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a b s t r a c t

During social gatherings or emergency situations, infrastructure-based communication
networks have difficulty operating given either increased traffic demand or possible
damage. Nevertheless, current communication networks still rely on centralized net-
working paradigms. The adoption of a peer-to-peer communication paradigm would be
better adapted to these needs, especially if it relies on the mobile phones that people nor-
mally carry, since they are automatically distributed where the communication needs are.
However a question arises: can the spatio-temporal distribution of mobile phones enable
a partially-connected ad hoc network that allows emergency communications to happen
with an acceptable delay? To try to answer this question, we defined a methodology com-
posed of three steps. First, the positions of seven hundred humans, spread over ametropoli-
tan area, have been anonymously traced during a special gathering event. Then, with a
multi-disciplinary approach, we have inferred the contact events from the humans’ traces.
Finally, we have assessed the effectiveness of an ad hoc network established by the mo-
bile phones to disseminate emergency information to the population in a timely fashion.
The results reveal that the humans’ mobility can effectively enable emergency communi-
cations among a significant subset of mobile phones, although the connectivity of the net-
work strictly depends on the number of cooperating devices and on themaximum allowed
delay.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The need for disaster relief communications has been recognized by the United Nations Foundations as one of the great
challenges of the early 21st century: ‘‘When disasters strike, people need food, shelter, blankets, and medicine but without
an effective communications network, supplies are left undelivered, and relief workers are unable to do their jobs’’ [1].

During social gatherings or disaster events, traditional communication networks such as cellular ones operate with
difficulty, due to increased congestion levels and possible damage. Indeed, during such events, tremendous stress is placed
on networks due to the sudden rise in traffic demand for both usual and emergency calls. This effect is shown in Fig. 1, which
reports the density of mobile phones engaged in calls in Rome both during an ordinary weekday and right after a metro
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Fig. 1. Density of mobile phones engaged in calls (red) and location of buses (yellow) in Rome. The image on the left shows the cell-phone activity on a
normal weekday at 10:50. The image on the right showsmore activity happening around the train station at the time of a metro crash on October 17, 2006.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

crash.1 Nevertheless, current communication networks still rely on centralized infrastructures and traditional networking
paradigms.

In the last ten years, a new paradigm for wireless networks based on node mobility has gained attention by the research
community. This paradigm, usually referred to as Pocket Switched [2],Delay orDisruption Tolerant [3,4], assumes that at each
instant end-to-end paths may not exist in the network as a consequence of intermittent connectivity, low node density or
the presence of isolated well-connected regions. In such a paradigm, the end-to-end connectivity is thus provided by node
mobility and store-and-forward communications: intermediate nodes store the data waiting for transmission opportunities
provided by mobility to deliver the data towards the final destination.

In this paper, we evaluate the feasibility of the delay tolerant paradigm to provide end-to-end connectivity in
the considered scenario, namely to enable emergency communications during large scale events when traditional
communication infrastructures are congested. Clearly, in such a scenario the communication devices can be the mobile
phones that we normally carry, since they are automatically distributed where the communication needs are. However,
the question arises: can the spatio-temporal distribution of mobile phones enable emergency communications with an
acceptable delay?

To try to answer to this question, we carried out an experiment in which the positions of seven hundred mobile
phone users have been anonymously traced during a special gathering event in the Boston metropolitan area: the Boston
Independence Day Celebration on July 4th, 2009. Then, the mobility patterns have been estimated from the humans’
traces. Finally, the effectiveness of such patterns to build a Wi–Fi delay tolerant network, able to disseminate emergency
information over the population in the absence of network infrastructures and in a timely fashion, has been assessed. The
Independence Day Celebration event has been chosen as concerts and fireworks were organized around the Charles river
between the Harvard and Longfellow Bridges (see Fig. 2), and people congregated around the river from the early hours of
the day for the celebrations starting at 8 pm. We particularly focused on the time frame 5–10 pm right before and during
the concert.

