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Abstract—Intrabody nanonetworks for nervous system moni-
toring are envisioned as a key application of the Internet of Nano-
Things (IoNT) paradigm, with the aim of developing radically new
medical diagnosis and treatment techniques. Indeed, very recently,
bionic devices have been implanted inside a living human brain as
innovative treatment for drug-resistant epilepsy. In this context,
this paper proposes a systems-theoretic communication model to
capture the actual behavior of biological neurons. Specifically, bio-
logical neurons exhibit physical extension due to their projections
called dendrites, which propagate the electrochemical stimulation
received via synapses to the soma. Experimental evidences show
that the dendrites exhibit two main features: 1) the compartmen-
talization at the level of the dendritic branches of the neuronal
processes and 2) the location-dependent preference for different
frequencies. Stemming from these experimental evidences, we pro-
pose to model the dendritic tree as a spatiotemporal filter bank,
where each filter models the behavior in both space and time
of a dendritic branch. Each filter is fully characterized along
with the overall neuronal response. Furthermore, sufficient con-
ditions on the incoming stimulus for inducing a null-neuronal
response are derived. The conducted theoretical analysis shows
that: 1) the neuronal information is encoded in the stimulus tem-
poral pattern, i.e., it is possible to select the neuron to affect by
changing the stimulus frequency content; in this sense, the commu-
nication among neurons is frequency-selective and 2) the spatial
distribution of the dendrites affects the neuronal response; in
this sense, the communication among neurons is spatial-selective.
The theoretical analysis is validated through a real neuron
morphology.

Index Terms—Dendritic tree, Internet of Nano-Things (IoNT),
intrabody networks, nanonetworks, receiver, spatial-frequency
selectivity.

I. INTRODUCTION

I N THE last years, the Internet of NanoThings (IoNT)
has been proposed as a novel network paradigm aiming

at interconnecting nanoscale devices, referred to as nanoma-
chines, with classical networks and ultimately the Internet [1].
Intrabody nanonetworks, in which nanomachines are deployed
inside the human body and remotely controlled from the
macroscale and over the Internet by an external user such as
a healthcare provider, are envisioned as the ideal candidate
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for applying the IoNT paradigm to develop radically new
medical diagnosis and treatment techniques [1], [2]. Indeed,
very recently, intrabody nanonetworks have been proposed
for human nervous system monitoring [3]–[6] by exploiting
the dimensional similarity of the nanomachines with the ner-
vous biological structures, and machines have been already
implanted inside a living human brain as innovative treatment
for drug-resistant epilepsy [7].

Despite the aforementioned breakthroughs, several questions
and challenges must be addressed to design a fully functional
intrabody nanonetwork deployed inside the nervous system. To
this aim, the first step is to study the physiological mecha-
nisms underlying the neuronal activities with an engineering
abstraction and to map such mechanisms into communication
engineering system models [4]. In fact, only if such a mapping
is available, it may be possible to understand how to control
the artificial nanomachines deployed inside the nervous system.
Hence, the aforementioned mapping has been a subject of study
in the latest years.

In literature, the widely adopted communication model for
describing the neuron mechanisms is the so-called point neu-
ron model, according to which a neuron is point-wise without
physical extension. Consequently, a targeted neuron, referred to
as postsynaptic neuron, mainly acts either as a single low-pass
filter [8], by temporally integrating the incoming stimuli gen-
erated by the surrounding neurons, referred to as presynaptic
neurons, or as a single bandpass filter [4], centered on a certain
frequency, called resonance frequency.

However, biological neurons are not point-like. Indeed, as
shown in Fig. 1, they are constituted by physical projections,
called dendrites, which propagate the electrochemical stim-
ulation received via synapses to the cell body or soma. In
particular, evidences from experimental studies have shown that
the dendritic morphology is one of the crucial factors determin-
ing how signals coming from individual synapses are processed
[9]. A clear fact supporting this statement is that several neu-
ropathological conditions are characterized by abnormalities in
dendritic tree structure, including some retardation syndromes
[10] and neurodegenerative diseases [11].

As a consequence, an effective neuron communication model
should take into account the complex physical structure of
a neuron. More in detail, a growing body of experimental
evidence shows a high compartmentalization at the level of
individual dendritic branches of many electrical, biochemical,
and cellular processes, fundamental to the neuron physiology
[12]–[15]. According to these evidences, the dendrites act as
independent processing and signaling units, referred in the
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Fig. 1. Location-dependent frequency filtering. Case 1: An incoming stimulus
with interspike frequency f1 activates only the dendritic subunit, denoted with
the red color of the postsynaptic neuron A. Case 2: An incoming stimulus with
interspike frequency f2 activates only the dendritic subunit, denoted with the
green color of the postsynaptic neuron A.

following to as dendritic subunits.1 Each subunit performs local
processing, whose output is broadcasted within the neuron or
to different neurons via dendritic transmission and neuromod-
ulator release [12]–[14]. The processing specificity of each
dendritic subunit is driven by and reflects the complex dendritic
branching, tapering, and the nonuniform ion-channel distribu-
tion [16] that make the electrical properties of a neuron not
uniform within the dendritic tree.

Very recently in [15], it has been shown that the com-
partmentalization of the dendritic processing causes a crucial
phenomenon: different dendritic subunits express different fre-
quency preferences, i.e., the maximum in their frequency
response changes in the space. Let us describe this concept with
the example depicted in Fig. 1, where the postsynaptic neuron
A exhibits three different dendritic subunits characterized by
frequency preferences at f1, f2, and f3, respectively. In Case 1,
the presynaptic neuron generates electrical pulses, referred to
as action potentials (APs) or spikes, with a period correspond-
ing to the frequency f1. Hence, the dendritic subunit of neuron
A activated by the incoming stimulus is the one labeled with
the red color, since its frequency response has a maximum at
f1. In Case 2, the presynaptic neuron generates spikes with an
interspike frequency equal to f2. Hence, the dendritic subunit
of neuron A activated by the incoming stimulus is now the one
labeled with the green color. As a consequence, a stimulus may
or not elicit a spike depending on its timing and on the dendritic
subunit frequency preference.

