks.

3.3.2.6 Block Resizing Module

Even after eliminating some low-priority blocks in the previous step,

the total frame count of the remaining blocks may still exceed the limit k

imposed in the beginning of this paper. In this case, we have to truncate

some blocks to fit the limit. Clearly, blocks with higher priorities must have

more prominence in the summary and thus occupy a larger percentage of

frames. We then devise an algorithm that allocates to each block a number

of frames proportional to its priority and truncates blocks to fit the limit of

k frames.

Algorithm Resize(v,k)

v is a sequence of block-priority pairs

k is the desired summary length

begin

Res := ∅

ptotal :=
P

〈 b,p 〉∈v p

p′ := 0

63

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

k′ := 0

for each 〈 b, p 〉 ∈ v do

if len(b) ≤ p·k
ptotal

then

Res := Res ∪ {〈 b, p 〉}

v := v \ 〈 b, p 〉

p′ := p′ + p

k′ := k′ + len(b)

end if

end for

ptotal := ptotal − p′

k := k − k′

for each 〈 b, p 〉 ∈ v do

alloc := round
“

p·k
ptotal

”

b′ := b truncated to alloc frames

Res := Res ∪ {〈 b′, p 〉}

ptotal := ptotal − p

k := k − alloc

end for

return Res

end.

The Resize() algorithm collects output blocks in Res and starts by copy-

ing all blocks whose length len(b) is smaller than the number of frames they

would be allocated in the summary
(

p·k
ptotal

)

. It then computes the remain-

ing number of unallocated frames in k. All remaining blocks are truncated

proportionally to their priorities to fit into remaining k frames.

Example 3.6. Let us continue with Example 3.5. There are four blocks

that have survived merging and elimination:

• blocks 8− 10 with priority p = 28,

• blocks 19− 21 withe priority p = 16,

• blocks 28− 29 with priority p = 11,

• blocks 30− 32 with priority p = 33.

Notice that all four are merged blocks, hence there are ranges instead

of single numbers. Assuming that each “original” block corresponds to a

single frame and the user requested a summary of 5 frames, let us see what

the Resize() algorithm does to our summary. First of all, given the total

64

3.3 The Priority Curve Algorithm (PriCA) for Video Summarization

priority ptotal = 88, all blocks will have to be resized. Block 8 − 10 has an

allocation of 5·28
88 = 1.59 frames. As we cannot split frames, this block has

to be truncated to two frames 8 − 9. Block 19 − 21 has an allocation of

3·16
60 = 0.8 and therefore gets truncated to a single frame 20. By repeating

this process, we also obtain frames 28 and 31. Thus, the final summary is

made of frames 8, 9, 20, 28, 31.

The Resize() algorithm has complexity of O(card(v)) – hence it is linear

with respect to the number of input blocks.

65

Chapter 4

Automatic Creation of
Stories

4.1 Introduction

There are numerous applications where there is a need to rapidly infer

a story about a given subject – a person, an event, an artifact or a place

– from a given set of potentially heterogeneous data sources. For example,

consider a person walking through the archaeological site at Pompeii who

encounters an painting labeled with a simple statement such as “Death of

Pentheus”. Though a casual tourist may be satisfied with the knowledge

that there is a beautiful painting depicting some unfamiliar event, a student

or a person with a deeper interest in culture may be unsatisfied. He/she

may want to know more about Pentheus, events surrounding his death, etc.

In the same vein, consider a police officer who has to serve a warrant at a

particular address. The police officer may want to get the quick story on

this address: (i) who lives there? (ii) what can be said about these people?

(iii) who lives in the neighborhood? (iv) what is their background? And so

on.

What constitutes a story may vary dramatically from one example to

another. In the case of Pompeii, users may be interested in cultural, histori-

cal, mythological, and artistic aspects of the entities about whom stories are

being woven. On the other hand, these aspects may not be of great interest

to the police officer who instead may want to assess threats existing in the

66

4.1 Introduction

area. Thus, what goes into a story depends not only on the basic facts about

the subject of interest, but also on the subject’s domain and user’s interests.

There are two other important aspects of stories: they must be succinct

and they must allow the user to explore different facets of the story that are

of interest to her. The police officer probably wants just the pertinent facts,

not a long complex story about the genealogy of the residents of the house

he is going to.

In this work, we formally define a story to be a set of facts about a given

subject that satisfies a “story length” constraint. An optimal story is a story

that maximizes the value of an objective function measuring its quality and

its ability to satisfy user’s needs. We present algorithms to extract stories

from text and other data sources. We also develop an algorithm to compute

an optimal story, as well as three heuristic algorithms to rapidly compute

a suboptimal story. The proposed Story framework supports the goals

of succinctness and exploration and creates stories with respect to three

important parameters analogous to those presented in Chapter 3 for the

video summarization: the priority of the story content, the continuity of the

story, and the non-repetition of facts covered by the story.

We have implemented a prototype Story system and applied it to sev-

eral scenarios, among which the archaeological site of Pompeii. Our Story

system allows us to deliver stories over both wired and wireless networks

to multiple heterogeneous devices such as computers, internet terminals,

and PDAs. We run experiments to show that constructing stories can be

efficiently performed and that the stories constructed by these heuristic al-

gorithms are high quality stories.

The organization and key contributions of this chapter are as follows:

1. In Section 4.2, we present the concept of a story schema and story

instance. Story schemas and instances can be applicable to diverse

data sources. Informally speaking, a story is a set of facts obtained

from a set of data sources.

2. Section 4.3 introduces optimal stories and the story computation prob-

lem and shows that optimal story computation is NP-complete.

67

4.2 Story Schema and Instance

3. In Section 4.4, we develop the OptStory algorithm which is guaranteed

to find an optimal story. As the optimal story computation problem is

NP-complete, this algorithm is inefficient. We therefore develop three

heuristic algorithms – OptStory+, GenStory, and DynStory.

4. In Section 4.5, we describe how an ordered collection of facts is ren-

dered into an actual narrative in English or other language.

Furthermore, in Chapter 5, we show how to extract data (i.e. facts)

from heterogeneous data sources including text sources and relational/XML

sources, while Chapter 7 presents experiments that attempted to measure

subjective qualities of the stories produced by our algorithms and discusses

experimental results.

4.2 Story Schema and Instance

In this section, we describe concepts of a story schema and a story in-

stance. We assume the existence of some set E whose elements are called

entities.

Intuitively, entities describe the objects of interest. In a museum, the

objects of interest could be all the known people depicted by images or

sculptures shown in the museum, as well as all the other people related to

those people in some way. Additionally, the set of entities could include

all places depicted. In the case of the police officer, entities of interest

could include all people about whom the police have information. Note that

there is no need to explicitly enumerate this set of entities – they could, for

example, be discovered by an algorithm seeking entities [6].

Definition 4.1 (ordinary attributes). Suppose E is a set of entities. We

assume the existence of a universe A whose elements are called ordinary

attributes. Each attribute A has an associated domain dom(A). We say

that A is a set of ordinary attributes associated with the set E of entities if

E ⊆
⋃

A∈A dom(A).

The above requirement merely ensures that each entity can be charac-

terized by the values of ordinary attributes.

68

4.2 Story Schema and Instance

Intuitively, the story about Pentheus may have many ordinary attributes.

One ordinary attribute might be mother – the domain of mother could be

the set of all alphabetical strings representing female first names. The value

of this attribute could be the string “Agave”. Attributes do not need to be

elementary types. An attribute such as persons could have as its domain,

the powerset of the set of names of people known in Greek Mythology. In the

Pentheus example, the value could be {“Pentheus”, “Agave”, “Maenads”}

– note that Maenads is not one person, but rather a collective name for a

group of people.

Notice that it is entirely possible that the value of an attribute could be

an entity by itself and there may be a story about this entity which involves

other entities as well. In the Pentheus example, Agave (his mother) could

be an entity about whom many attributes have known values. However, the

attribute occupation for Pentheus may have the value “king” which is in

dom(occupation) but is not an entity.

There are many cases where we may have multiple values for an attribute

and want to generalize them into one.

Definition 4.2 (generalization function). Suppose A is an ordinary at-

tribute. Then a generalization function for attribute A is a mapping ΓA

from 2dom(A) to dom(A).

For example, suppose we have an attribute called occupation whose

domain is the set of all strings representing an occupation. A generalization

function Γoccupation may map a set of strings of the form “king of . . .” to a

single string “king” This is just one example of a generalization function –

many more are possible.

In the above discussion, attributes have invariant values. However, there

are many situations where attributes may have time-varying values. For

example, Pope Paul III may have an occupation attribute with the value

“Cardinal” from 1493 to 1533 and “Pope” from 1534 to 1549 – we have

ignored exact dates of ascension here and just approximated the years. In

order to express this kind of information, we introduce the concept of a

time-varying attribute.

69

4.2 Story Schema and Instance

Definition 4.3 (time-varying attribute). A time-varying attribute is a pair

(A, dom(A)) where A is the name of the attribute and dom(A) is the domain

of values for the attribute.

A time-varying attribute looks just like an ordinary attribute. However,

a value for a time varying attribute associates an interval.

Definition 4.4 (timevalue). A timevalue for a time-varying attribute

(A, dom(A)) is a set of triples (vi, Li, Ui) where vi ∈ dom(A) and Li, Ui are

either integers or the special symbol ⊥ (denoting unknown). A timevalue is

fully specified iff there is no triple of either the form (v1,⊥, Ui) or (vi, Li,⊥)

or (vi,⊥,⊥) in it.

Intuitively, if an object has a time-varying attribute (A, dom(A)) with

a timevalue of {(v1, 15, 20), (v2, 25, 30)} this means that the attribute has

value v1 between times 15 and 20 and value v2 between times 25 and 30.

In the case of Pope Paul III, the timevalue of occupation is given by

{(“Pope”,1534,1549),(“Cardinal”,1493,1533)}.

Definition 4.5 (consistent timevalue). A timevalue tv for a time-varying at-

tribute (A, dom(A)) is consistent iff there is no pair (v1, L1, U1), (v2, L2, U2)

in tv such that v1 6= v2 and L1, U1, L2, U2 6= ⊥ and such that the intervals

[L1, U1] ∩ [L2, U2] intersect.

Intuitively, consistency of a timevalue ensures that the attribute does

not have two distinct values at the same time (e.g. Pope Paul III could

not be both pope and cardinal at the same time). Thus, the timevalue

{(“Pope”,1534,1549),(“Cardinal”,1493,1533)} for Pope Paul III’s occupation

attribute is consistent.

Note, however, that had we wanted to allow a person to have multiple

occupations at the same time, we could simply have defined the domain of

occupation to be the powerset of the set of all strings rather than the set

of all strings.

Note 4.1. Throughout the rest of this paper, we will abuse notation and use

the term attribute to refer to both ordinary and time-varying attributes.

The context will determine the usage.

70

4.2 Story Schema and Instance

Just as we have defined generalization functions for ordinary attributes,

we can also define generalization functions for time-varying attributes.