The rest of this paper is organized as follows. Section 2 discusses related work, and Section 3 describes the experiment.
In Section 4we comment on the results of the experiment, while in Section 5we discuss the limitations. Finally, conclusions
are drawn in Section 6.

2. Related work

Several experiments have been conducted in the past ten years to collect humanmobility data and to evaluate its impact
on routing protocols.

A first small experiment was conducted in 2005 by collecting human mobility traces in a conference environment [2].
Following this, several studies have focused on comparing different datasets and studying the impact of the derived human
mobility patterns on the design of routing protocols [5–7]. The study of these mobility-enabled networks, such as the one
presented in [2], has also lead to the definition of new temporal distance metrics to quantify the speed of information
diffusion processes, see for instance [8]. In [9], the authors studied an urban setting (Cambridge, UK) but relied on a rather
small group of students.

1 See more information at http://senseable.mit.edu/realtimerome.

http://senseable.mit.edu/realtimerome
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Fig. 2. Bostonmetropolitan area. Blue circles represent the starting locations of emergency alarms (with 100m radius). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Themain difference between ourwork and the citedworks lies in the traced participants selection. Our approach does not
rely on volunteers who agreed to be tracked, who usually are students or conference participants whomove in a small scale
scenario. We instead use data that is generated by anyone using their mobile phones and connected to a particular telecom
operator. This allows us to indirectly monitor the human mobility of a wider range of people and over larger temporal and
spatial intervals.

Inferred traces have been considered in [10] using urban transport data, and routine behavior has been exploited for
media sharing. Mobile phone data were considered in [11] to infer contact events between roughly two thousand people
in the Boston metropolitan area. However, none of the studies have considered large gathering events. Moreover, none of
the works presented above have studied the impact of human mobility patterns for enabling emergency communications
when traditional communication infrastructures fail.

In this paper, we instead evaluate the feasibility of humanmobility: (i) at large temporal and spatial scale; (ii) not relying
on volunteers who agreed to be tracked; (iii) to disseminate emergency information in absence of network infrastructures
and in a timely fashion. To the best of our knowledge, this is the first work in which a real-world wide-scale data set has
been considered to enable emergency communications thorough a partially-connected ad hoc network.

3. Description of the experiment

To evaluate the feasibility of a partially connected ad hoc network established by mobile phones for disseminating
emergency information, we have conducted a data collection experiment involving one million mobile phone users of a
US telecom operator in the Boston metropolitan area, whose positions have been anonymously traced during the month of
July 2009. The large user set allows us to limit biases in the obtained results, which are found in previous datasets where
participation was restricted to students or conference attendees who volunteered to be tracked (see Section 2).

In this paper, we select as an event representative of a social gathering event the Boston Independence Day Celebration
on July 4th, 2009,2 when people usually congregate around the Charles river (the area depicted in Fig. 2) to attend the
concert and watch fireworks organized by the city administration. The choice of Independence Day is not arbitrary, since:
(i) it is a crowd gathering event, and thus it allows us to trace humanmobility during a social event; (ii) although it is not an
emergency event, it is amajor US holiday, and so the humanmobility traces are likely not to be affected by routine behaviors.

In the following, first we present the procedure adopted for measuring real world human positions. Then, we describe
how the contact events have been inferred from the mobility patterns. Finally, we illustrate how the emergency alarm has
been spread among the people.

3.1. Tracing human mobility during a social gathering

To trace the human positions, a set of 200 million anonymous location measurements collected by AirSage3 has been
considered. This dataset covers a region spread over 8 counties in east Massachusetts (Middlesex, Suffolk, Essex, Worcester,
Norfolk, Bristol, Plymouth, Barnstable) with an approximate population of 5.5 million people, and it involves one million
mobile phones (corresponding to a share of 20% of the population approximately), traced for roughly a month.

2 http://www.july4th.org.
3 http://www.airsage.com.

http://www.july4th.org
http://www.airsage.com
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Fig. 3. Packet delivery probability as a function of the distance between two mobile phones.