In this paper, a communication engineering model is
designed for capturing the behavior of biological neurons,
by accounting for both the peculiar features of the dendritic
biophysics: 1) the compartmentalization at the level of the
dendritic subunits of the neuronal processes and 2) the location-
dependent preference for different frequencies. To the best of
our knowledge, this is the first work that addresses this key
issue.

Specifically, we propose to model the dendritic tree of a
neuron as a receiver spatiotemporal filter bank, where each fil-
ter models the behavior in both space and time of a dendritic
subunit. To capture the trial-to-trial variability of the neu-
ronal responses, we conduct the analysis through a stochastic

1For a formal definition of dendritic subunit, refer to Section III.

approach. In particular, we first characterize the input–output
relationship of each dendritic subunit, with the aim of map-
ping its biophysics in a communication system model. More
in detail, we derive: 1) the attenuation and the delay expe-
rienced by a stimulus at an arbitrary location of an arbitrary
dendritic subunit; 2) the neuron firing probability, i.e., the prob-
ability of a neuron to generate APs, due to the activation of an
arbitrary dendritic subunit at an arbitrary location; 3) the suffi-
cient conditions for an input stimulus to induce a null neuronal
response; and 4) the bandwidth characterization of the filter
modeling a dendritic subunit as a function of both the dendritic
subunit impedance and its spatial distribution. Then, we charac-
terize the overall neuronal response by generalizing the above
analysis. Finally, the theoretical analysis is validated through
numerical simulation, using an experimentally reconstructed
morphology of a multipolar rat neuron.

This paper is organized as follows. In Section II, we describe
the biophysics of the dendritic tree. In Section III, we develop
a receiver design for capturing the actual neuron behavior, and
we derive the above-mentioned results. In Section IV, we val-
idate the theoretical analysis with a real neuron morphology
through numerical simulations. In Section V, we discuss the
derived results by providing insights on the design of future
IoNT applications. Finally, Section VI concludes this paper, and
some proofs are gathered in the Appendix.

II. BIOPHYSICS OF DENDRITES

Dendrites are the branched projections of a neuron. They are
the largest component in both surface area and volume of the
brain and their specific morphology is used to classify neurons
into classes: pyramidal, Purkinje, amacrine, stellate, etc. Hence,
different types of neurons exhibit distinctive and characteristic
dendrite branching patterns. Dendrites propagate the electro-
chemical stimulation received via synapses, which are located
at various points throughout the dendritic tree, to the cell body
or soma. Consequently, they play a central role in neural com-
putation [9]. A typical dendritic tree receives approximately
10 000 synaptic inputs distributed over the dendritic surface.
When activated, each of these inputs produces a local conduc-
tance change for specific ions at the postsynaptic membrane,
followed by a flow of the corresponding ion current between
the two sides of the postsynaptic membrane. As a result, a local
change in membrane potential is generated and spread along the
dendritic branches [17]. This spread depends on the morphol-
ogy of the tree, on the electric properties of its membrane and
cytoplasm. Specifically, the various synaptic inputs that are dis-
tributed over the dendritic tree interact in time and in space by
determining the input–output properties of the neuron.

As mentioned in Section I, a growing body of experimental
evidence shows a highly compartmentalization at the level of
individual dendritic branches of many electrical, biochemical,
and cellular processes, fundamental to the neuron physiology
[12]–[15]. According to these evidences, the dendrites act as
independent processing and signaling units, performing local
computations that are then broadcast to the rest of the neuron,
or to other neurons via dendritic transmission and neuromodu-
lator release. The specificity of the dendritic subunit processing
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is driven by and reflects the complex dendritic branching,
tapering, and the nonuniform ion-channel distribution on the
dendrites [16] that make the electrical properties of a neuron
not uniform within the dendritic tree. This highly compart-
mentalization induces different dendrites to express different
frequency behaviors, i.e., to express different frequency pref-
erences [15].

Several experiments in vivo have directly measured the
input–output relationship of dendrites using continuous-time
current injection [18]. These studies reveal that the dendritic
transmission of time-varying signals is characterized by a linear
input–output relationship. This finding is remarkable since den-
drites have a full complement of nonlinear voltage-dependent
channels, as aforementioned. Regarding their frequency behav-
ior, until recently, experimental methods did not allow direct
studies of dendrites, and their frequency response was supposed
to be governed only by a low-pass behavior [18]. However,
many experiments [19]–[21] show that biological neurons can
exhibit a bandpass behavior centered on a frequency, called
resonance frequency, whose value depends on the biophysical
parameters affecting the resting state of the membrane, e.g., the
membrane leak conductance and the potassium channel density.
Stemming from these recent findings, in the next section, we
propose a systems-theoretic communication engineering model
for capturing the actual neuronal behavior, by accounting for
the complex dendritic biophysics.

III. RECEIVER DESIGN: SYSTEMS-THEORETIC MODEL

In this section, we propose a systems-theoretic communi-
cation model to capture the complex neuronal behavior, by
accounting for both the peculiar features of the dendritic bio-
physics: 1) the compartmentalization at the level of individ-
ual dendritic branches of the neuronal processes and 2) the
location-dependent preference for different frequencies. These
features are a consequence of the aforementioned complex
dendritic branching, tapering, and the nonuniform spatial dis-
tribution of the ionic channels on the dendrites, which make
the electrical properties of a neuron be not uniform within the
dendritic tree. Preliminarily, we give the definition of dendritic
subunit [12]–[14], which will be used through the paper.

Definition 1: A dendritic subunit denotes an electrically
homogeneous region within the dendritic tree.