Definition 4.6 (generalization function (cntd.)). Suppose (A, dom(A)) is

a time-varying attribute. A generalization function for A is a mapping

ΓA from a timevalue for attribute (A, dom(A)) to a singleton timevalue

for attribute (A, dom(A)) such that if ΓA(X) = {(v, L, U)} then [L, U] ⊆
[

min(vi,Li,Ui)∈XLi, max(vi,Li,Ui)∈XUi

]

and there exists (vj , Lj , Uj) ∈ X such

that [L, U] ∩ [Lj , Uj] 6= ∅.

For example, a generalization function may map the set of time val-

ues {(“Bishop of Massa”,1538,1552),(“Bishop of Nice”,1533,1535)} to the

singleton timevalue {“Bishop”,1533,1552)}.

Note that if the definition of generalization function for time varying

attributes did not require that ∃(vj , Lj , Uj) ∈ X | [L, U] ∩ [Lj , Uj] 6= ∅ then

we would have a problem. The generalization function could, for example,

return {(“Bishop”,1536,1537)} even though its input said nothing about the

time interval from 1536 to 1537.

The concept of a story schema below specifies the entities of interest,

and the attributes of interest for a given story application.

Definition 4.7 (story schema). A story schema consists of a pair (E ,A)

where E is a set of entities and A is a set of attributes associated with E .

We will use Ao and Atv to denote the ordinary and time-varying attributes

in A repectively.

For example, if the Sito Archaeologico di Pompei wishes to allow visitors

to learn everything about archaeological ruins at Pompeii, then the set of

entities could be defined as follows: (i) the set of all objects in Pompeii that

are of interest (including paintings, sculptures, etc.), plus (ii) the objects and

events depicted in those paintings, plus (iii) any entities related to entities

in the previous two categories. Clearly, the museum workers can only define

the first two items in the above list, while the story creation system will

automatically derive all other entities using the third criterion.

Definition 4.8 (story instance). A story instance w.r.t. story schema (E ,A)

is a partial mapping I which takes an entity e ∈ E and an attribute A ∈ A

71

4.3 Story Computation Problem

and returns as output, a value v ∈ dom(A) when A is an ordinary attribute,

and a timevalue {(v, L, U) |v ∈ dom(A)} when A is a time-varying attribute.

We use the notation I(e, A) = ⊥ to indicate that I(e, A) is undefined.

Attributes like daughter may be set valued. For example, Agamemnon had

several daughters – amongst them Elektra and Iphigenia. In this case, the

attribute daughter should have a set valued domain as its type – and thus,

an instance would say that the daughter attribute of the entity Agamemnon

has the value {“Elektra”,“Iphigenia”}. Thus, requiring that each attribute

has at most one value per entity leads to no loss of generality as the attribute

can assume set values.

Example 4.1 (Pentheus painting). The table below shows other entities

related to a Greek Mythology character called Pentheus who is depicted in

a stunning painting in Pompeii.

Entity Attribute Value

Bacchus occupation “god”
enemy {(“Pentheus”,⊥,⊥)}
friends {(“Maenads”,⊥,⊥)}

Maenads occupation {(“priestess”,⊥,⊥)}
friends {(“Bacchus”,⊥,⊥)}

Note 4.2. It is often convenient to think of a story instance as a set of entity-

attribute-value triples (EAV for short). An EAV triple w.r.t. an instance I

of a story schema (E ,A) is a triple 〈 e, A, v 〉 such that e ∈ E , a ∈ A and

v = I(e, A). Let EAVI denote the set of all the EAV triples w.r.t. I. We

will often abuse notation and switch between these two representations.

4.3 Story Computation Problem

The notion of a story instance does not allow us to include generalized

tuples or to handle conflicts. To introduce these features, we will need to

define several specialized instances.

In this section, we first define the concepts of a valid instance and a

full instance based on a set of data sources. Intuitively, these concepts are

used to collect all facts reported by a set of data sources. We then define

72

4.3 Story Computation Problem

a closed instance by allowing generalization. However, given any topic or

entity, there may be many stories that can be associated with that topic

or entity. To address this, we define continuity, priority, and non-repetition

criteria to test if one story is better than another. Later, in Section 4.4, we

will present several algorithms for story computation.

4.3.1 Valid and Full Instances

In order to create a story from a story schema, one may need to access a

variety of sources. In the case of Pentheus, we may need to access electronic

Greek texts to find out more about him. Let us assume that our data

sources have an associated application program interface (this is a reasonable

assumption as most commercial programs do have APIs). The source access

table describes how to extract an attribute’s value using a source’s API.

Definition 4.9 (source access table). A source access tuple sat is a triple

(A, s, fA,s) where A is an attribute name, s is a data source, and fA,s is

a partial function (body of software code) that maps objects to values in

dom(A) when A is an ordinary attribute, and to time values over dom(A)

when A is a time-varying attribute. A source access table SAT is a finite set

of source access tuples.

The source access table does not, of course, need to be populated with

a function for each source and each attribute. Some sources may provide

some information, while others may not. The functions fA,s are partial

functions because some sources may not have information about certain

entities. When implementing the Story system, we created several fA,s

functions capable of extracting data from relational tables, XML hierarchies,

and HTML documents returned by the Google search engine1. In Chapter 5,

we will describe in detail our algorithms to extract entity-attribute-value

triples from text (e.g. Web) sources. We will also outline algorithms to

extract entity-attribute-value triples from relational and XML sources.

1Our algorithm can be used in conjunction with any algorithm for topic discovery [2]
and can be applied to any corpus of documents whatsoever, rather than applying them to
web documents whose accuracy is questionable.

73

4.3 Story Computation Problem

Note 4.3. The developer of an application requiring stories about a certain

domain needs to specify the functions fA,s in the source access table. Such

a function must return timevalues when A is a time-varying attribute. This

can be quite difficult. For instance, determining when Pentheus was killed

from a text document is a nontrivial task. Had we allowed timevalues to

be more general (e.g. to say Pentheus was killed after some other event, or

to say Pentheus was killed within 5 years of yet another event), then the

functions fA,s would need to infer this even more complex information from

textual sources. This incredibly challenging problem is beyond the scope of

this work.

Definition 4.10 (valid instance). Suppose (E ,A) is a story schema, SAT is

a source access table, and I is an instance. I is said to be valid w.r.t. SAT iff

for every entity e ∈ E and every attribute A ∈ A, if I(e, A) is defined, then

there is a triple of the form (A, s, fA,s) in SAT such that fA,s(e) = I(e, A).

Intuitively, the above definition says that an instance is valid w.r.t. some

source access table if every fact (i.e. every assignment of value to an at-

tribute for an entity) is supported by at least one source. Note that different

sources may disagree on the value of a given attribute for a given entity. For

instance, one source may say Pentheus’ mother is Agave, while another may

say it is Hera. We now define the concept of a full instance that collects

together the set of all values for attribute A of entity e from all sources.

Definition 4.11 (full instance). Suppose (E ,A) is a story schema and SAT

is a source access table. Suppose I is an instance w.r.t. (E ,A′) where the

attributes in A′ are the same as the attributes in A with one difference –

if an attribute A ∈ A has dom(A) = 22S
, then the corresponding attribute

A′ ∈ A′ has dom(A′) = dom(A). Otherwise, dom(A′) = 2dom(A), i.e. the

powerset of the original domain. I is said to be the full instance w.r.t.

(E ,A) and SAT iff for all entities e ∈ E and attributes A ∈ A,

I(e, A) =

{

⋃

∀s | (A,s,fA,s)∈ SAT
fA,s(e) if dom(A) = 22S

{fA,s(e) | (A, s, fA,s) ∈ SAT} otherwise
.

Intuitively, the above definition says that an instance is full when it accu-

mulates all the facts reported by various sources, independently of whether

74

4.3 Story Computation Problem

these facts are conflicting or not. We will describe how conflicts may be

resolved later on in this chapter (Definition 4.14).

4.3.2 Stories

In this section, we define how to generalize information contained in

full instances, resolve conflicts in this information, and create stories out of

instances. A generalized story schema is a story schema, together with an

equivalence relation on attribute domains and a generalization function.

Definition 4.12 (generalized story schema). A generalized story schema is a

quadruple (E ,A,∼,G) where (E ,A) is a story schema, ∼ is a mapping which

associates an equivalence relation on dom(A) with each attribute A ∈ A

and G is a mapping which assigns, to each attribute A ∈ A, a generalization

function ΓA for attribute A.

Intuitively, a generalized story schema consists of a regular story schema,

a function that associates an equivalence relation with each attribute do-

main and a function that associates a generalization function with each at-

tribute domain. An equivalence relation on the domain dom(A) of attribute

A specifies when certain values in the domain are considered equivalent.

For example, we may consider string values “king” and “monarch” to be

equivalent in dom(occupation). For a time-varying attribute, we may con-

sider (“king”, L, U) and (“monarch”, L′, U ′) to be equivalent independently

of whether L = L′ ∧ U = U ′ is true or not. Likewise, in the example of Pope

Paul III, the equivalence relationship may say that the triplet (“Bishop of

. . .”,-,-) is always equivalent to other triplets of the form (“Bishop of . . .”,-,-)

independently of whether the bishops governed different places. Our system

uses WordNet [47] to infer equivalence relationships between terms.

The definition of a closed instance below takes a full instance associated

with a source access table and closes it up so that generalization information

can be included.

Definition 4.13 (closed instance). Suppose (E , A, ∼, G) is a generalized

story schema and I is the full instance w.r.t. (E , A). The closed instance

w.r.t. a source access table SAT and generalized story schema (E , A, ∼, G)

75

4.3 Story Computation Problem

is defined as I ′(e, A) = I(e, A)∪ {ΓA(X ′) |X ′ is a ∼A-equivalence class of

I(e, A)}.

Intuitively, here is how we find the closed instance associated with a

given source access table and a given generalized story schema. For each

entity e and each attribute A of the entity:

1. We first compute the set I(e, A) where I is the full instance associated

with our source access table.

2. We then split I(e, A) into equivalence classes using the equivalence re-

lation ∼A on dom(A). Suppose the equivalence classes thus generated

are X1, . . . , Xn.

3. For each equivalence class Xi, we compute ΓA(Xi) – this is the gener-

alization of the equivalence class Xi using the generalization function

ΓA associated with attribute A. Suppose ΓA(Xi) = vi.

4. We insert the tuple 〈 e, A, vi 〉 into the full instance.

This process is repeated for all entities e and all attributes A. After all

tuples of the form shown above have been inserted into the full instance, it

becomes the closed instance.

A story cannot be defined based on a full instance alone. In the real

world, the “full story” about any single person or event is likely to be very

complex and involve a large amount of unimportant minutiae. For example,

consider the story of Pope Paul III. Depending on what items about Pope

Paul III are considered important, we may choose to merely say that he

served as a bishop from 1538 to 1556 and ignore the details. However, the

full instance associated with Pope Paul III may not explicitly say this –

rather it might state (as in our example) that he was a bishop of this place

for some time, that place for another time period, and so on. Generalization

is needed for this.

