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ABSTRACT
After decades of pure science phase, the research on quantum
technologies is finally reaching the engineering phase, get-
ting out of the labs into business reality. Quantum technolo-
gies relies on quantum bits, aka qubits, which are the equiva-
lent of classical bits used in classical information processing.
Similarly to bits, the information stored in qubits can be cor-
rupted by classical noise. Differently from bits, qubits are also
vulnerable to quantum noise, a type of noise with no coun-
terpart in the classical world. Hence, it becomes crucial to
understand, from an engineering perspective, how the quan-
tum noise corrupts the information stored within a qubit. To
this aim, in this invited paper, we overview the effects of the
quantum noise on an arbitrary qubit from a signal-processing
perspective.

Index Terms— Quantum Signal Processing, Quantum
Internet, Quantum Noise.

1. INTRODUCTION

Nowadays, there is a growing consensus about considering
Quantum Information and Signal Processing and Quantum
Internet [1–8] as disruptive paradigms for the next generation
of information technologies. Hence, researchers worldwide
are focusing on the engineering challenges arising with their
design and deployment.
The building block of both Quantum Signal Processing and
Quantum Internet is the quantum bit, or qubit, describing a
discrete two-level quantum state. As widely known, a classi-
cal bit encodes one of two mutually exclusive states – 0 or 1 –
being in only one state at any time. Conversely, a qubit can be
in a superposition of the two states, being so simultaneously
0 and 1 at a certain time. Hence, a qubit offer richer, more
complex opportunities for information carrying and informa-
tion processing. And this quantum advantage over classical
information grows exponentially with the number of qubits.
In fact, thanks to the superposition principle, n qubits can si-
multaneously encode 2n quantum states at once. Differently,

n classical bits can encode only one of 2n possible states at
any time.
Unfortunately, quantum states are very fragile and they are
easily corrupted by quantum noise. Specifically, any interac-
tion with the environment irreversibly affects a quantum state,
causing a degradation of its quantum properties in a process
called decoherence - a type of noise with no counterpart in
the classical world.
In the following, we revise the effects of the decoherence
on an arbitrary qubit from a signal-processing perspective.
To this aim, first in Sec. 2 we provide some preliminaries
on closed and open quantum systems. Then, in Sec. 3 we
overview from a signal-processing perspective the effects of
the quantum noise, by describing a directional-dependent
model for two different quantum noises. We also simulate
such effects by visualizing them on the Bloch Sphere. Finally,
we conclude the paper in Section 4.

2. BACKGROUND

2.1. Closed Quantum Systems

Accordingly to the first postulate of the quantum mechanics,
associated to any isolated or closed quantum physical system
is a complex Hilbert space. The system is completely de-
scribed by its state vector, which is a unit vector in the sys-
tem’s state space [9].
The simplest quantum system is the qubit, whose state space
is two-dimensional and whose geometrical representation on
the Bloch sphere is depicted in Fig. 1. In the following, we
adopt the conventional bra-ket notation1 for denoting a qubit.
Closed quantum systems evolve in time according to deter-

1The bra-ket notation (also known as Dirac’s notation) is a standard no-
tion for describing quantum states. In a nutshell, a ket |·〉 represents a column
vector, whereas a bra 〈·| represents the Hermitian conjugate of the corre-
sponding ket. Hence, the standard basis |0〉 , |1〉 is equivalent to a couple of

2-dim orthonormal vectors, e.g., |0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
. The generic

qubit |ψ〉 = α |0〉+β |1〉, with α, β ∈ C : |α|2+ |β|2 = 1, is equivalent to
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Fig. 1. Bloch Sphere: geometrical representation of a qubit.
A pure state |ψ〉 = α |0〉 + β |1〉 is represented by a point on
the sphere surface, with α = cos θ2 and β = eiφ sin θ

2 .