As described in Section II, each dendritic subunit acts as
separate functional block. This phenomenon along with the
location-dependent preference for certain frequencies led us to
propose the systems-theoretic communication model shown in
Fig. 2. According to this model, a neuron is modeled as spa-
tiotemporal filter bank, where each dendritic subunit within the
dendritic tree acts as a distinct filter, exhibiting different fre-
quency preferences.2 The number and the dimensions of the
dendritic subunits depend on the neuron characteristics [12]–
[14]. In the following, without loss of generality, we denote
with D�{1, 2, . . . , D} the set of distinct dendritic subunits,
whose cardinality is |D| = D.

2As described in Section II, the frequency behavior of a dendritic subunit is
mainly either low-pass or bandpass.

Fig. 2. Spatiotemporal filter bank: one-to-one mapping between dendritic
biophysics and receiver block.

A. Dendritic Subunit Response

Definition 2: Hi(xi, f) denotes the spatial-frequency
response of the filter modeling the ith dendritic subunit, with
xi denoting the distance between the application point of the
stimulus on the ith dendritic subunit and the spike-initiation
zone near the soma [15], [19]. Its inverse Fourier transform
(FT) is denoted with hi(xi, t).

Since, in neuroscience, the membrane impedance model of
dendrites [18], [19], [22] has been shown to provide a near-
perfect fit to the dendrite-to-soma input–output relationship for
the main trunk, in the following, we adopt such linear model
to characterize each Hi(xi, f). Specifically, by denoting with
Zi(f) and Za,i(f) the dendritic membrane impedance and
the impedance of the intracellular cytoplasm, respectively, the
generalized cable equation in the Fourier domain is [19], [22]

∂2V (xi, f)

∂x2
i

= γ2
i (f)V (xi, f) (1)

where V (xi, f) is the FT of the voltage response and γi(f) is
the frequency-dependent propagation constant

γ2
i (f) �

Za,i(f)

Zi(f)
. (2)

Za,i(f) is usually an ohmic resistance, i.e., Za,i(f) = ra,i.
Moreover, the nature of the dendritic membrane is fully con-
tained in γi(f) and does not affect the form of (1). The solution
of (1) when a δ-current impulse is injected at the origin and the
voltage is recorded at a distance xi farther away, subject to the
boundary condition that V (xi, f) goes to zero as xi → ∞, is
the spatial-frequency response Hi(xi, f)

Hi(xi, f) =
1

2

ra,i
γi(f)

e−xiγi(f). (3)

By recording the voltage at the origin, and by accounting for
(2), the input impedance of the dendritic subunit is obtained

Hi(0, f) =
1

2

ra,i
γi(f)

=
1

2

√
Zi(f)ra,i. (4)
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Hence, (3) can be rewritten as follows:

Hi(xi, f) = Hi(0, f)e
−xiγi(f). (5)

Remark 1: From (4), it follows that the frequency behavior
of the input impedance Hi(0, f) coincides with the one of the
dendritic membrane impedance Zi(f). Hence, if the dendritic
membrane is resonant, i.e., Zi(f) exhibits a bandpass behav-
ior, so does Hi(0, f) and vice versa. The same consideration
holds if Zi(f) exhibits a low-pass behavior. In particular, the
frequency maximizing the amplitude response of Hi(0, f) coin-
cides with the one maximizing the amplitude response of Zi(f).
This agrees with the results in [19].

Remark 2: From (5), by reasoning as in [19], it follows
that the frequency behavior of the spatial-frequency response
Hi(xi, f) coincides for any xi with the one of Zi(f). Hence, if
Zi(f) exhibits a bandpass/low-pass behavior, so does Hi(xi, f)
(the converse does not hold). However, the frequency assur-
ing the maximum amplitude response of Hi(xi, f) does not
coincide necessarily with the one maximizing the amplitude
response of Zi(f). In particular, from (5), it results that the fre-
quency behavior of Hi(xi, f) can be modified by varying either
Zi(f) (for instance, by varying the density of the voltage-gated
ion channels) or the application point of the stimulus on the
dendritic subunit through xi.

1) Attenuation and Delay Expressions: The attenuation and
delay experienced by a stimulus through the dendritic sub-
unit when the stimulus is applied at a xi distance far away
from the soma are analytically derived through the spatial–
frequency response expressed in (5). The attenuation Λi(xi, f),
as function of the frequency f and the distance xi, is computed
as the inverse of the absolute value of Hi(xi, f). Hence, by
accounting for (5) and (4), Λi(xi, f) is given by

Λi(xi, f) �
1

|Hi(xi, f)| =
exiRe(γi(f))

|Hi(0, f)| =
2 exiRe(γi(f))∣∣∣√Zi(f)ra,i

∣∣∣ .
(6)

By evaluating the square root of a complex function and by
accounting for (2), (6) is rewritten as follows:

Λi(xi, f) =
2 e

xi

√
ra,i

|Zi(f)| cos
(∠Zi(f)

2

)
√|Zi(f)| ra,i

. (7)

In (7), βi(f) � 1
Re(γi(f))

=
(√

ra,i

|Zi(f)| cos
(

∠Zi(f)
2

))−1

is the

generalized frequency-dependent space constant, which repre-
sents the distance over which a sinusoidal voltage of frequency
f decays to 1/e of its original value [19], [22], and it measures
the electrical compactness of the dendritic subunit.

Remark 3: From (6), it follows that the attenuation Λi(xi, f)
increases exponentially with xi, and it achieves its minimum
value in correspondence of the frequency maximizing the
amplitude response of Hi(xi, f), as expected.

The delay Δi(xi, f), as function of the frequency f and the
distance xi, is computed as the frequency first derivative of
the phase of Hi(xi, f). By accounting for (5) and (4), and by

denoting with ηi(f)�Im(γi(f)) = −
√

ra,i

|Zi(f)| sin
(

∠Zi(f)
2

)
,

the phase has the following expression:

∠Hi(xi, f) = −ra,i
2

tan−1 Im(γi(f))

Re(γi(f))
− xiIm(γi(f))

� −ra,i
2

tan−1 (ηi(f)βi(f))− xi ηi(f). (8)

Hence, the delay Δi(xi, f) is given by

Δi(xi, f) � −d∠Hi(xi, f)

df

=
ra,i

2
(
1 + tan2

(
∠Zi(f)

2

))
×
(
dηi(f)

df
βi(f) + ηi(f)

dβi(f)

df

)
+ xi

dηi(f)

df
.