Note that so far we have not tried to resolve possible conflicts between

attribute values obtained from different sources. However, such conflicts

need to be resolved before we can create a story. In other words, suppose I ′

76

4.3 Story Computation Problem

is a closed instance. Whenever I ′(e, A) is of cardinality two or more, some

mechanism is required to get rid of all but one member in I ′(e, A).

Definition 4.14 (conflict management policy). Given an attribute A such

that dom(A) = 22S
, the conflict management policy χA is a mapping from

dom(A) to dom(A) such that χ(X) ⊆ X. For any other attribute A, χA is

a mapping from 2dom(A) to dom(A) such that χ(X) ∈ X.

There is an extensive literature [30] on conflict resolution whose results

can be directly plugged in as conflict management policies – three of these

are shown below.

1. Temporal conflict resolution. Suppose different data sources pro-

vide different values v1, . . . , vn for I(e, A). Suppose value vi was in-

serted into the data source at time ti. In this case, we pick the value

vi such that ti = max{t1, . . . , tn}. If multiple such i’s exist, one is

selected randomly.

2. Source based conflict resolution. The developer of a story may

assign a credibility ci to each source si that provides a value vi for

attribute A of entity e. This strategy picks value vi such that ci =

max{c1, . . . , cn}. If multiple such i’s exist, one is selected randomly.

3. Voting based conflict resolution. Each value vi returned by at

least one data source has a vote, vote(vi). vote(vi) is the number

of sources that return value vi. In this case, this conflict resolution

strategy returns the value with the highest vote. If multiple vi’s have

the same highest vote, one is picked randomly and returned.

These are just three example strategies. It is easy to pick hybrids of these

strategies as well. For example, we could first find the values for I(e, A) with

the highest votes and then choose the one which is most recent (temporal).

A deconflicted instance is one from which conflicts have been removed.

Definition 4.15 (deconflicted instance). Suppose (E , A, ∼, G) is a gener-

alized story schema and I ′ is the closed instance w.r.t. (E ,A). The decon-

flicted instance w.r.t. a source access table SAT, generalized story schema

77

4.3 Story Computation Problem

(E , A, ∼, G), and conflict management policy χ is the instance I] such

that for all entities e ∈ E and all attributes A ∈ A if I](e, A) 6= ⊥ then

I](e, A) = χ(I ′(e, A)).

Note that finding any arbitrary strong or deconflicted instance is not

enough. The reason is a technical one. The instance Inull which is undefined

for all Inull(e, A) has no conflicts – however it is not very useful as it has no

information in it.

Definition 4.16 (story). Suppose I is a closed instance w.r.t. a generalized

story schema (E ,A,∼,G) and a source access table SAT, and e ∈ E is an

entity. Then a story σ(e, I) of size k, is a sequence of attribute-value pairs

〈A1, v1 〉, . . . , 〈Ak, vk 〉 such that for all 1 ≤ i ≤ k, Ai ∈ A and vi = I(ei, Ai).

A deconflicted story w.r.t. a given conflict management policy χ is a

sequence of attribute-value pairs 〈A1, v1 〉, . . . , 〈Ak, vk 〉 such that for all

1 ≤ i ≤ k, Ai ∈ A and vi = I](ei, Ai) where I] is the deconflicted instance

w.r.t. χ.

Note that the above definition of a story only lists the essential facts

in a story. Our Story system presents these facts in English (a Spanish

version also exists) to the user in one of two ways: if the fact was derived

from a relational or XML source, then a template is used to output the

fact in English. If the fact was derived from a text document, then either a

template or the sentence from which the fact was extracted may be used as

the output. We have approximately 400 templates currently in our system.

Note 4.4. Throughout the rest of this chapter, we will use the word “story”

to refer to both ordinary and deconflicted stories.

4.3.3 Optimal Stories

There are good stories and bad stories even when they are about the

same topic and even when they are derived from the same instance. So,

what makes a story good?

First of all, the facts included in the story have to be relevant to the

user. For example, the fact that Pentheus’ mother was Agave is probably

more important than the length of Pentheus’ big toe. Thus, the first fact

78

4.3 Story Computation Problem

is better be told to the user in the beginning of the story while the second

fact can be included at the end or omitted altogether.

Secondly, the story has to be continuous by delivering facts in the order

expected by the user. If the facts occur over some period of time, it is

logical to tell them in the order of occurrence. But even for such basic facts

as the place of birth or parents’ names, there is a certain customary order

of delivery (i.e. “X has been born in P from Y and Z”). Violating this order

will make story less comprehensible.

Finally, we would not want to repeat same or similar facts again and

again in the same story. Redundancy is not a virtue when it comes to

storytelling.

To help us choose stories that are “better” than others from the universe

of possibilities, we define a story evaluation function.

Definition 4.17 (story evaluation function). Suppose S is the set of all

possible stories about some entity e w.r.t. the same schema and source

access table. The story evaluation function eval(s) takes a story s and

returns a real value in the [0, 1] range that measures how good s is, with

higher values corresponding to better stories.

The reader will note immediately that there are many ways of defining

the evaluation function, not limited to the three general criteria outlined

above, that are similar to the ones proposed in [16] and discussed in Chap-

ter 3. Our story creation algorithms can work with any evaluation function.

Problem 4.1 (optimal story computation). Given a closed instance I, a

positive integer k, and an entity e ∈ E as input, find a story σ(e, I) of size

≤ k that maximizes the value of a given evaluation function. In this case,

σ(e, I) is called an optimal story.

Theorem 4.1. Given all the parameters listed in the above problem state-

ment, and given a story S, determining if S is optimal is an NP-complete

problem.

Membership in NP will be proved by the OptStory algorithm presented

in Section 4.4. NP-hardness is proved by a straightforward reduction of the

79

4.4 Story Computation

knapsack problem to that of stories.2

4.4 Story Computation

We start this section by presenting an algorithm to find optimal stories.

We then present three heuristic algorithms that build upon the work in video

summarization algorithms presented in [16] and do not necessarily find an

optimal story, but create “good enough” stories in a reasonable time.

Given an entity e, the OptStory algorithm finds an optimal story of length

k by maximizing the value of the evaluation function.

Algorithm OptStory(e,SAT,k)

e is an entity

SAT is a source access table

k is the requested story size

begin

I := DeconfI(ClosedI(FullI(e, SAT)))3

return RecStory(∅, I, k)

end.

The OptStory algorithm first picks all data about the entity e available

in I. It then calls the recursive RecStory algorithm that enumerates over all

possible stories of k or fewer attributes that can be derived from the given

data and returns the best story with respect to the evaluation function

eval().

Algorithm RecStory(Story,Data,k)

Story is the story so far

Data is the set of attribute-value pairs to assign

k is the remaining story size

begin

〈BestS, BestW 〉 := 〈Story, eval(Story) 〉

if k > 0 then

for each 〈A, v 〉 ∈ Data do

S := Story with 〈A, v 〉 attached to the tail

〈S, W 〉 := RecStory(S, Data \ {〈A, v 〉}, k − 1)

2Intuitively, given an instance of the knapsack problem involving a knapsack of capacity
C and objects o1, . . . , ok of weights w1, . . . , wk and profits p1, . . . , pk respectively, we can
consider each oi to be a fact with the same weights and profits.

3FullI(), ClosedI() and DeconfI() denote functions that return full, closed and de-
conflicted instances respectively

80

4.4 Story Computation

if W > BestW then 〈BestS, BestW 〉 := 〈S, W 〉

end for

end if

return 〈BestS, BestW 〉

end.

4.4.1 Restricted Optimal Story Algorithm

Given n attributes, the RecStory algorithm will have to sort through
∑

0≤i≤k
n!

(n−i)! stories. Even if we restrict the algorithm to the k-length

stories, it will still have to consider n!
(n−k)! stories. To make story creation

more manageable, let us consider the following algorithm.

Algorithm RecStory+(Story,Data,k,b)

Story is the story so far

Data is the set of attribute-value pairs to assign

k is the remaining story size

b is the branching factor

begin

〈BestS, BestW 〉 := 〈Story, eval(Story) 〉

Q is a priority queue

if k > 0 then

for each 〈A, v 〉 ∈ Data do

S := Story with 〈A, v 〉 attached to the tail

Q.add(S, eval(S))

if length(Q) > b then Q.delete(tail(Q))

end for

for each SS ∈ Q do

〈S, W 〉 := RecStory+(SS, Data \ SS, k − 1)

if W > BestW then 〈BestS, BestW 〉 := 〈S, W 〉

end for

end if

return 〈BestS, BestW 〉

end.

The RecStory+ algorithm essentially limits the search at each step to

the b best stories w.r.t. the evaluation function. Given n attributes, this

algorithm only considers 1+
∑

0≤i<k(b
i · (n− i)) stories. We use OptStory+

to denote the algorithm that calls RecStory+.

81

4.4 Story Computation

4.4.2 Genetic Programming Approach

In this section, we present a story creation algorithm GenStory based on

genetic programming. GenStory creates suboptimal stories too.

Algorithm GenStory(e,SAT,k,N ,δ)

e is an entity

SAT is a source access table

k is the requested story size

N is the desired number of iterations

δ is the desired fitness threshold

begin

Data := DeconfI(ClosedI(FullI(e, SAT)))

R :=
l

card(Data)
k

m

Q := R random solutions of k attributes from Data

for j ∈ [1, N] do

for i ∈ [1, R] do

S := solution randomly chosen from Q

choose random 〈A, v 〉 ∈ Data and 〈A′, v′ 〉 ∈ S

replace 〈A′, v′ 〉 in S with 〈A, v 〉

Q := Q ∪ {S}

Q := Q \ {S′} where ∀S ∈ Q eval(S) ≥ eval(S′)

if maxS1,S2∈Q|eval(S1)− eval(S2)| ≤ δ then

return best solution from Q

end if

end for

end for

return best solution from Q

end.

The GenStory algorithm starts by creating a population Q of
⌈

card(Data)
k

⌉

random stories. It will then repeatedly choose a random story S from this

population and replace a random attribute in this story with a different

attribute not occurring in S. The resulting story is added to Q, and then

the story with the lowest eval() value is deleted from Q. The GenStory

algorithm will terminate when all story candidates in the population Q have

approximately the same worth (w.r.t. the value of δ) or when the maximal

number of iterations N is reached.

4.4.3 Dynamic Programming Approach

In this section, we present a story creation algorithm DynStory based on

the dynamic programming approach. This algorithm also yields stories that

82

4.5 Story Rendering

are suboptimal, yet does it in less time than the the OptStory algorithm.

Algorithm DynStory(e,SAT,k)

e is an entity

SAT is a source access table

k is the requested story size

begin

Data := DeconfI(ClosedI(FullI(e, SAT)))

S := random solution of k attributes from Data

Data := Data \ S

while Data 6= ∅

subs := false

r := 1

while r ≤ k and subs = false do

S′ := S with 〈Ar, vr 〉 replaced with first(Data)

if eval(S) < eval(S′) then

S := S′

add 〈Ar, vr 〉 to the tail of Data

subs := true

else

r := r + 1

end if

end while

remove first(Data) from Data

end while

return S

end.