The location measurements have been recorded each time a device connected to the cellular network, i.e., (i) when a call
was placed or received, both at the beginning and at the end of the call; (ii) when a short message was sent or received;
(iii) when the device connected to the Internet. Each location measurement represents the position, i.e., the latitude and
longitude, of a certain device estimated through triangulation.

To infer human mobility patterns related to the considered event, we pre-process the dataset of location measurements
by selecting the users who, during July 4th, 2009 between 01:00 pm and 23:59 pm, (i) made at least one connection to the
cellular network every hour; (ii) were located in that area under analysis, namely the Boston City area, during at least 80%
of the calls. The number of selected users is 703.

The selection of the users has a twofold purpose. It limits the computational complexity of the data analysis, which
becomes unfeasible for greater numbers of selected users. Moreover, it improves the statistical meaning of the analysis
results by selecting people for whom a sufficient number of location measurements is available. We note that the user
selection, based on the number of available location measurements, does not introduce bias in our results, since it does not
account for the connectivity properties of the selected users.

The raw location measurements of the selected users, which consist of a sequence of locations with arbitrary sampling
rate, are then processed to remove fictitious trips due to localization errors and to obtain location traces with a sampling
rate equal to 10 min. Finally, the set of processed locations is used as waypoints to infer the mobility patterns by assuming
uniformmobility between two consecutivewaypoints. The interested readers are referred to [11,12] for further information.

3.2. Inferring contact events from human mobility

To evaluate the feasibility of a partially connected ad hoc network established by the mobile phones for disseminating
emergency information,we have supposed that no cellular infrastructure isworking. As a consequence, the devices can com-
municate only via Wi–Fi ad hoc communications. The assumption of Wi–Fi enabled devices is justified by the latest market
research analyses, which estimate that 144millionWi–Fi enabledmobile phones were shipped worldwide in 2009 [13] and
predict that theWi–Fi enabled phone penetration will quadruple by 2015, reaching 66% of all mobile phone shipments [14].

To infer the contact events from the human mobility patterns derived in Section 3.1, we import the user traces into a
network simulator, Network Simulator 2 (ns-2) [15]. The adoption of ns-2 allows us to simulate the effects of all the involved
layers (physical, data link and networking) on the alarm dissemination process, whichwere not considered in previouswork
using similar traces [11].

To take into account theWi–Fi technology properties,we have assumed a transmission range shorter than 50m, as shown
in Fig. 3, where the probability of correct packet reception between two neighboring devices is given as a function of the
distance. The adopted transmission range takes into account the effective indoor transmission ranges of the different Wi–Fi
standards, and further details about the adopted physical and data link layers, as well as the channel model, are described
in [16]. According to this, in a certain time slot two users experience a transmission opportunity with a probability of packet
delivery whose value depends on their mutual distance.

We note that the location measurements could be affected by a localization error greater than the adopted transmission
range. However, since the localization error of the measurements can be assumed independent and identically distributed
with zero mean, no biases are introduced in the statistics of inferred contact events, as shown in [11].

3.3. Disseminating emergency information

In our experiment, we consider a scenario in which an emergency occurs in a place with high population density and an
alarm message must be broadcast to all the people located within a certain distance from the emergency location.
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Table 1
Device classification summary.

Active A device allowed to re-broadcast an alarm
Passive A device never allowed to broadcast an alarm

Enabling An active device that starts the alarm broadcasting
Infected A device that has received an alarm

Target A device located inside the target area

For alarm dissemination, we have assumed that a fraction of the devices, namely the active ones, cooperate in spreading
the alarm by adopting a simple store-and-broadcast protocol: once an active node receives an alarm message (i.e., once it
becomes infected), it keeps broadcasting themessage every τ s.4 The remaining devices, namely the passive ones, can simply
receive the alarm messages from the active infected nodes but they never re-broadcast such messages.