(9)

Remark 4: From (9), it follows that the delay Δi(xi, f)
increases linearly with xi.

2) Dendritic Subunit Firing Probability: Since the incom-
ing stimulus on a targeted neuron depends on the state of the
presynaptic neuron which in turn depends on the background
synaptic input converging on the presynaptic neuron and on the
action of neuromodulators, a stochastic approach is required for
modeling the input current. It has been widely shown that a
nonhomogeneous Poisson impulse process is able to effectively
describe the neuron trial-to-trial variability [8], [15]. Hence,
we model the input current to the considered targeted neuron
according to this stochastic process

i(t) =

N(t)∑
i=1

δ(t− ti) (10)

where N(t) is a nonhomogeneous Poisson process whose rate
λ(t) is a function of the time, hence E[N(t)] =

∫ t

0
λ(u)du.

Since as described in Section II, each block representing a
dendritic subunit is linear, the voltage response at the soma
vi(xi, t) due to the activation of the ith dendritic subunit for
the input current i(t) can be determined via the Convolution
theorem. Hence by exploiting (10), it results

vi(xi, t) = i(t)⊗ hi(xi, t) =

N(t)∑
j=1

hi(xi, t− tj) (11)

where hi(xi, t) is the spatiotemporal impulse response of the
filter modeling the ith dendritic subunit, characterized in the
previous section. To derive the neuron firing probability due to
the activation of the ith dendritic subunit in Proposition 1, it is
preliminary to stochastically characterize the voltage response
vi(xi, t), as follows.

From (11), it results that vi(xi, t) is a shot-noise process
[23]. Hence, by accounting for the generalized Campbell’s
Theorem [23], we can derive its synthetic characteriza-
tion, i.e., its mean μi(xi, t) � E[vi(xi, t)], covariance
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function Ci(xi, t, τ) � E[(vi(xi, t)− μi(t))(vi(x, t− τ)−
μi(t− τ))], and variance σ2

i (xi, t) � E[(vi(xi, t)− μi(t))
2],

as follows:

μi(xi, t) =

∫ +∞

−∞
hi(x, t− τ)λ(τ)dτ = hi(xi, t)⊗ λ(t)

(12)

Ci(xi, t, τ) =

∫ +∞

−∞
hi(x, t− α)hi(x, t− τ − α)λ(α)dα

= [hi(xi, t)hi(x, t− τ)]⊗ λ(t) (13)

σ2
i (xi, t) =

∫ +∞

−∞
h2
i (x, t− τ)λ(τ)dτ = h2

i (xi, t)⊗ λ(t).

(14)

From (12) to (14), it results that the synthetic characterization
of vi(xi, t) is function of both the space and the time.

Proposition 1: The probability to excite the neuron past its
threshold vth, i.e., the firing probability Pi(xi, t), due to the
activation of the ith dendritic subunit is given by

Pi(xi, t) =

∫ +∞

vth

∫ +∞

−∞
e
∫ +∞
−∞ λ(α)[ej2πνhi(xi,t−α)−1]dα

e−j2πνβdνdβ

(15)

with λ(t) the rate of the nonhomogeneous Poisson process.

Proof: See Appendix A. �
Remark 5: From Proposition 1, the firing probability due

to the activation of the ith dendritic subunit is the function
of: 1) the rate λ(t) of the incoming stimulus and 2) the spa-
tiotemporal processing of the dendritic subunit, through its
spatiotemporal impulse response hi(xi, t).

Since as described in Section II, the dendritic subunit pro-
cessing is driven by and reflects the functional properties of
its collection of synapses [12]–[14] and since the number of
synapses is usually high, it could be reasonable to approxi-
mate vi(xi, t) as a Gaussian process. In such a case, the firing
probability derived in Proposition 1 is simplified as follows:

Pi(xi, t) � P (vi(xi, t) > vth) = Q

(
vth − μi(xi, t)

σi(xi, t)

)
(16)

with μi(xi, t) and σi(xi, t) given in (12) and (14), respectively.
3) Sufficient Conditions for Null-Response: Here, we

derive the conditions on the incoming stimulus impacting on the
ith dendritic subunit to induce a null-neuronal response. This
is crucial since these conditions provide tools for the nanoma-
chines that can be exploited for avoiding the interference on
the surrounding neurons and/or for controlling the neuronal
response. To this aim, the following definition is required.

Definition 3: The cutoff frequencies {fj}2j=1 of a filter F (f)
are the frequencies at which the filter attenuates the input power
by 3 dB3, i.e., {fj}2j=1 : |F (f)|2 = 1

2 .
By substituting the inverse of (7) in the definition of cutoff

frequencies, it results that the cutoff frequencies {fj,i(xi)}2j=1

3If the filter is a bandpass, the two cutoff frequencies are distinct. If the filter
is a low-pass, the two cutoff frequencies degenerate in a single one.

of the ith dendritic subunit Hi(xi, f) are the frequencies satis-
fying the following equality:

{fj,i(xi)}2j=1 : ra,i |Zi(f)| e−2xi

√
ra,i

|Zi(f)| cos
(∠Zi(f)

2

)
= 2.

(17)

Since Hi(xi, f) varies with xi, the cutoff frequencies vary
with xi as well. Stemming from (17), the monolateral band of
Hi(xi, f) can be evaluated as Bi(xi)� (f1,i(xi), f2,i(xi)). For
the frequency behavior of Hi(xi, f), the considerations made in
Remarks 1 and 2 hold.

Remark 6: Equation (17) discloses the dependence of the
cutoff frequencies on both the input impedance Zi(f) of the
ith dendritic subunit and on the location where the stimulus is
applied within the ith dendritic subunit through xi. This is in
agreement with the experimental evidences [15], [19].