The DynStory algorithm starts by creating a random solution S and

proceeds by trying to replace each attribute in S with the first attributes

from the list of candidates Data. As soon as a better solution is found, it

takes the place of S. The algorithm terminates when the list of candidates

is exhausted. The time complexity of DynStory is linear w.r.t. the number

of attributes in the instance Data.

4.5 Story Rendering

A story, as defined so far, is a collection of a given number of known

facts about a given entity. Facts to be included in the story are selected

based on user’s preferences which are somehow taken into account through

an objective function.

83

4.5 Story Rendering

The last issue to be addressed in any automatic story generation envi-

ronment is how to present stories to the users. Of course, most users would

not be satisfied with a list of facts presented as database entries. They would

prefer to get the interesting facts rendered as a narrative text in English –

or any other language. Rendering a collection of facts into text that reads

well is not a trivial task.

The Story system renders the set of facts constituting a story in one of

two ways described below.

Original sentences from the sources. When extracting facts from text

documents, we store sentences from which these facts have been ex-

tracted. When narrating a story, these sentences can be used. This

solution is not feasible for rendering facts extracted from other types

of data sources – such as relational databases and XML files – where

a piece of text describing the fact is not available.

Templates. Whenever original sentences are not available a template may

be used to construct a sentence out of an EAV triple. A template oper-

ates in a way similar to the mechanism offered by most programming

languages for generating formatted strings.

Definition 4.18 (text rendering template). A text rendering template is a

string containing the symbols %e, %a and %v, marking the position within

the string where the entity name, attribute name and value should be placed.

A template is said to be valid if it contains at least the symbols %e and %v.

Given a story schema (E ,A), let T be a mapping fromA to the set of all valid

templates that associates each attribute A ∈ A with one or more templates.

In other words a template is a string that represents the desired structure

of a sentence, with the positions of actual entity names, attribute names and

values marked by special symbols. For example, the string “The %a of %e

is %v” may be a valid template for attributea such as mother and father,

and it would render sentences like “The mother of Pentheus is Agave”.

Note 4.5. Given a story schema (E ,A), at least one template should be asso-

ciated with each attribute A ∈ A, in order to be able to render any fact. So

84

4.5 Story Rendering

one may think that the number of templates should be equal to the number

of distinct attributes in A, but this is not the case for two reasons. First of

all, the same template may be reused for several attributes. In fact entire

classes of attributes – e.g. sons, daughters, brothers, sisters, etc. – may

share the same template, because their nature allows to present their values

in the same way. The Story system actually allows the application devel-

oper to define templates at attribute cluster level. Attributes are grouped

into a hierarchy of clusters based on semantic properties that we can infer

from WordNet. Secondly, we may allow the T mapping to be incomplete.

The rendering function introduced in Definition 4.19 would use a default

template – e.g. “The %a of %e is %v” – to render any attribute A such that

T (A) = ∅.

Note 4.6. The symbol %a is not required for a template to be valid. The

reason is that the constant part of the template may already include the

semantic of the attribute. For example, the attribute birthdate may have

an associated template like “%e was born on %v”.

Note 4.7. The T mapping may associate more than a single template with

each attribute. This choice derives from the consideration that, different

persons, or even the same person at different times, may use different sen-

tence arrangements to describe the same fact. Having different templates to

render the same fact may help to make the generated narrative more similar

to what would be produced by a human being.

Definition 4.19 (rendering function). Suppose (E ,A) is a story schema

and I is an instance. A rendering function R is a mapping from EAVI to

the set of strings. For each 〈 e, A, v 〉 ∈ EAVI the rendering function picks a

template t from T (A) and replaces the markers %e, %a and %v in t with e,

A and v respectively.

Note 4.8. Note that when an attribute A is single-valued the rendering

function merely replace %v with v. When A is set-valued (Example 4.2)

%v is expanded as “%v [{ , %v } and %v]”, where each %v represents

an element of the set value. When A is a time-varying attribute (Ex-

ample 4.3) %v is expanded as “%tvt [{ , %tvt } and %tvt]”, where each

85

4.5 Story Rendering

%tvt represents a (v, L, U) triple in the time-value. %tvt is expanded as

“%v [from %l] [to %u]”, where %l and %u mark the position of L and U

respectively.

Example 4.2. Suppose that T (sons) = {“%v were %e’s %a”} and con-

sider the EAV triple 〈“Zeus”,sons,{“Apollo”,“Ares”,“Hermes”}〉. The func-

tion R picks the only available template for the attribute sons and renders

the triple as “Apollo, Ares and Hermes were Zeus’s sons”.

Example 4.3. Suppose that T (occupation) = {“%e has been %v”} and

consider the EAV triple 〈“Pope Paul III”,occupation,{(“Pope”,1534,1549),

(“Cardinal”,1493,1533)}〉. The function R picks the only available template

for the attribute occupation and renders the triple as “Pope Paul III has

been Cardinal from 1493 to 1533 and Pope from 1534 to 1549”.

86

Chapter 5

Information Extraction from
Text Sources

5.1 Attribute Extraction

Section 4.3.1 has formally defined a full instance and how it can be

obtained using the source access tables, but avoided discussion of the ac-

tual ways to extract attribute values from heterogenous data sources. In

this chapter we describe in detail how to extract attribute values from text

sources (Section 5.1.1), and how to identify the entities of interest to a given

domain (Section 5.1.2). Furthermore, we briefly describe how to extract

attribute values from relational and XML sources (Section 5.1.3).

5.1.1 Attribute Extraction from Text Sources

The Text Attribute Extraction (TAE) algorithm to extract attribute val-

ues from text sources takes as input a domain name (e.g. “Greek Mythol-

ogy”) and a set of sources (selected web sites, news feeds, or the entire web

to be searched using a search engine). It assumes the existence of various

subroutines and it is based on the concept of extraction rule.

Given a sentence s the constituent tree CTs of s is a tree representing

the syntactic structure of s, whose nodes are labeled NP (Noun Phrase), VP

(Verb Phrase), and so on. A standard way of representing such structures

has been proposed by the Penn Treebank Project [40]. Figure 5.1.a shows

the constituent tree of the sentence “Rome is the capital of Italy”. The

87

5.1 Attribute Extraction

Story system uses a parser based on the Link Grammar [60] to analyze the

syntactic structure of a sentence and generate its constituent tree. We can

now define the concept of extraction rule.

Definition 5.1 (extraction rule). An extraction rule R is a pair (CTR, EP),

where CTR is a constituent tree with some leaf nodes marked as data nodes

and EP is a set of extraction patterns, an extraction pattern being a function

that maps data nodes to the elements of an EAV triple. Let R denote the

set of all extraction rules.

Figure 5.1.c shows an example of extraction rule. It is clear from the

picture that the constituent tree of an extraction rule is the constituent

tree of a prototype sentence, where subtrees corresponding to portions of

the sentence to be considered as data have been replaced by a single node

marked as a data node, while an extraction pattern specifies which data

nodes should be considered the entity, the attribute and the value respec-

tively. Extraction rules can thus be learned from examples. Actually the

process to create extraction rules operates as follows: (i) the user types in a

prototype sentence and the system parses it producing its constituent tree1

(Figure 5.1.a); (ii) the user marks the nodes of the trees that represents

data (the whole subtrees rooted at these nodes are considered as a piece of

information) and adds alternatives for constant nodes, such as prepositions

and sentence connectors (Figure 5.1.b); (iii) if the markup at previous step

is valid the user can then add the extraction patterns specifying the role of

each data node (Figure 5.1.c).

Note 5.1. Other classes of extraction patterns are available in the system.

They use data structures other than EAV triples. For example the EAO

model is useful to extract 〈Entity, Action, Object 〉 triples from sentences

such as “Maenads killed Pentheus”, while the EQ model is useful to extract

〈Entity, Quality 〉 pairs from sentences such as “Maenads were cruel”. Tu-

ples extracted using these models should be then properly mapped to the

EAV model. Mapping rules have been defined to this aim. For example an

1Depending on the sentence, more than a single constituent tree may be returned, due
to different possible interpretations of the sentences. In that case only a single tree is
picked to build the rule.

88

5.1 Attribute Extraction

a b c

Figure 5.1: Extraction rules

EQ pair 〈 e, q 〉 is mapped to an EAV triple built as 〈 e, quality, q 〉 – e.g. the

EQ pair 〈 “Maenads”, “cruel” 〉 would thus be converted to the EAV triple

〈 “Maenads”, quality, “cruel” 〉.

Definition 5.2 (rule matching). A sentence s matches an extraction rule R,

denoted R |= s, iff (∀nodeN ∈ CTR N ∈ CTs)∧(∀ edgeE ∈ CTR E ∈ CTs).

In other words a sentence s matches a rule R if the constituent tree

CTR of the rule is a subgraph of the constituent tree CTs of the sentence.

Subtrees of CTs rooted at nodes corresponding to data nodes of CTR are

considered as the pieces of information to be extracted.

Algorithm TAE(Domain,Sources)

Domain is the domain of knowledge

Sources is a set of document sources

begin

D := GetDocuments(Domain, Sources)

E := ∅

T := ∅

for each document D ∈ D do

T := Tokenize(D)

T := DisambiguatePartOfSpeech(T)

T := RecognizeCompoundForms(T)

E := E ∪RecognizeNamedEntities(T)

T := ResolvePronouns(T)

T := T ∪ {T}

end for

for each document T ∈ T do

for each sentence s ∈ T

89

5.1 Attribute Extraction

for each extraction rule R ∈ R do

if R |= s then

for each extraction pattern ep ∈ R.EP do

〈 e, A, v 〉 = ep(CTs)

if exists E ∈ E such that E.Name = e then

InsertIntoDatabase(〈 e, A, v 〉)

end if

end for

end if

end for

end for

end for

end.

The TAE algorithm listed above assumes the existence of various sub-

routines. We describe each of these below.

1. GetDocuments. This function retrieves all domain-specific documents

from the specified data sources. Actually the Extraction Engine is

implemented as a background process that continuously crawls data

sources looking for new information. GetDocuments thus retrieves

new documents (documents that have never been visited before) or

documents that have been modified since the last visit. We imple-

mented GetDocuments using the keyword spices approach [51] to rec-

ognize if a document is of interest to a given domain. Each domain is

in fact associated with a set of keywords.

2. Tokenize. Each relevant document D ∈ D is then tokenized, i.e.

fragmented into units corresponding to single words or punctuation

marks, and each token is tagged with its corresponding part of speech.

Thus, a token can be defined as a pair (Word, PartOfSpeech). We

use WordNet [47] for part of speech tagging. Sentence boundaries are

also identified during tokenization.

3. DisambiguatePartsOfSpeech. A part of speech disambiguation algo-

rithm is applied to resolve situations in which a word has been tagged

with more than a single part of speech. We apply simple heuristic

rules to address this issue, but more sophisticated algorithms have

been proposed in the literature [54].