The classification of nodes into active and passive, summarized in Table 1, has a twofold purpose.
First, it is unreasonable to assume that all the mobile phones actively participate in spreading the alarm. In fact, it can

happen that only some special users (like police officers or firefighters) are authorized to forward alarms, and in this case the
active nodes represent the trustable users. But it can also happen that some users could exhibit selfish behavior by disabling
the broadcasting functionality, i.e., by acting as passive nodes. Or even some devices could be passive as a consequence
of power or bandwidth management. As we do not have any information on the mobile phone users that could let us
differentiate them, in our experiment we randomly assign a certain percentage of users as active, and the remaining ones
as passive. We then repeat the experiments 50 times, each with a different selection of active users.

Moreover, by classifying nodes as active and passive, we can assess the alarm spreading as a function of the number of
active nodes, and therefore indirectly as a function of the system requirements, such as bandwidth and minimum number
of participating nodes.

In the following, we identify two circular areas centered on the emergency location and with different radii: the enabling
area and the target area.

The enabling area is the region where the emergency takes place and where people are close enough to be aware that
an emergency is occurring without the need to receive any message. As a consequence, alarm messages are originated by
the active devices that, at a certain time, are located in this area, namely the enabling devices. Clearly, all the active devices
contribute to diffusing the alarm by moving and by re-broadcasting a received alarm message, but only the enabling ones
are allowed to start the spreading.

Finally, the target area is the region where the alarm messages must be spread so that people can leave the area or
take a certain action to contain the emergency effects. Clearly, due to human mobility and message broadcasting, the alarm
messages can also spread outside the target area and, based on the case, this effect can be suitable or not. However, since
the target area is defined as the area where the emergency actually affects people, in this work we are mainly interested in
characterizing the alarm diffusion in such an area.

4. Results of the experiment

In this section, we analyze and discuss the results obtained by means of numerical simulations with Network Simulator
2 based on the mobility patterns inferred by the experiment described in Section 3.

4.1. Scenario

In our experiment, we consider an emergency originated in one of two locations in Boston (see Fig. 2): (i) concert area,
Hatch Shell; (ii) shopping center, Prudential Center. For both the locations, we consider an enabling area radius equal to
100 m or 200 m and two target areas with radii of 1 km and 2 km, respectively. The enabling area radii and the target area
radii aremodeled according to the lethal ranges and theminimal evacuation distances provided by the US Bureau of Alcohol,
Tobacco and Firearms [17], respectively.

We adopt the infection rate, i.e., the rate between the number of infected target devices and the total number of target
devices, as the performancemetric. Clearly, due to humanmobility somedevices could enter or exit the target area during the
time. However, in our scenario a device remains a ‘target’ also after it leaves the target area, giving a conservativemeasure of
the performance that can be obtained. This assumption is reasonable, since each human that entered the target area at least
once is a potential target of the emergency. As an example, the emergency could be a terrorist bio-attack and the emergency
message could contain instructions on how to limit the injuries.

Since the speed of the alarm message diffusion deeply affects the amount of damage and/or number of injuries caused
by the emergency, we consider 30 min as the period of time available for alarm spreading and analyze the infection rate as
a function of time.

4 In our experiment τ = 1 s since such an interval time is commonly used in ad hoc routing protocols for state information or route discovery signaling.
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(a) 100 active nodes, after 10 min. (b) 100 active nodes, after 20 min.

(c) 100 active nodes, after 30 min. (d) 700 active nodes, after 10 min.

(e) 700 active nodes, after 20 min. (f) 700 active nodes, after 30 min.

Fig. 4. Concert area, 5:00 pm: visualization of the alarm spreading in the target area for one simulation with the enabling radius equal to 100 m. The
enabling area is colored in blue. Red circles represent nodes within 1 km of the alarm center, orange circles represents nodes within 2 km of the alarm
center and green ones represent infected nodes. The radius of each circle is 50 m. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Moreover, as the population’s spatial distribution and mobility change over time (as shown, for instance, in [12]), we
consider two different starting times: (i) 5:00 pm; (ii) 9:00 pm. The first time corresponds to when people started gathering
around the river, and the second time is in the middle of the concert and right before the fireworks.
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(a) Enabling nodes. (b) Infected nodes.

(c) Infection rate for 1 km target area. (d) Infection rate for 2 km target area.