Remark 7: Different definitions of the cutoff frequencies can
be adopted. However, Definition 3 is widely adopted in litera-
ture and it does not compromise the following analysis that does
not depend on the adopted cutoff frequency definition.

Proposition 2: The firing probability Pi(xi, t), due to the
activation of the ith dendritic subunit, goes to zero when the
rate λ(t) of the incoming stimulus i(t) has a frequency con-
tent that does not belong to the monolateral frequency band
Bci(xi) = (f1,i, 2f2,i − f1,i), with {fj,i(xi)}2j=1 given in (17),
whose extension, regardless the definition adopted for the cutoff
frequencies, is given by

|Bci(xi)| = 2e
2xi

√
ra,i

|Zi(fr,i)| cos
(∠Zi(fr,i)

2

)

|Zi(fr,i)|

·
∫ +∞

0

|Zi(f)| e−2xi

√
ra,i

|Zi(f)| cos
(∠Zi(f)

2

)
df (18)

where fr,i denotes the frequency at which the amplitude
response of hi(xi, t) assumes its maximum value, i.e., fr,i :
|Hi(xi, fr,i)|2 = maxf |Hi(xi, f)|2.

Proof: See Appendix B. �
Remark 8: From (18), it results that the extension of the

frequency band Bci(xi) varies with the dendritic membrane
impedance, i.e., for example with the density of the voltage-
gated ion channels, and/or with the application point of the
stimulus on the dendritic subunit through xi. On the other
hand, from Proposition 2, it also results that the incoming burst
of spikes controls the activation of the ith dendritic subunit
through the temporal patterns of its rate. As a consequence,
the number of spikes within the burst does not play a signifi-
cant role, because adding more spikes to a burst whose rate has
a frequency content that does not belong to Bci(xi) does not
increase the voltage response of the dendritic subunit. This is in
agreement with the neuroscience studies [20], [21].

Insight 1: By accounting for Proposition 2 and the above
remark, it follows that the neuronal information is encoded in
the stimulus temporal pattern, i.e., in the time-varying period
of the incoming spike train, in agreement with the experimental
evidences [15], [19]–[21]. Hence, a stimulus with a certain tem-
poral pattern can activate a certain dendritic subunit and cannot
activate another one. Hence, by changing the frequency content
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of a burst, a presynaptic neuron selects the dendritic subunits
to affect.

Proposition 3: The firing probability Pi(xi, t), due to the
activation of the ith dendritic subunit, goes to zero when the
distance xi between the application point of the incoming stim-
ulus and the soma goes to infinity, even if the incoming rate
λ(t) has a frequency content belonging to Bci(xi) derived in
Proposition 2.

Proof: See Appendix C. �
Insight 2: From Proposition 3, it results that the applica-

tion point of the incoming stimulus controls the activation of
the ith dendritic subunit. Hence, the spatial distribution of the
synapses on the postsynaptic neuron determines the dendritic
subunits to affect. Hence, through the synapse spatial distri-
bution, a presynaptic neuron selects the dendritic subunits to
affect. In this sense, we are allowed to state that the communi-
cation among neurons is spatial-selective. This is in agreement
with the neuroscience studies [12]–[15].

B. Overall Neuronal Response

Here, we characterize the overall neuronal response. To
this aim, a preliminary consideration is required. From
Proposition 2, it follows that if the input stimulus has a fre-
quency content contained only in the frequency support Bci(xi)
of one dendritic subunit hi(xi, t), the overall neuronal response
v(x̄, t) coincides with vi(xi, t). More in general, if the stimulus
has a frequency content contained in the supports of a subset
of dendritic subunits {hi(xi, t)}i∈I⊆D, the cumulative neu-
ronal response v(x̄, t) is determined only by the corresponding
subset of dendritic subunit responses {vi(xi, t)}i∈I⊆D. This
consideration justifies the following definition.

Definition 4: Heq(x̄, f) denotes the spatial-frequency
response of the equivalent filter modeling the entire dendritic
tree, whose expression is determined by the subset of dendritic
subunits activated by the incoming stimulus

Heq(x̄, f) �
∑

i∈I⊆D
Hi(xi, f) (19)

where x̄ is a symbol used to denote the spatial dependence of
Heq(x̄, f) due to the spatial diversity of the involved dendritic
subunits. In the following, we refer to x̄ as equivalent distance.
The inverse FT of Heq(x̄, f) is denoted with heq(x̄, t).

The frequency characterization of Heq(x̄, f) follows eas-
ily from the analysis developed in the previous section.
Specifically, the monolater band of Heq(x̄, f) can be evaluated
as follows:

Beq(x̄) =
⋃

i∈I⊆D
Bi(xi) (20)

with Bi(xi) given in (17). Definition 3 of the cutoff frequency
can be applied also to Heq(x̄, f). In particular, if the fre-
quency supports of {hi(xi, t)}i∈I⊆D are disjoint, the cutoff
frequencies of Heq(x̄, f) are the union of the cutoff frequen-

cies of each Hi(xi, f), i.e., {fteq,n}2|I|n=1 =
⋃

i∈I⊆D{fj,i}2j=1,
with {fj,i}2j=1 given in (17). By accounting for Definition 4,
we can now derive the overall neuronal response.

Lemma 1: The overall neuronal response v(x̄, t) is a shot-
noise process

v(x̄, t) =

N(t)∑
j=1

heq(x̄, t− tj) (21)

with spatial time-variant mean, covariance function and vari-
ance given by, respectively,

μ(x̄, t) � E[v(x̄, t)] = heq(x̄, t)⊗ λ(t) (22)

C(x̄, t, τ) � E[(v(x̄, t)− μ(x̄, t))(v(x̄, t− τ)− μ(x̄, t− τ))]

= (heq(x̄, t)heq(x̄, t− τ))⊗ λ(t) (23)

σ2(x̄, t) = C(x̄, t, 0) = h2
eq(x̄, t)⊗ λ(t). (24)

Proof: See Appendix D. �
Corollary 1: The probability to excite the neuron past its

threshold vth, i.e., the firing probability P (x̄, t), is given by

P (x̄, t) =

∫ +∞

vth

∫ +∞

−∞
e
∫ +∞
−∞ λ(α)[ej2πνheq(x̄,t−α)−1]dα

e−j2πνβdνdβ (25)

with λ(t) the rate of the nonhomogeneous Poisson process.