90

5.1 Attribute Extraction

4. RecognizeCompoundForms. Next, we use WordNet to identify com-

pound forms, such as verbs followed by prepositions or adverbs (eg.

“take off”, “get out”), and merge their tokens together.

5. RecognizeNamedEntities. A named entity recognition algorithm [6]

is applied in order to identify and classify named entities (people, orga-

nizations, places, etc.) that appear in D. This allows us to find entities

of interest within the domain (e.g. all the Greek Mythology characters,

all the people and organizations involved in nuclear research activities,

etc.) and extract data about these entities in advance. A named entity

can be defined as a tuple (Name, Class), where Class can be (i) per-

son’s name (PN), (ii) geographic location (LN), (iii) organization (ON),

(iv) date/time (DT), (v) unclassified (NC), (vi) not an entity (NaE). In

our implementation, we developed our own named entity recognition

algorithm – this is described in Section 5.1.2. The set E consists of all

recognized named entities (repetitions are removed).

6. ResolvePronouns. Finally, we resolve pronouns by discovering which

entities previously named in a document the pronouns refer to. Many

sophisticated algorithms [12] have been proposed for this task.

At this stage of the TAE algorithm, we get unambiguous versions of the

source documents and a set E of recognized entities that are deemed to be

of interest for the selected domain. We now extract data by applying a set

R of extraction rules that allow us to deduce EAV triples from sentences.

The algorithm iterates over all sentences from all documents. If a sentence

matches a rule according to Definition 5.2 then an EAV triple is derived from

the sentence for each extraction pattern in the rule. If the triple refers to

one of the entities of interest to the specific domain – those in the set E – it

is stored in the database.

Example 5.1. Consider the sentence “Hu Jintao is the most popular leader

in China”. Figure 5.2.a shows the constituent tree of the sentence, while

Figure 5.2.b shows the extraction rule against which we are trying to match

the sentence. It is clear from the picture that the sentence matches the

91

5.1 Attribute Extraction

a b

Figure 5.2: Data extraction: (a) analyzed sentence; (b) matching rule

rule. Based on the extraction pattern of the rule we thus deduce the EAV

triple 〈 “China”, the most popular leader, “Hu Jintao” 〉. Further pro-

cessing consisting of head noun identification [40, 60] allows to deduce also

the simplified triple 〈 “China”, leader, “Hu Jintao” 〉.

5.1.2 Named Entity Recognition

We have developed a named entity recognition algorithm which recog-

nizes and classifies named entities in a document. A significant amount of

work has been done on this topic. Some authors propose knowledge-based

approaches [6] while others favor the use of statistical models such as Hidden

Markov Models [24].

In this work, we propose the Tokenized-HMM (T-HMM) algorithm which

uses two phases: in the first phase it uses HMMs to identify and classify all

tokens that are part of a named entity. In the second phase, named entities

are classified based on the classification of their tokens. Tokens associated

with a single named entity may have different classifications – we resolve any

conflicting classifications using three alternative approaches that we present

in the following.

Simply stated, an HMM has a finite set of states, each of which has

an associated probability distribution. Transitions among the states are

92

5.1 Attribute Extraction

governed by a set of probabilities called transition probabilities. Each state

generates an output based on the associated probability distribution. The

observer can only see the outcome, not the state.

In our case the set of possible states coincides with the set of possible

named entities classes mentioned earlier, i.e. the set {PN, LN, ON, DT, NC,

NaE}. As the document is read, the HMM receives tokens from the document

which may cause state changes to occur. Our algorithm considers not only

the current token, but also the features of the previous and the next tokens:

this has greatly improved the accuracy of recognition, since it takes into

account some contextual information. Let us assume the following notation:

• N is the number of states;

• V = {v1, ..., vM} is a finite set of M observation symbols;

• St is the state of the system at time t;

• π = {π1, ..., πN} is the initial state vector with πi = P (i1 = i) ∀i ∈

{1, ..., N}; in other words πi is the probability that the system is in

the state i at time 1, i.e. when the first token is observed;

• A = {aij} is the the state transition probabilities matrix, with aij =

P (it+1 = j|it = i);

• B = {bj(k)} is the probability distribution of observation symbols,

with bj(k) = P (vk in t|it = j);

• Ot is the observed symbol at time t, that in our case consists of the ob-

servable features of the t-th token and, eventually, of the surrounding

tokens.

A Hidden Markov Model is a triple λ(A, B, π). We wish to identify the

most likely state sequence corresponding to the observed features:

Problem 5.1. Given an Hidden Markov Model λ(A, B, π), find a state

sequence S = S1, S2, ..., ST such that the joint probability P (O, S|λ) of S

and the observation sequence O = O1, O2, ..., OT is maximized w.r.t. the

model.

93

5.1 Attribute Extraction

Algorithm T-HMM(T)

T is a tokenized document

begin

E := ∅

O := ExtractFeatures(T)

S := V iterbi(O, λ(A, B, π))

for each j, m such that S[j − 1] = NaE∧ S[j, . . . , j + m] 6= NaE∧ S[j + m + 1] = NaE do

Name := Merge(T [j].Word, . . . , T [j + m].Word)

Class := Select(S[j], . . . , S[j + m])

E := E ∪ {(Name, Class)}

T := Replace(T, j, j + m, (Name, Class))

end for

return E

end.

Phase I: Above, you can see the T-HMM algorithm for recognizing named

entities. This algorithm takes as input a tokenized document T and builds

the sequence of observation symbols using a function that extracts features

from the tokens. The current implementation of the feature extraction func-

tion returns an array of 18 boolean features which include, for example

CityNameSuffix (e.g. “Hyattsville” has a city name suffix). We have also

considered two more solutions in which the features of the previous token

(bigram configuration) and of both previous and next tokens (trigram config-

uration) are taken into account. The Viterbi algorithm [50] is a well-known

approach to solving Problem 5.1. It finds the state sequence S that maxi-

mizes the joint probability of the observation sequence O and state sequence

given the model. In order to learn the parameter A, B and π of the model,

the system has been trained on text documents randomly selected from the

Brown Corpus [18].

Phase II: Each sequence of tokens whose corresponding state is not NaE (i.e.

not an entity) undergoes further processing to be identified. The entity’s

name is clearly the concatenation of the words in each token, while its class

is determined based on the classes of the component tokens. If tokens have

been assigned to different classes (let C be the set of these classes) we need

to select one of them. To this aim we have proposed three solutions.

• Probabilistic classification: selects the class in C that is the most likely

94

5.1 Attribute Extraction

R Pprobabilistic Pvoting Pevolving

monogram 55,80 % 63,30 % 63,30 % 63,30 %
bigram 65,75 % 68,57 % 68,48 % 68,86 %
trigram 71,88 % 66,36 % 66,45 % 66,36 %

Table 5.1: Recall and precision performance of the Named Entity Recogni-
tion Algorithm

to produce the observation sequence corresponding to the sequence of

tokens;

• Voting classification: selects the class that has been assigned to most

of the tokens;

• Evolving classification: selects the class assigned to the last token,

assuming that the precision of the recognition increases over time.

We now present an example of how the proposed algorithm works.

Example 5.2. Consider a document D with a single sentence “West Palm

Beach’s mayor is T. J. Smith”. After the first step of the algorithm we ob-

tain the following classification: 〈 (“West”,ON), (“Palm”,ON), (“Beach”,LN),

(“’s”,NaE), (“mayor”,NaE), (“is”,NaE), (“T.”,PN), (“J.”,PN), (“Smith”, PN) 〉.

In the second phase “T. J. Smith” is correctly classified as a person name

using all the three approaches, and “West Palm Beach” is correctly classified

as a location name with both the probabilistic and evolving approach, while

is wrongly classified as an organization name with the voting approach.

Table 5.1 shows the results in terms of recall (the percentage of identified

named entities) and precision (the percentage of correctly classified entities)

that we have obtained for each configuration and for each class selection

strategy. The results are comparable with the ones described in the liter-

ature. Since we are mainly interested in recall, the trigram configuration

seems to be the most promising.

5.1.3 Attribute Extraction from Relational and XML Sources

First, let us consider a relational table T = {c1, . . . , cm, . . . , cn} where

c1, . . . , cn are columns and c1, . . . , cm are also keys. Then for each two

95

5.1 Attribute Extraction

columns ci, cj such that 1 ≤ i ≤ m and 1 ≤ j ≤ n we add the following entry

to the source access table:

〈 cj , T : ci, fcj ,T :ci
(e) = πcj

σci=eT 〉.

In other words, given a table T as the source, we obtain a value for an

attribute cj of an entity e by looking for all table rows that can be referred

by e.

It is also possible to extract attribute values from XML sources. Consider

an XML node

N = 〈name, value, {c1, . . . , cn} 〉

where c1, . . . , cn are children nodes. Assuming that N is a root node in an

XML document, and nodes may act both as entities and attributes, one can

write the following algorithm to return a given attribute of an entity.

Algorithm GetXMLAttr(N ,e,A)

N is the root XML node

e is the entity

A is the attribute

begin

Result := ∅

if N.value = e or N.name = e then

for each child c of N such that c.name = A do

Result := Result ∪ {c.value}

end for

else

for each child c of N do

Result := Result ∪GetXMLAttr(c, e, A)

end for

end if

return Result

end.

The GetXMLAttr() recursively finds all occurrences of an entity in the

XML tree, collects all values of the requested attribute, and returns the

collected set of values. Notice that the algorithm tries to match e to both

node value and node name. We can now enumerate all the attribute names

occurring in the XML tree as A1, . . . , Am, and for each Ai, add a source

access table entry 〈Ai, N, GetXMLAttr(N, e, Ai) 〉.

96

Part III

Experiments and
Conclusions

97

Chapter 6

Video Summaries

6.1 Implementation

To evaluate the efficiency and effectiveness of PriCA, we have imple-

mented a prototype system in JAVA on top of Oracle 8i and MS Access

DBMS backends. The prototype is a complete video management frame-

work that allows to both index and summarize videos, and consists of the

PriCA algorithm implementation, as well as an implementation of CPRgen,

CPRdyn, and SEA algorithms described in Chapter 3, and a user interface for

specifying the desired summary content. In addition, the system is capable

of automatically segmenting video into shots and detecting soccer-related

events, for annotation purposes.

In a typical example of system’s usage, the user selects a video he/she

would like to process and the system checks whether this video is already

indexed or not. In the latter case, the system will offer to index the video.

Once the video is indexed, the user can modify the indexing, query the

database to find specific blocks, or summarize the video.

Figure 6.1 shows the indexing/querying interface to a previously indexed

video. In this example, the user asks the system to retrieve all the blocks in

which the action goal occurs. The resulting set of blocks is listed at the left

side of the interface and can be viewed through the video player in the top

left corner of the interface.

Figure 6.2 shows the summarization interface. Using controls in this

interface, the user specifies the desired summary features. The system allows

98

6.1 Implementation

Figure 6.1: Indexing and query interface

the user to select any of the four algorithms, and interface controls change

according to the selected algorithm.

Figure 6.2 shows an example of summary content specification. The

blocks in the summary created by PriCA are listed on the left while Figure 6.3

shows a representative frame for each of the five resulting blocks.