Table 1. Popular Quantum Gates
Gate I (identity) σx (NOT) σy σz

Matrix
[
1 0
0 1

] [
0 1
1 0

] [
0 −i
i 0

] [
1 0
0 −1

]

ministic, reversible unitary operations [10]. That is, the state
|ψ(t)〉 of the system at time t is related to the initial state
|ψ(0)〉 of the system at the initial time 0 through a unitary
operator U(·), which depends only on the times t and 0:

|ψ(t)〉 = U(|ψ(0)〉) (1)

Remark 1. Any linear operator A : V → W between vec-
tor spaces V and W admits a matrix representation that is
completely equivalent to the operator A(·). Hence the matrix
representation and the operator are interchangeable. Hence,
in the following, we will use the same symbol to denote both.

The postulates and principles of quantum mechanics can
be rewritten in terms of density operator ρ(t) (or, equivalently,
density matrix) [9]. For a pure state |ψ(t)〉, the density matrix

is defined as ρ(t)
4
= |ψ(t)〉 〈ψ(t)|, with |·〉 〈·| denoting the

outer product. Accordingly, the time evolution of a closed
quantum system (1) is described in terms of ρ(t) as:

ρ(t) = Uρ(0)U† (2)

Unfortunately, real systems suffer from unwanted interactions
with the outside world, called environment. Hence, real quan-
tum systems constitute open rather than closed physical sys-
tems. And the unwanted interactions with the environment

the vector
[
α
β

]
, whereas the bra 〈ψ| = |ψ〉† is equivalent to the row vector[

α∗ β∗
]
.

show up as noise in quantum signal/information processing.
Hence, understanding such noise processes is mandatory to
build effective quantum information/signal processing tech-
niques.

2.2. Open Quantum Systems

The dynamics of an open quantum system can be regarded
as arising from an interaction between the system S of inter-
est and the environment E , which together form the closed
quantum system SE [9]. Seen as a whole, the system and the
environment SE evolves according to a unitary transforma-
tion: ρSE(t) = UρSE(0)U†.
The status of the system S of interest can be recovered by
tracing out the environment via the partial trace operator
TrE(·) over the environment E , i.e.:

ρS(t) = TrE [ρSE(t)] = TrE
[
UρSE(0)U†

]
(3)

where ρS(t) is referred to as reduced density matrix. From
(3), it results that, due to the complex interactions between
system and environment, in general ρS(t) may not be related
through a unitary transformation to the initial state ρS(0).
It is very difficult to evaluate (3), since it requires to deter-
mine the dynamics ρSE(t) of the composite system SE . And
the status of the environment is always unknown or not pos-
sible to be controlled in reality.
However, by applying some approximations, it is often possi-
ble to derive directly the approximate time evolution of ρS(t)
via the master equation formalism [10]. Accordingly, the time
evolution of the system of interest can be written in the Lind-
blad form2 as a time-local first-order differential equation sys-
tem [10, 11], as shown in (4) at the top of the next page.
In (4), we note the presence of two components. The uni-
tary evolution component depends on the Planck’s constant ~,
whose value must be experimentally determined, and the Her-
mitian operator Hs, referred to as Hamiltonian of the system.
The Hamiltonian of the system determines the unitary part of
the time evolution. In the following, we assume without loss
of generality ~ = 1. The non-unitary evolution component is
as a consequence of the non-unitary nature of the trace opera-
tion used to obtain the reduced density matrix, and it depends
on the Lindblad operators Lk =

√
γkσk, with {σk}k=x,y,z

denoting the Pauli matrices reported in Table 1.