Proof: The proof follows by reasoning as in Proposition 1,
since according to Lemma 1, v(x̄, t) is a shot-noise process. �

Remark 9: From Corollary 1, the firing probability is func-
tion of the rate of the incoming stimulus, and of the spatiotem-
poral processing of the dendritic tree through heq(x̄, t).

Since the number of dendrites is usually high, it could be rea-
sonable to approximate v(x̄, t) as a Gaussian process. Hence,
P (x̄, t) derived in Corollary 1 is simplified as follows:

P (x̄, t) � P (v(x̄, t) > vth) = Q

(
vth − μ(x̄, t)

σ(x̄, t)

)
(26)

where μ(x̄, t) and σ(x̄, t) are derived in Lemma 1.
Proposition 4: The neuronal firing probability P (x̄, t) goes

to zero when the rate λ(t) of the incoming stimulus i(t)
has a frequency content that does not belong to the monolat-
eral frequency band Bc(x̄), i.e., to the frequency support of
Heq(x̄, f)⊗Heq(x̄, f), whose extension, regardless the defini-
tion adopted for the cutoff frequencies, is |Bc(x̄)| = 2|Beq(x̄)|,
with Beq(x̄) given in (20). If the frequency supports of
{hi(xi, t)}i∈I⊆D are disjoint, the extension of Bc(x̄) is

|Bc(x̄)| = 2
∑

i∈I⊆D
|Bi(xi)| (27)

where |Bi(xi)| = |Bci(xi)|/2 is given in (18).

Proof: The proof follows by reasoning as in Proposition 2
and by accounting for (20). �

Remark 10: From Proposition 4, it results that the extension
of Bc(x̄) varies with the membrane impedances of the acti-
vated dendritic subunits and with the equivalent distance x̄ that
accounts for the overall effect of the application points of the
stimulus on the dendritic tree. Moreover, it also results that the
incoming burst of spikes controls the neuronal response through
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the temporal patterns of its rate. As a consequence, the con-
sideration made for the single dendritic subunit holds also for
the overall neuronal response, i.e., the number of spikes within
the burst does not play a significant role, because adding more
spikes to a burst whose rate has a frequency content that does
not belong to Bc(x̄) does not increase the neuronal response.
This agrees with the neuroscience studies [20], [21].

Insight 3: By accounting for Proposition 4 and the above
remark, it follows that a stimulus with a certain temporal pattern
can activate a postsynaptic neuron and cannot activate another
postsynaptic neuron. Hence by changing the frequency content
of a burst, a presynaptic neuron selects the postsynaptic neu-
rons to affect. In this sense, the communication among neurons
is frequency-selective. This statement is in agreement with the
neuroscience studies [15], [20], [21].

Proposition 5: The neuronal firing probability P (x̄, t) goes
to zero when the equivalent distance x̄ goes to infinity, even
if the incoming rate λ(t) has a frequency content belonging to
Bc(x̄) derived in Proposition 4.

Proof: See Appendix E. �
Note that the equivalent distance x̄ goes to infinity when each

of the involved distance xi goes to infinity.
Insight 4: From Proposition 5 and Corollary 1, it results that

the application points of the incoming stimulus on the dendritic
tree controls the overall neuronal response. Hence, through
the spatial distribution of the synapses on the dendritic tree, a
presynaptic neuron affects postsynaptic neurons differently.

IV. VALIDATION OF THE THEORETICAL RESULTS

Here, we validate the theoretical results through simula-
tions. Specifically, we use the realistic experimentally recon-
structed rat neuron morphology “P20-DEV139” downloaded
from NeuroMorpho.org archive as done in [15]. The neuron
morphology is shown in Fig. 3. The considered cell exhibits
an archetypical multipolar morphology, and the membrane
impedance for the arbitrary dendritic subunit is equal to [4]

|Zi(ω)| = τ

C

√
1 + τ2ω2

(a+ b− τ2ω2)2 + τ2ω2(1 + a)2
(28)

∠Zi(ω) = tan−1

(
τω

b− (1 + τ2ω2)

b+ a(1 + τ2ω2)

)
(29)

where ω = 2πf . By choosing a = {2, 0.2} and b = {2, 1.1}
as in [4], we obtain the impedances of the two dendritic sub-
units shown in Fig. 3, which act in frequency as pass-band as
depicted in Fig. 4.

In Fig. 4, the normalized modulus of the spatial-frequency
responses {Hi(xi, f)}2i=1 are plotted as function of the fre-
quency and of the dendritic lengths xi (whose values are
available on NeuroMorpho.org for the considered neuron mor-
phology). The red lines in the figure represent the profile of
the modulus of the membrane impedances |Zi(f)| of the two
dendritic subunits, with the arrows indicating the trend of
increasing xi. In agreement with Remark 2, when the stim-
ulus is injected near the soma, the resonance frequency of
{Hi(xi, f)}2i=1 is mostly that of the input impedance. When xi

Fig. 3. Multipolar rat neuron morphology P20-DEV139 with a dendritic tree
composed by two dendritic subunits. Coordinates are expressed in µm.

Fig. 4. Normalized spatial-frequency response modulus |Hi(xi, f)| as func-
tion of the frequency f for different dendritic subunit lengths xi.

increases, the resonance frequency of {Hi(xi, f)}2i=1 becomes
more influenced by the resonance frequency of the frequency-
dependent space constant γ(f), as observed in [19].