Figure 6.2: Summarization interface

Note that in order to summarize a video, we can use data structures such

as those in AVIS [1] to determine what activities and objects occur in frames.

This will clearly speed up the algorithms within the PriCA framework.

99

6.2 Experimental Setting

Figure 6.3: Summarization result

6.2 Experimental Setting

In this section, we describe a set of experiments conducted to evaluate

the performance of the PriCA system.

A key issue in automated summary construction is the evaluation of

the quality of the summary with respect to the original data. There seems

to be general consensus on the non-existence of some universally accepted

solution – this is mainly due to the many different approaches to the video

summarization problem.

A number of alternative approaches are thus available. Considering user

based evaluation methods, a group of users is asked to provide an evaluation

of the summaries or to accomplish certain tasks (i.e. answering questions)

with or without the knowledge of the summary, thus measuring the effect

of the summary on their performance. Alternatively, for summaries created

using a mathematical criterion, the corresponding value can be used directly

as a measure of quality. However, all these evaluation techniques present

100

6.3 Qualitative Evaluation

several drawbacks; user-based ones are difficult and expensive to set-up and

their bias is non trivial to control, whereas mathematically based ones are

difficult to interpret and compare to human judgement.

We first compare the PriCA algorithm to the CPRgen, CPRdyn, and SEA

algorithms proposed in [16] and described in Chapter 3, both in terms of time

spent to compute a summary and quality of resulting summaries, then try

to compare our results to the results of other authors. As the only effective

way of evaluating quality of summaries is via human subjects, we enrolled

a group of 200 people, mainly students from the University of Naples.

Our data set consisted of about 50 soccer videos, totaling about 80 hours.

The videos were segmented into blocks and annotated, as described in sec-

tion 3.3.2. The resulting blocks had an average length of about 10 seconds,

with a relatively low variance.

6.3 Qualitative Evaluation

To assess the quality of the results produced by the four algorithms being

compared, we asked the group of reviewers to rate the resulting summaries

on a 1 to 5 scale. The experiment was repeated three times, with desired

summary lengths of 2, 4, and 6 minutes respectively, for all videos. The re-

sults, shown in Figure 6.4, indicate that summaries produced by the PriCA

algorithm have been rated best in 48%, 46%, and 45% of all cases respec-

tively. These percentages are significantly better than those for the other

three algorithms.

The comparison between the above mentioned algorithms has been made

easier, since all the four algorithms are based on some common assumptions

– segmentation into shots, summarization based on high-level descriptions,

summaries as sequences of shots. However, things quickly become complex

when we try to compare the results of totally different algorithms on different

data sets in different domains.

We now discuss some evaluation results obtained by other researchers

and compare them to our result, but this comparison has to be taken with

a bit of salt for the above reasons.

101

6.3 Qualitative Evaluation

Figure 6.4: Summary quality ratings

In [58], Shao et al. propose an approach to automatically summarize

musical videos, based on an analysis of both video and audio tracks. They

evaluated the quality of the summaries through a subjective user study and

compared the results with those obtained by analyzing either audio track

only and video track only. The subject enrolled in the experiments rated

conciseness and coherence of the summaries on a 1 to 5 scale. The concise-

ness parameters does not have a corresponding one in our framework, since

users explicitly specify the desired length of the summaries in our framework.

The coherence parameter is similar, though not equivalent, to our quality

parameter. In conclusion, the average value of the coherence obtained in

[58] is 4.57, while the value of the judged quality of summaries produced by

PriCA is 4.46. Note that these two parameters are not immediately compa-

rable. Shao et al. do not discuss execution times, but we can reasonably

state that our algorithm is surely faster than theirs, because they have to

analyze both audio and video tracks. It is important to note that this work

only focuses on music videos, whereas our work is applicable to a any video.

Just to consider another example, [38] reports an average value of 93.7 – on

a 1 to 100 scale, it would be 4.47 on a 1 to 5 scale – for a meaningfulness

102

6.4 Execution Times

Figure 6.5: Summary creation times

parameter, that is evaluated through a user study too.

6.4 Execution Times

To assess performance, we fixed the desired length of the summary to 60

seconds. We then varied the number of candidate blocks in the 4-75 range,

by choosing an increasing number of events and subjects of interest.

The processing times were computed for each algorithm by averaging

the results of 10 executions for each video. Figure 6.5 shows times taken

by different algorithms. From this figure, we can conclude that the PriCA

algorithm outperforms the other three algorithms. This is true even without

using the optimization for Peaks() mentioned earlier.

103

Chapter 7

Story System Evaluation

7.1 Introduction

We have implemented a prototype Story system and applied it to sev-

eral scenarios, among which the creation of stories about Greek Mythology

characters for the archaeological site of Pompeii, where many of those char-

acters are depicted in paintings and sculptures. The system consists of two

main components:

• an offline component, the Extraction Engine, continuously crawls the

data sources specified by the application developer – selected web sites

or the entire web, news feeds, etc. – in order to extract new informa-

tion, in the form of EAV triples. Extracted triples can be stored both

in XML/RDF format or into a relational database;

• an online component, the Story Creation Engine, creates stories upon

user’s request, using the information collected by the Extraction En-

gine.

The architecture of the system is thus similar to the architecture of any

search engine, where a background process continuously crawls the web and

indexes new discovered pages, while a real time process answers user queries

by accessing the index rather than the actual web pages. The advantage

of this architecture is that queries can be answered very fast. The obvious

drawback is that the answers are limited to what is known to the system,

i.e. the information that has been indexed. Likewise, we will show that

104

7.2 Story Quality

the Story system can generate stories very fast, but the facts that can be

included into a story are limited to those that have already been discovered.

This chapter describes the experiments we run in order to validate our

approach and verify that high quality stories can be efficiently constructed

and delivered to the users, over both wired and wireless networks to multiple

heterogeneous devices. We evaluated both the quality of stories produced

by our algorithms (Section 7.2) and the time taken to construct them (Sec-

tion 7.3).

7.2 Story Quality

7.2.1 Experimental Setting

In Chapter 3 we pointed out that a key issue in automated summary

construction is the evaluation of the quality of the summary with respect

to the original data, but there seems to be general consensus on the non-

existence of some universally accepted solution. When no metric can be

defined to measure the quality of the produced summaries, user based eval-

uation methods are the most feasible solution. The same considerations

apply to automatic story creation.

We thus evaluated the quality of the stories produced by our system

through human ratings. 61 humans, mainly students from the University of

Naples, were enrolled in the experiments. They were subdivided into two

groups: (i) 10 experts and (ii) 51 non-experts. They were asked to review

stories about the following Greek Mythology characters: Pentheus, Cadmus,

Apollo, Agave, Semele, and Dionysus. Before starting the experiments, the

expert group was asked to read some documentation about the selected

subjects, while non-experts were not given any a priori knowledge about the

subjects of the stories.

Each reviewer was asked to rate the story value (in terms of included

facts) as well as the quality of the narrative prose on a scale from 1 (worst)

to 5 (best). We evaluated five algorithms, namely OptStory+ with branch-

ing factor 1,3 and 5 respectively, GenStory and DynStory. To the aim of

the experimentation we adopted a story evaluation function eval based on

105

7.2 Story Quality

a b

Figure 7.1: Non-expert reviewers: (a) Story Value and (b) Prose Quality

the CPR criteria. Reviewers were presented with stories of different lengths,

computed with five different algorithms, varying continuity, priority and rep-

etition parameters. In addition, we rendered stories in two ways: (1) using

sentences from textual sources whenever available and (2) using templates

only. We were interested in determining which algorithm and which ren-

dering strategy performs best. A total of different 200 stories were created

for each subject, making the evaluation process highly time-consuming and

limiting the number of story subjects (lest the reviewers become bored and

inaccurate).

7.2.2 Non-Expert Reviewers

Figure 7.1.a shows the value of the story as judged by human subjects

as a function of story length for five different algorithms. Figure 7.1.b shows

the quality of the prose in the story as perceived by the reviewers. Version

1 refers to the case where sentences from the sources are used, while version

2 refers to the case where templates are used.

Which algorithm produces the best story value?

• DynStory algorithm yields the highest story value, while algorithm

GenStory is the second best.

• Both DynStory(1) and GenStory(1) algorithms are consistently better

than algorithms DynStory(2) and GenStory(2). This is due to the fact

106

7.2 Story Quality

that including original sentences into the story adds more information

than rendering the same facts through templates.

• The prose quality (as assessed by human readers) is almost the same for

all algorithms and decreases slightly as the story length increases. This

is to be expected, given that all algorithms use the same mechanism

to render actual stories.

Figure 7.2: Non-expert reviewers: average Story Value and Prose Quality

How does using source sentences compare with using templates?

Let us now consider the graph in Figure 7.2. The curves have been obtained

by averaging, for each rendering technique, the results of all five algorithms.

The y-axis in this graph shows the quality of the story as judged by human

subjects on a 1 to 5 scale. The graph indicates that using source sentences

significantly improves the story value as perceived by a human, but only

slightly improves the prose quality over the template rendering method.

7.2.3 Expert Reviewers

We now present the results of experiments with expert reviewers and

point out the difference from the non-expert group’s results.

Which algorithm produces the best story value? Figures 7.3.a and

7.3.b were obtained in the same way as Figures 7.1.a and 7.1.b, but for

the expert group of reviewers. These figures allow to make the following

observations:

107

7.2 Story Quality

a b

Figure 7.3: Expert reviewers: (a) Story Value and (b) Prose Quality

• DynStory and GenStory algorithms ensure the best story value, same

as in the case of non-experts. However, in this case their source-based

and temlplate-based versions are much closer than in the previous case.

This may be due to the fact that expert reviewers recognize that the

rendered facts are the same in both versions.

• The prose quality is still the same for all algorithms, but it rapidly

decreases with rising story length.

Figure 7.4: Expert reviewers: average Story Value and Prose Quality

How does using source sentences compare with using templates?

Figure 7.4 shows the quality of a story as judged by human subjects on a

1 to 5 scale. Once again the curves have been obtained by averaging, for

108

7.2 Story Quality

each rendering technique, the results of all five algorithms. It shows that for

expert reviewers, using source sentences does not improve the story value,

while prose quality is slightly higher for templated-rendered stories.

How do experts compare with non-experts? Let us now compare

results from expert and non-expert reviewers, as shown in Figure 7.5 (the

y-axis still shows human subject judgements of the stories produced).

Figure 7.5: Experts vs. non-experts Comparison

• Experts rate short stories with higher value than non-experts.

• As stories become longer, experts rate their value lower, while ratings

from non-experts remain almost the same.

• For all but very long stories, experts rate prose quality higher than

non-experts. This may be due to the fact that they are more aware of

the machine-generated story nature.