3. A DIRECTIONAL-DEPEND NOISE MODEL

3.1. Z-noise

A quantum noise process, with no counterpart in the classical
world, is the phase damping (or phase flip). It describes
the loss of quantum information without loss of energy,

2In the following, [A,B] denotes the commutator between two operators
and it is defined as [A,B] = AB−BA. Similarly, {A,B} denotes the anti-
commutator between two operators and it is defined as {A,B} = AB+BA.



d

dt
ρS(t) =

unitary evolution︷ ︸︸ ︷
− i
~

[Hs, ρS(t)] +

non-unitary evolution︷ ︸︸ ︷∑
k

(
LkρS(t)L†k −

1

2
{L†kLk, ρS(t)}

)
(4)

dρS(t)

dt
= − iΩ

2

[
0 2ρ01

S (t)
−2ρ10

S (t) 0

]
+ γz

[
0 −2ρ01

S (t)
−2ρ10

S (t) 0

]
=

[
0 −(iΩ + 2γz)ρ

01
S (t)

(iΩ− 2γz)ρ
10
S (t) 0

]
(5)

ρS(t) = RΩtρS(t)R†Ωt =

[
1 0
0 e−iΩt

]
ρS(t)

[
1 0
0 eiΩt

]
=

[
ρ00
S (0) ρ01

S (0)e−2γzt

ρ10
S (0)e−2γzt ρ11

S (0)

]
(8)

ρS(t) =
1

2

[
ρ00
S (0)(1 + e−2γxt) + ρ11

S (0)(1− e−2γxt) ρ01
S (0)(1 + e−2γxt) + ρ10

S (0)(1− e−2γxt)
ρ10
S (0)(1 + e−2γxt) + ρ01

S (0)(1− e−2γxt) ρ11
S (0)(1 + e−2γxt) + ρ00

S (0)(1− e−2γxt)

]
(12)

and it is one of the most common noises in quantum sig-
nal/information processing. The phase damping noise is
described by the Lindblad operator Lz =

√
γzσz .

By assuming an Hamiltonian Hs = Ω
2 σz dominated only

by the unperturbed qubit energy splitting [10, 12], from (4)
it results (5) shown at the top of this page. The diagonal
elements ρjjS (t) are constant in time, i.e., ρjjS (t) = ρjjS (0)∀t
with j = 0, 1. Differently, the off-diagonal elements ρijS (t),
with i 6= j ∈ {0, 1} are:

ρ01
S (t) = ρ01

S (0)e−(iΩ+2γz)t (6)

ρ10
S (t) = ρ10

S (0)e−(−iΩ+2γz)t =
(
ρ01
S (t)

)∗
(7)

From (6)-(7), it results that an arbitrary qubit accumulates a
phase Ωt due to the energy difference Ω between the states
|0〉 and |1〉 as shown in Fig. 2. By knowing Ω, this phase evo-
lution can be compensated through a Phase shift gateRφ with
φ = Ωt, as shown in (8) at the top of this page.
In the following, we will focus our attention on the expres-
sion of ρS(t) given in (8), since it embeds the effects of the
unknown noise. Specifically, from (8) it results that the off-
diagonal elements of ρS(t) decay exponentially in time due
to the noise. Hence the information about the initial quantum
state embedded in these elements is lost exponentially in time.
To better understand from a signal-processing perspective the
noise effects, let us consider the state of a single qubit in the
Bloch representation, mapping any pure/mixed quantum state
represented by a point within the Bloch sphere to its Carte-
sian coordinates via the vector r = (rx, ry, rz) ∈ R3 [13].
According to this representation, ρS(t) can be rewritten as:

ρS(t) =
1

2

[
1 + rz(t) rx(t)− iry(t)

rx(t) + iry(t) 1− rz(t)

]
(9)

By exploiting (8) and (9), after some algebraic manipula-
tions, the vector components r(t) = (rx(t), ry(t), rz(t)) of

the qubit at time t change, with respect to the vector com-
ponents r(0) = (rx(0), ry(0), rz(0)) at time 0, due to the
Z-noise according to the following law:

rx(t) = rx(0)e−2γzt, ry(t) = ry(0)e−2γzt, rz(t) = rz(0)
(10)

as shown in Figs. 3 and 4.

Remark 2. From (10), it results that the quantum noise due to
dephasing is multiplicative on the different space directions.
In particular, it is directional-dependent since it does not af-
fect the z-component of the qubit, whereas it affects exponen-
tially and equally both the x- and y- components.