In Fig. 5, we focus on the first dendritic subunit by plotting
the normalized modulus |H1(x1, f)| of the spatial-frequency
response as function of the frequency and of the dendritic length
x1. In agreement with the experimental evidences, the attenua-
tion increases as the distance x1 between the stimulus injection
point and the soma increases.

The resonance frequencies observed in Fig. 4 have been
reported in Fig. 6 to underline their spatial profile. It is worth-
while to note that the range of the resonance frequencies,
approximately [160, 305] Hz, agrees with the results in [15].

In Fig. 7 and 8, we report the spatial map of the attenua-
tions experienced by a stimulus injected at coordinates (x, y)
through the dendrites for two different values of the incoming
stimulus frequency, i.e., 100 and 400 Hz. In agreement with the
analysis developed in Section III, the attenuation increases as
the distance between the stimulus injection point and the soma
increases. Furthermore, we observe that the attenuation expe-
rienced by a stimulus injected at a given distance in the first
dendritic subunit can differ from the attenuation experienced
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Fig. 5. Normalized spatial-frequency response modulus |H1(x1, f)| as func-
tion of the frequency f and length x for the first dendritic subunit.

Fig. 6. Spatial map of the resonance frequencies.

by a stimulus injected at the same distance in the second den-
dritic subunit. This phenomenon accounts for the nonuniform
electrical properties of the dendritic tree, and it agrees with the
experimental evidences. Finally, we note that the two dendritic
subunits exhibit different frequency preferences for the consid-
ered values. Specifically, the attenuation of the first subunit is
roughly the same for the two considered values, whereas the
attenuation of the second subunit increases with the distance
faster at 400 Hz than at 100 Hz.

In Figs. 9 and 10, we report the spatial map of the normalized
delays experienced by a stimulus injected at coordinates (x, y)
through the dendrites for two different values of the incom-
ing stimulus frequency, i.e., 100 Hz and 400 Hz. In agreement
with the developed theoretical analysis, the delays increase as
the distance between the stimulus injection point and the soma
increases. Furthermore, we note that the delays experienced by
a stimulus injected at the first subunit differ significantly from
those experienced by a stimulus injected at the second sub-
unit. Specifically, the delays experienced at the first subunit are
shorter than those experienced at the second subunit at 100 Hz,
whereas the opposite holds at 400 Hz. This result clearly reveals
the huge dendritic processing power.

Fig. 7. Spatial map of the attenuations experienced by a stimulus at frequency
100 Hz injected at (x, y).

Fig. 8. Spatial map of the attenuations experienced by a stimulus at frequency
400 Hz injected at (x, y).

Fig. 9. Spatial map of the normalized delays experienced by a stimulus at
frequency 100 Hz injected at (x, y).

To validate the analysis about the spatial-frequency selectiv-
ity of the neuronal communications, we probe the considered
neuron with an input current that sweeps through the frequen-
cies belonging to the interval [1,1500] Hz over the time, known
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Fig. 10. Spatial map of the normalized delays experienced by a stimulus at
frequency 400 Hz injected at (x, y).

Fig. 11. Frequency–selectivity: first dendritic subunit response (second plot)
and second dendritic subunit response (third plot) for a ZAP (first plot) stimulus
injected at coordinates (4.1, 6.02) and (92.84,−59.23), respectively.

as ZAP current, as widely done in literature [4]. Specifically, in
Fig. 11, we report the two dendritic subunit responses as func-
tion of the time for the ZAP injected at coordinates (4.1, 6.02)
and (92.84,−59.23), respectively. We note that the first den-
dritic subunit with resonance frequency f = 307 Hz attenuates
the frequencies outside its 3 dB band, i.e., not belonging to the
range [1, 850] Hz. Vice versa, the second dendritic subunit with
resonance frequency f = 518 attenuates all the frequencies not
in [388, 720] Hz, which roughly corresponds to its 3 dB band.
The results validate the conducted analysis. In fact, the activa-
tion of the dendritic subunits depends on the temporal patterns
of the stimulus, i.e., the neuronal information is contained in the
timing of the stimulus (Propositions 2 and 4). Hence, a stimu-
lus with a certain temporal pattern can activate certain dendritic
subunits and cannot activate another ones.

Finally, Fig. 12 shows the response of the first dendritic
unit as function of the time for different values of the dis-
tance between the application point of the ZAP current and the
soma, i.e., x1 = {1, 10, 100, 1000}. We note that the dendritic
response decreases when the distance increases in agreement

Fig. 12. Spatial–selectivity: dendritic subunit length impacts on the neuronal
response for the first subunit at length x1 = 1 (first plot), x1 = 10 (second
plot), x1 = 100 (third plot), and x1 = 1000 (fourth plot).

Fig. 13. Spatial-frequency selectivity: an incoming stimulus with multiplexed
interspike frequency f1 + f2 activates both the dendritic subunits denoted with
the red and the yellow colors of two distinct postsynaptic neurons A and B,
without any cross interference with each other.

with the theoretical analysis (Propositions 3 and 5). For x1 =
1000, the response is roughly null.

V. DISCUSSION

In agreement with experimental evidences [12]–[15], [20],
[21], the conducted theoretical analysis reveals the following.

1) The neuronal information is encoded in the stimulus
temporal pattern. Hence, a stimulus with a certain tem-
poral pattern can activate a postsynaptic neuron and can-
not activate another postsynaptic neuron, as depicted in
Fig. 13. In this sense, the communication among neurons
is frequency-selective.

2) The spatial distribution of the dendritic subunits controls
the overall neuronal response and the expressed frequency
preference. Hence, the neuronal response changes by
changing the application point of a stimulus within the
dendritic tree, as depicted in Fig. 13. In this sense, the
communication among neurons is spatial-selective.