We used the t-test to analyze the statistical significance of our experi-

ments. We first considered the non-experts and compared their judgements

about both the value of stories and the quality of the prose. We obtained

tValues between 0.4 to 0.5. Those numbers indicate no statistically signifi-

cant difference in the sample means. We then applied the same analysis to

the judgements of expert reviewers, obtaining similar results, and thus con-

cluding that human judgments can be considered significant within groups

of similar people. We then compared expert and non-expert judgements,

109

7.3 Execution Times

obtaining tValues greater than 1. The difference in the means became sig-

nificant in some particular cases, such as judgements about the prose for

low values of the story length (tValues greater than 3), thus confirming the

interpretation of Figure 7.5.

7.3 Execution Times

Besides the qualitative evaluation we also evaluated the times taken to

extract information from data sources and to create stories. In particular

we compared the time taken to create a story of a given length k using the

information already in the database and time needed to retrieve the same k

facts from data sources.

Figure 7.6: Comparison between execution times

Figure 7.6 reports the results of this comparison and clearly shows that

the data extraction time is two orders of magnitude greater than the story

creation time (tens of milliseconds vs seconds).

Note 7.1. The graph in Figure 7.6 shows for example that the time taken to

extract 4 facts is 19 seconds, so one main think that it takes approximately

5 seconds to extract a single fact. These numbers are so large because we

computed the time taken to access the sources and find the values of a

given set of attributes, ignoring any other information in the same sources.

110

7.3 Execution Times

The actual behavior of the Extraction Engine is to extract all the available

information – not just a single fact – every time it accesses a data source,

thus the ratio of the processing time to the number of extracted triples drops

down significantly.

111

Chapter 8

Discussion and Conclusions

8.1 Conclusions

In this work techniques and algorithms to extract and summarize infor-

mation from large data repositories have been presented. Proposed tech-

niques have been applied to different kinds of data. In particular two major

scenarios have been considered throughout the thesis: digital video collec-

tions and collection of text documents (e.g. the world wide web). The

choice of these two application domains has been motivated by the consid-

eration that digital video data represent the most voluminous type of data

in the field of multimedia databases, while the world wide web represents

nowadays a huge and global information repository, counting billions of doc-

uments. Management of these classes of data thus arises several challenging

research issues.

Starting from the consideration that both raw video data and natural

language text are unstructured data, we have pointed out the need to define

techniques for extracting structured data out of them. This would enable an

information retrieval system to effectively answer queries that ask for specific

information rather than for documents containing specific information. We

have also pointed out that the ever increasing amount of available data

causes information retrieval systems to produce very large answers to any

user query, thus requiring a new capabilities for any modern information

retrieval system, namely the capability of automatically summarizing large

data sets in order to produce compact overviews of them.

112

8.1 Conclusions

In the video databases context, we have shown that the knowledge ex-

traction phase requires the segmentation of videoclips into meaningful units

(shots and scenes) and the identification of events occurring and objects

appearing in each unit, while, the summarization task requires the selection

of a subset of those units, such that certain constraints (e.g. the maximum

allowed length for the summary) and properties (e.g. continuity and no

repetitions) are satisfied.

In the context of text documents we have proposed a technique to extract

structured information from natural language text and use such information

to build succinct stories about people, places, events, etc., such that certain

constraints and properties are satisfied.

The major contributions presented in this thesis have been

• the Priority Curve Algorithm (PriCA) for video summarization;

• the Text Attribute Extraction (TAE) Algorithm for extracting struc-

tured information from natural language text;

• a Named Entity Recognition algorithm (T-HMM) for recognizing in

a set of text documents the entities of interest to a given knowledge

domain;

• three heuristic algorithms (OptStory+, GenStory and DynStory) for gen-

erating stories out of the information collected by the TAE algorithm.

The Priority Curve Algorithm (PriCA) retains the core ideas on which

the CPR model is based but uses a completely different approach to the prob-

lem of finding good summaries fast. It completely eliminates the objective

function upon which the previous algorithms were based, but captures the

same intuitions in a compelling way. Experiments have shown that PriCA

outperforms the three algorithms presented in [17] both in terms of user

judged quality and in the terms of processing time.

The Text Attribute Extraction (TAE) Algorithm allows to extract struc-

tured information from natural language text. It is based on the concept

of extraction rule that allows to match the syntactic structure of a sentence

against a set of prototypes.

113

8.2 Future Work

The Named Entity Recognition algorithm (T-HMM) allows to recognize

in a set of text documents the entities of interest to a given knowledge

domain. It is based on Hidden Markov Models and uses an innovative two-

phase processing to recognize and classify named entities. Performance of

the proposed algorithm have proved to be comparable with those of other

algorithms presented in the literature.

The three heuristic story creation algorithms, namely OptStory+, Gen-

Story and DynStory, allows to build suboptimal stories using the information

collected by the TAE algorithm. Our approach to story creation is different

from both the text summarization approaches and the automatic storytelling

approaches described in the literature. Experiments have shown that the

Story system can generate stories very fast (tens of milliseconds) and qual-

ity of produced stories is rated positively from the users, both in terms of

value of the facts included in the story and in the terms of readability of the

generated text.

8.2 Future Work

Several research issues still need to be further investigated with respect

to both video summarization and automatic story creation. We plan to

move forward in several new directions.

A key area of research on video summarization that we have mentioned

in this thesis, but not described in detail, relates to the problem of actually

summarizing video using a mix of audio, text and raw video streams associ-

ated with a video file. For example, news reports are often accompanied by

text streams as well as audio streams and these streams can be invaluable

in eliciting content.

Another major research topic relates to the problem of summarizing

video based on context. In our approach, we can summarize video based on

priorities – however, a number of methods can be used to express those prior-

ities and often to automatically learn those priorities so that the summaries

shown to different users are different.

The first goal in the field of story creation is to quantitatively define

114

8.2 Future Work

what constitutes a good story. We studied numerous definitions in literature

– most of them are behavioral definitions that describe the quality of a story

in terms of its impact on its readers (e.g. “a story is good if I can’t stop

reading it and when I do stop reading it, I can’t stop thinking about it”).

Coming up with quantitative models of such statements is a formidable

challenge. Our second goal is to further improve our algorithms to extract

entity attribute value triples from data sources. A third goal is to assess

how best to weight the conditions of continuity, non-repetition and priority

of facts within a given story.

115

Bibliography

[1] S. Adali, K.S. Candan, S.-S. Chen, K. Erol, and V.S.Subrahmanian.

The Advanced Video Information System: Data Structures and Query

Processing. ACM Multimedia Systems Journal, 4(4):172–186, 1996.

[2] R. Agrawal, Jr. R.J. Bayardo, and R. Srikant. Athena: Mining-Based

Interactive Management of Text Database. In Proceedings of the 7th

International Conference on Extending Database Technology: Advances

in Database Technology, volume 1777 of Lecture Notes In Computer

Science, pages 365–379. Springer-Verlag, March 2000.

[3] M. Albanese, A. Chianese, V. Moscato, and L. Sansone. A Formal

Model for Video Shot Segmentation and its Application via Animate

Vision. Multimedia Tools and Applications Journal, 24(3):253–272, De-

cember 2004.

[4] N. Ancona, G. Cicirelli, A. Branca, and A.Distante. Goal Detection

in Football by Using Support Vector Machines for Classification. In

Proceedings of the IEEE International Joint Conference on Neural Net-

works, volume 1, pages 611–616, July 2001.

[5] G. Boccignone, A. Chianese, V. Moscato, and A. Picariello. Foveated

Shot Detection for Video Segmentation. IEEE Transactions on Circuits

and Systems for Video Technology, 15(3):365– 377, March 2005.

[6] J. Callan and T. Mitamura. Knowledge-Based Extraction of Named

Entities. In Proceedings of the Eleventh International Conference on

Information and Knowledge Management, pages 532–537. ACM Press,

November 2002.

[7] J.Y. Chen, C.M. Taskiran, A. Albiol, C.A. Bouman, and E.J. Delp.

ViBE: a Video Indexing and Browsing Environment. In Proceedings

of the SPIE Conference on Multimedia Storage and Archiving Systems

IV, volume 3846, pages 148–164, August 1999.

116

BIBLIOGRAPHY

[8] A. Chianese, R. Miscioscia, V. Moscato, S. Parlato, and A. Picariello.

A Fuzzy Approach to Video Scene Detection and its Application for

Soccer Matches. In Proceedings of the 4th International Conference on

Intelligent Systems Design and Application, August 2004.

[9] R. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zue, editors.

Survey of the State of the Art in Human Language Technology. Studies

in Natural Language Processing. Cambridge University Press, March

1998.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction

to Algorithms. MIT Press, 2nd edition, September 2001.

[11] J.-P. Courtiat, R. Cruz de Oliveira, and L.F. Rust da Costa Carmo.

Towards a New Multimedia Synchronization Mechanism and its For-

mal Specification. In Proceedings of the Second ACM International

Conference on Multimedia, pages 133–140. ACM Press, 1994.

[12] I.L. de Oliverira and R.S. Wazlawick. A Modular Connectionist Parser

for Resolution of Pronominal Anaphoric References in Multiple Sen-

tences. In Proceedings of the IEEE International Joint Conference on

Neural Networks, IEEE World Congress on Computational Intelligence,

volume 2, May 1998.

[13] D. DeMenthon, V. Kobla, and D. Doermann. Video Summarization

by Curve Simplification. In Proceedings of the sixth ACM interna-

tional conference on Multimedia, pages 211–218, New York, NY, USA,

September 1998. ACM Press.

[14] H.P. Edmundson. New Methods in Automatic Extracting. Journal of

the ACM, 16(2):264–285, April 1969.

[15] W.E. Farag and H. Abdel-Wahab. Multimedia Systems and Content-

Based Image Retrieval, chapter Video Content-Based Retrieval Tech-

niques, pages 114–154. 2004.

[16] M. Fayzullin, V. S. Subrahmanian, A. Picariello, and M. L. Sapino.

The CPR Model for Summarizing Video. Multimedia Tools and Appli-

cations, 26(2):153–173, June 2005.

[17] M. Fayzullin, V.S. Subrahmanian, A. Picariello, and M.L. Sapino. The

CPR Model for Summarizing Video. In Proceedings of the 1st ACM In-

117

BIBLIOGRAPHY

ternational Workshop on Multimedia Databases, pages 2–9. ACM Press,

November 2003.

[18] W.N. Francis and H. Kucera. Brown Corpus Manual -

A Standard Corpus of Present-Day Edited American English.

http://helmer.aksis.uib.no/icame/brown/bcm.html, 1979.

[19] J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell. Summariz-

ing Text Documents: Sentence Selection and Evaluation Metrics. In

Proceedings of the 22nd Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 121–128.

ACM Press, August 1999.

[20] J. Goldstein, V. Mittal, J. Carbonell, and J. Callan. Creating and Eval-

uating Multi-document Sentence Extract Summaries. In Proceedings of

the Ninth ACM International Conference on Information Knowledge

Management, pages 165–172, November 2000.

[21] Y. Gong and X. Liu. Video Summarization Using Singular Value De-

composition. In Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, volume 2, pages 174–180, 2000.

[22] Y. Gong and X. Liu. Generic Text Summarization Using Relevance

Measure and Latent Semantic Analysis. In Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 19–25. ACM Press, September

2001.