Remark 3. Furthermore and very interesting, from (10), it
results that the initial pure state |ψ(0)〉 is transformed in a
mixed state, being ||r(t)|| ≤ 1. Hence, the qubit at time t lies
in the interior of the Bloch Sphere.

To clearly show the effects of the phase-damping, in Fig. 3
and 4 we plot the time evolution of the qubit subject to Z-
noise, with the red sphere denoting the coordinates r(0) =
1√
3
(1, 1, 1) of the initial quantum state |ψ(0)〉. We observe

that, in agreement with (10), the z-component remains un-
changed. Differently, the x- and the y-components exponen-
tially decays to zero and, consequently, the qubit asymptoti-
cally evolves toward the mixed state represented by the point
r = (0, 0, rz(0)). The characteristic orbital evolution around
the z-axis of the x- and y-components is a consequence of
the phase accumulation induced by the system Hamiltonian
Hs = Ω

2 σz , as shown in Fig. 2.

3.2. X-Noise

Let us now consider the case when the noise can be modeled
with the Lindblad operator Lx =

√
γxσx. By neglecting the

self-Hamiltonian Hs = Ω
2 σz for the previously highlighted



Fig. 2. Free time evolution of |ψ(t)〉
with Hamiltonian Hs = Ω

2 σz .
Fig. 3. Time evolution of the qubit
subject to Z-noise with Hs = Ω

2 σz .
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Fig. 4. Time evolution of r(t) subject to Z-noise
with Hs = Ω

2 σz .

Fig. 5. Time evolution of the qubit
subject to X-noise.
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Fig. 6. Time evolution of of r(t) subject to X-
noise.

Fig. 7. Time evolution of the qubit
subject to X-noise with Hs = Ω

2 σz .

reasons, from (4) it results:

d

dt
ρS(t) = γx

[
ρ11
S (t)− ρ00

S (t) ρ10
S (t)− ρ01

S (t)
ρ01
S (t)− ρ10

S (t) ρ00
S (t)− ρ11

S (t)

]
(11)

By solving this system of first-order differential equations,
one obtains (12) reported at the beginning of the previous
page. From (9), after some algebraic manipulations, it results
that the vector r(t) = changes in time due to the X-noise ac-
cording to the following law:

rx(t) = rx(0), ry(t) = ry(0)e−2γxt, rz(t) = rz(0)e−2γxt

(13)

Remark 4. From (13) it results that the X-noise is again mul-
tiplicative on the different space directions. In particular such
a noise is directional-dependent, since it does not affect the
x-component of the qubit. While it affects exponentially and
equally both the y- and z- components. Moreover, as for the Z-
noise, it also results that the initial pure state |ψ(0)〉 is trans-
formed in a mixed state, being ||r(t)|| ≤ 1. Hence, the qubit
at time t lies in the interior of the Bloch Sphere.

To clearly show the effects of the X-noise, in Fig. 5 and
6 we plot the time evolution of the qubit subject to X-noise
neglecting the phase accumulation induced by the system
Hamiltonian Hs and represented in Fig. 2. We observe that,

in agreement with (13), the x-component remains unchanged
whereas the y- and the z-components exponentially decay to
zero with a decay-rate driven by the coupling factor γx. The
qubit asymptotically evolves toward the mixed state repre-
sented by the point r = (rx(0), 0, 0). Finally, in Fig. 7 we
plot the time evolution of the qubit by accounting for the
phase accumulation as well, and it is easy to recognize the
characteristic orbital evolution around the z-axis as a con-
sequence of the phase accumulation induced by the system
Hamiltonian.

4. CONCLUSIONS

In this invited paper, we overviewed the effects of the quan-
tum noise on an arbitrary qubit from a signal-processing per-
spective. Specifically, we considered two quantum noises, Z-
noise or phase damping and X-noise, and we highlighted the
directional-dependent effects of such noises on the quantum
information embedded in the qubit. In particular, we high-
lighted that the considered noises transform a pure state in a
mixed state, as a consequence of the interaction between the
qubit and the environment.
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