The implications of the aforementioned results are crucial
for the development of future IoNT applications based on the
deployment of nanomachines inside the nervous system, e.g.,
radically new medical diagnosis and treatment techniques. In
fact, the spatial-frequency selectivity of the communications
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among neurons can be exploited for the implementation of
novel communication techniques between the nanomachines
and/or between nanomachines and natural neurons, along with
controlling strategies of network topology and connectivity.
Specifically, a nanomachine could force a neuronal response by
properly selecting the frequency content of its emitted signal.
Moreover, a nanomachine could limit the possible interfer-
ence generated on the normal neuronal activities by exploiting
the spatial-frequency selectivity of the surrounding neurons. In
other words, if the communications among nanomachines use
frequencies that do not activate the surrounding neurons, no
interference is generated.

We also underline that to fully realize the IoNT paradigm,
the nanomachines deployed inside the nervous system have to
be interconnected to the Internet. To this aim, an architecture to
interface the nanonetwork deployed inside the nervous system
and the external environment, ultimately Internet, is required.
Some interesting results in this research direction have been
drawn in [5], where the authors propose an ultra-miniature as
well as extremely compliant system for brain–machine inter-
faces. However, further research is required before a truly
functional interface between a nanomachines deployed inside
the nervous system and the external environment is realized.

VI. CONCLUSION

In this paper, we proposed a receiver model for capturing the
behavior of biological neurons, by accounting for two peculiar
features of the dendritic biophysics: 1) the compartmentaliza-
tion at the level of individual dendritic subunits of the neuronal
processes and 2) the location-dependent preference for different
frequencies. Specifically, we have modeled a dendritic tree as a
spatiotemporal filter bank, where each filter models the behav-
ior in both space and time of a dendritic subunit. Our theoretical
analysis reveled that: 1) the neuronal information is encoded in
the stimulus temporal pattern, i.e., the communication among
neurons is frequency-selective and 2) the spatial distribution of
the synapses on the postsynaptic neuron determine the dendritic
subunits to affect, i.e., the communication among neurons is
spatial-selective.

APPENDIX A
PROOF OF PROPOSITION 1

The firing probability due to the activation of the ith dendritic
subunit is given by

Pi(xi, t) � P (vi(xi, t) > vth) =

∫ +∞

vth

fvi
(xi, t;β)dβ (30)

where fvi
(xi, t; v) denotes the pdf of the random process

vi(xi, t). Using the FT relation between the Characteristic
Function (CF) and the pdf of a random variable [23], it results
fvi

(xi, t; v) =
∫ +∞
−∞ Φ(xi, ν)e

−j2πνvdν, where the spatial CF
Φ(xi, ν) for the nonhomogeneous shot-noise process vi(xi, t)
can be obtained by generalizing the CF for a spatial constant
nonhomogeneous shot-noise process [23] as follows:

Φ(xi, ν) = e
∫ +∞
−∞ λ(α)[ej2πνhi(xi,t−α)−1]dα. (31)

By substituting (31) in (30), the proof follows.

APPENDIX B
PROOF OF PROPOSITION 2

The extension of the monolateral band of hi(xi, t) can be
calculated as follows:

Ei(xi) =

∫ +∞

0

∣∣∣∣ Hi(xi, f)

Hi(xi, fr,i)

∣∣∣∣
2

df (32)

By substituting (7) in (32), after easy algebraic manipulations,
one obtains

Ei(xi) =
e
2xi

√
ra,i

|Zi(fr,i)| cos
(∠Zi(fr,i)

2

)

|Zi(fr,i)|∫ +∞

0

|Zi(f)| e−2xi

√
ra,i

|Zi(f)| cos
(∠Zi(f)

2

)
df. (33)

From (14), it results that the FT Σ(xi, f) of σ2
vi
(xi, t) is

Σ(xi, f) = (Hi(xi, f)⊗Hi(xi, f)) Λ(f). (34)

From (34) and by accounting for (12), it results that when the
frequency support of λ(t) is not contained in the frequency sup-
port of Hi(xi, f)⊗Hi(xi, f), vi(xi, t) is null identically. In
fact, its variance and mean are null identically, hence vi(xi, t)
assumes with probability one its expected value, i.e., zero.
Stemming from this and by accounting for the elementary
properties of the convolution operator, the proof follows since
the frequency support of Hi(xi, f)⊗Hi(xi, f) is Bci(xi) =
(f1,i, 2f2,i − f1,i), whose extension is 2Ei(xi), with Ei(xi)
given in (33) and {fj,i}2j=1 given in (17).

APPENDIX C
PROOF OF PROPOSITION 3

By accounting for (6), it results

lim
xi→∞ |Hi(xi, f)| = 0. (35)

Hence, even if the frequency content of λ(t) is contained in
the frequency support of Hi(xi, f)⊗Hi(xi, f), i.e., in Bci , the
response of the ith dendritic subunit is null identically.

APPENDIX D
PROOF OF LEMMA 1

In literature, it is widely adopted a linear model for the inter-
action among distinct dendritic subunits [12]. Hence, v(x̄, t) =∑

i∈I⊆D vi(xi, t). By exploiting (11) and (19), it results

v(x̄, t) =
∑

i∈I⊆D
i(t)⊗ hi(xi, t) = i(t)⊗ heq(x̄, t)

=

N(t)∑
j=1

heq(x̄, t− tj). (36)

Hence, v(x̄, t) is a shot-noise process [23], whose character-
ization can be obtained similar to vi(xi, t) by applying the
generalized Campbell’s Theorem. As a consequence, (22)–(24)
are immediately obtained.
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APPENDIX E
PROOF OF PROPOSITION 5

By accounting for (19), it results

lim
x̄→∞ |Heq(x̄, f)| = lim

x̄→∞ |
∑

i∈I⊆D
Hi(xi, f)|

≤
∑

i∈I⊆D
lim
x̄→∞ |Hi(xi, f)|

=
∑

i∈I⊆D
lim

xi→∞ |Hi(xi, f)| = 0. (37)

Hence, even if the frequency content of λ(t) is contained in
the frequency support of Heq(x̄, f)⊗Heq(x̄, f), i.e., in Bc, the
neuronal response is null identically.
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