[23] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Prentice

Hall, 2nd edition, January 2002.

[24] Z. GuoDong and S. Jian. Integrating Various Features in Hidden

Markov Model Using Constraint Relaxation Algorithm for Recognition

of Named Entities Without Gazetteers. In Proceedings of the Inter-

national Conference on Natural Language Processing and Knowledge

Engineering, pages 465–470, October 2003.

[25] U. Hahn and I. Mani. The Challenges of Automatic Summarization.

IEEE Computer, 33(11):29–36, November 2000.

[26] A. Hampapur, T. Weymouth, and R. Jain. Digital Video Segmenta-

tion. In Proceedings of the Second ACM International Conference on

Multimedia, pages 357–364. ACM Press, October 1994.

118

BIBLIOGRAPHY

[27] A. Hanjalic and H.-J. Zhang. Optimal Shot Boundary Detection Based

on Robust Statistical Models. In Proceedings of IEEE International

Conference on Multimedia Computing and Systems, volume 2, pages

710–714, June 1999.

[28] F. Idris and S. Panchanathan. Review of Image and Video Indexing

Techniques. Journal of Visual Communication and Image Representa-

tion, 8(2):146–166, June 1997.

[29] L. Itti and C. Koch. Computational Modeling of Visual Attention.

Nature Reviews Neuroscience, 2(3):194–203, March 2001.

[30] H.M. Jamil and L.V.S. Lakshmanan. A Declarative Semantics for Be-

havioral Inheritance and Conflict Resolution. In Proceedings of the

International Logic Programming Symposium, pages 130–144, 1995.

[31] H. Jing and K.R. McKeown. The decomposition of Human-Written

Summary Sentences. In Proceedings of the 22nd Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 129–136. ACM Press, August 1999.

[32] S.X. Ju, M.J. Black, S. Minneman, and D. Kimber. Summarization

of Videotaped Presentations: Automatic Analysis of Motion and Ges-

ture. IEEE Transactions on Circuits and Systems for Video Technology,

8(5):686–696, September 1998.

[33] H. Kang. Distributed Multimedia Databases: Techniques and Appli-

cations, chapter Video Abstraction Techniques for a Digital Library,

pages 120–132. 2002.

[34] F.W. Lancaster. Information Retrieval Systems: Characteristics, Test-

ing and Evaluation. John Wiley, New York, 1968.

[35] S.-W. Lee, Y.-M. Kim, and S.W. Choi. Fast Scene Change Detec-

tion Using Direct Feature Extraction from MPEG Compressed Videos.

IEEE Transactions on Multimedia, 2(4):240–254, December 2000.

[36] R. Lienhart, S. Pfeiffer, and W. Effelsberg. The MoCA Workbench:

Support for Creativity in Movie Content Analysis. In Proceedings of

the Third IEEE International Conference on Multimedia Computing

and Systems, pages 314–321, June 1996.

119

BIBLIOGRAPHY

[37] C.-C. Lo and S.-J. Wang. Video Segmentation Using a Histogram-Based

Fuzzy C-Means Clustering Algorithm. In Proceedings of the 10th IEEE

International Conference on Fuzzy Systems, pages 920–923, December

2001.

[38] S. Lu, M.R. Lyu, and I. King. Semantic video summarization using

mutual reinforcement principle and shot arrangement patterns. In Pro-

ceedings of the 11th International Multimedia Modelling Conference,

pages 60–67, January 2005.

[39] Y. Luo, J. Hwang, and T. Wu. Multimedia Systems and Content-based

Image Retrieval, chapter Object-based Video Analysis and Interpreta-

tion, pages 182–199. 2004.

[40] A. Taylor M. Marcus and R. MacIntyre. The Penn Treebank Project.

http://www.cis.upenn.edu/ treebank/.

[41] Y.-F. Ma, L. Lu, H.-J. Zhang, and M. Li. A User Attention Model for

Video Summarization. In Proceedings of the Tenth ACM International

Conference on Multimedia, pages 533–542. ACM Press, December 2002.

[42] I. Machado, R. Prada, and A. Paiva. Bringing Drama into a Virtual

Stage. In Proceedings of the Third International Conference on Collab-

orative Virtual Environments, pages 111–117. ACM Press, 2000.

[43] I. Mani. Automatic Summarization, volume 3 of Natural Language

Processing. John Benjamins Publishing Company, 2001.

[44] B.S. Manjunath and W.Y. Ma. Texture Features for Browsing and

Retrieval of Image Data. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 18(8):837–842, August 1996.

[45] O. Marques and B. Furht. Distributed multimedia databases: techniques

& applications, chapter Content-Based Visual Information Retrieval,

pages 37–57. 2002.

[46] J. Meng, Y. Juan, and S.-F. Chang. Scene Change Detection in a MPEG

Compressed Video Sequence. In Proceedings of the SPIE Symposium

on Digital Video Compression: Algorithms and Technologies, volume

2419, pages 14–25, February 1995.

[47] George A. Miller. Wordnet: a lexical database for english. Communi-

cations of the ACM, 38(11):39–41, November 1995.

120

BIBLIOGRAPHY

[48] J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J. Legall, editors.

MPEG Video Compression Standard. Chapman & Hall, Ltd., 1996.

[49] V. Mittal, M. Kantrowitz, J. Goldstein, and J. Carbonell. Selecting Text

Spans for Document Summaries: Heuristics and Metrics. In Proceedings

of the Sixteenth National Conference on Artificial Intelligence and The

Eleventh Annual Conference on Innovative Applications of Artificial

Intelligence, pages 467–473. AAAI, September 1999.

[50] D. Neuhoff. The Viterbi Algorithm as an Aid in Text Recognition. IEEE

Transactions on Information Theory, 21(2):222–226, March 1975.

[51] S. Oyama, T. Kokubo, and T. Ishida. Domain-Specific Web Search

with Keyword Spices. IEEE Transactions on Knowledge and Data En-

gineering, 16(1):17–27, January 2004.

[52] W. B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compres-

sion Standard. Kluwer Academic Publishers, 1992.

[53] D.R. Radev, W. Fan, and Z. Zhang. WebInEssence: A Personal-

ized Web-Based Multi-Document Summarization and Recommendation

System. In Proceedings of the NAACL Workshop on Automatic Sum-

marization, pages 79–88, June 2001.

[54] P. Rosso, F. Masulli, and D. Buscaldi. Word Sense Disambiguation

Combining Conceptual Distance. In Proceedings of the International

Conference on Natural Language Processing and Knowledge Engineer-

ing, pages 120–125, October 2003.

[55] Y. Rui, T. Huang, and S. Mehrotra. Browsing and Retrieving Video

Content in a Unified Framework. In Proceedings of the IEEE Sec-

ond Workshop on Multimedia Signal Processing, pages 9–14, December

1998.

[56] H.S. Sawhney and S. Ayer. Compact Representations of Videos

Through Dominant and Multiplemotion Estimation. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 18(8):814–830, Au-

gust 1996.

[57] C.E. Shannon and W. Weaver. The Mathematical Theory of Commu-

nication. University of Illinois Press, Urbana, October 1963.

121

BIBLIOGRAPHY

[58] X. Shao, C. Xu, and M.S. Kankanhalli. Automatically Generating Sum-

maries for Musical Video. In Proceedings of the International Confer-

ence on Image Processing, volume 2, pages 547–500, September 2003.

[59] M. Shneier and M. Abdel-Mottaleb. Exploiting the JPEG Compression

Scheme for Image Retrieval. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 18(8):849–853, August 1996.

[60] D.D. Sleator and D. Temperley. Parsing English with a Link Gram-

mar. In Proceedings of thr Third International Workshop on Parsing

Technologies, August 1993.

[61] K. Sparck Jones. Automatic Keyword Classification for Information

Retrieval. Butterworths, London, 1971.

[62] V.S. Subrahmanian. Principles of Multimedia Database Systems. Mor-

gan Kaufmann.

[63] M.J. Swain and D.H. Ballard. Color Indexing. International Journal

of Computer Vision, 7(1):11–32, November 1991.

[64] N. Szilas. A New Approach to Interactive Drama: from Intelligent

Characters to an Intelligent Virtual Narrator. In Proceedings of the

AAAI Spring Symposium on AI and Interactive Entertainment, pages

72–76, 2001.

[65] M. Theune, S. Faas, A. Nijholt, and D. Heylen. The Virtual Storyteller:

Story Creation by Intelligent Agents. In Proceedings of the Conference

on Technologies for Interactive Digital Storytelling and Entertainment,

pages 204–215, 2003.

[66] Y. Tonomura. Video Handling Based on Structured Information for Hy-

permedia Systems. In Proceedings of the ACM International Conference

on Multimedia Information Systems, pages 333–344. McGraw-Hill, Inc.,

1991.

[67] S. Uchihashi and J. Foote. Summarizing Video using a Shot Importance

Measure and a Frame-Packing Algorithm. In Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing,

volume 6, pages 3041–3044, March 1999.

[68] M. Umaschi Bers, E. Ackermann, J. Cassell, B. Donegan, J. Gonzalez-

Heydrich, D.R. DeMaso, C. Strohecker, S. Lualdi, D. Bromley, and

122

BIBLIOGRAPHY

J. Karlin. Interactive Storytelling Environments: Coping with Cardiac

Illness at Boston’s Children’s Hospital. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 603–610.

ACM Press/Addison-Wesley Publishing Co., April 1998.

[69] N. Vasconcelos and A. Lippman. Towards Semantically Meaningful Fea-

ture Spaces for the Characterization of Video Content. In Proceedings

of the 1997 International Conference on Image Processing, volume 1,

pages 25–28. IEEE Computer Society, October 1997.

[70] A. Vellaikal W. Zhou and C.C. Jay Kuo. Rule-Based Video Classifica-

tion System for Basketball Video Indexing. In Proceedings of the 200

ACM Workshops on Multimedia, pages 213–216. ACM Press, November

2000.

[71] H.D. Wactlar, T. Kanade, M.A. Smith, and S.M. Stevens. Intelli-

gent Access to Digital Video: Informedia Project. IEEE Computer,

29(5):46–52, May 1996.

[72] I. Yahiaoui, B. Merialdo, and B. Huet. Generating Summaries of Multi-

Episode Video. In Proceedings of the IEEE International Conference

on Multimedia and Expo, pages 611–614, August 2001.

[73] B.-L. Yeo and B. Liu. Rapid Scene Analysis on Compressed Video.

IEEE Transactions on Circuits and Systems for Video Technology,

5(6):533–544, December 1995.

[74] H.J. Zhang, A. Kankanhalli, and S.W. Smoliar. Automatic Partitioning

of Full-Motion Video. Multimedia Systems, 1(1):10–28, June 1993.

[75] W. Zhou and S. Dao. Combining Hierarchical Classifiers with Video

Semantic Indexing Systems. In Proceedings of the Second IEEE Pacific

Rim Conference on Multimedia - Advances in Multimedia Information

Processing, pages 78–85. Springer-Verlag, October 2001.

123