Fig. 5. Concert area, 5:00 pm: average and 99% confidence interval of 50 simulations with the enabling radius equal to 100 m.

Thus, there are four considered scenarios for the experiment: (i) concert area, 05:00 pm, enabling radius equal to 100m;
(ii) concert area, 05:00 pm, enabling radius equal to 200m; (iii) shopping center, 05:00 pm, enabling radius equal to 100m;
(iv) concert area, 09:00 pm, enabling radius equal to 100 m. For each scenario we ran fifty simulations, thus involving
over 107 contact events, and in each simulation a different set of active nodes, randomly selected, is considered, i.e., we
do not impose any specific mobility patterns on the active nodes. We note that, for the sake of completeness, in one of the
experiments (see Fig. 5) we report both the average values and the 99% confidence intervals. It is easy to see that the number
of simulated contact events is large enough to assure a high reliability for the estimation process.

4.2. Performance analysis

In the first scenario we consider an alarm originating at the concert area at 05:00 pm with an enabling radius equal to
200 m, and we analyze the results of the experiment as a function of the number of active nodes.

Fig. 4 shows a qualitative comparison (result of a single simulation) of the alarm diffusion performance with 100 and 700
active nodes. In the figure, the enabling area is denotedwith a blue circle, the 1 km target nodeswith red circles and the 2 km
ones with orange circles, while the green circles represent the infected nodes. Obviously, the alarm spreading over time is
more evident when 700 nodes are active. Moreover, when 700 nodes are active, the alarm spreads in the larger (2 km) target
area, while the alarm is limited to the smaller (1 km) target area if only 100 nodes are active. Two factors concur in limiting
the alarm diffusion: the low device density (with respect to the transmission range) and the limited mobility.

Therefore, in Fig. 5 we conduct a quantitative comparison of four differentmetrics as a function of time: (i) the number of
enabling nodes (Fig. 5-a); (ii) the number of infected nodes (Fig. 5-b); (iii) the infection rate for the 1 km target area (Fig. 5-c);
(iv) the infection rate for the 2 km target area (Fig. 5-d).

Clearly, the number of enabling nodes (Fig. 5-a) depends on the number of active nodes. However, even if almost all the
nodes cooperate in the alarm diffusion, the average enabling node number is lower than eight. Moreover, the maximum
number of enabling nodes is reached at the beginning of the alarm spread and it remains steady, meaning that the alarm
spread is mainly due to broadcasting.
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(a) 1 km target area, after 10 min. (b) 1 km target area, after 20 min. (c) 1 km target area, after 30 min.

(d) 2 km target area, after 10 min. (e) 2 km target area, after 20 min. (f) 2 km target area, after 30 min.

Fig. 6. Concert area, 5:00 pm: complementary CDF for the infection rate with the enabling radius equal to 100 m.

By comparing this value with the total number of infected nodes (Fig. 5-b), we have that the ratio between the
infected and the enabling nodes is always greater than 10, thus proving that the alarm diffusion is mainly due to ad hoc
communications. However, the results also show that the infected node number is deeply affected by the number of active
nodes and that only a fraction (between 5% and 40%) of the devices are able to receive the alarm in a timely fashion.

To exclude from our analysis nodes that in the considered time interval are far away from the emergency location
(the furthest are roughly 100 km distant), in the following two figures we limit our attention to the infection rate for the
target areas. With regard to the smaller area (Fig. 5-c), we have that, at the beginning of the alarm spread, the infection rates
increase smoothly, while after ten minutes all the curves start exhibiting a steep slope. Although less evident, this behavior
is still present in the results for the larger area (Fig. 5-d). With reference to the smaller target area, the fraction of infected
nodes is remarkable when a significant amount of nodes cooperate in alarm spreading, reaching after 30 min on average
50% of infected nodes when half of the nodes are active and a value greater than 70% in the most favorable case. In most
cases, rates are roughly halved for the larger target area.

Finally, in Fig. 6 we analyze the distribution of the infection rate among the different simulations by means of the
complementary cumulative distribution function (CDF). The complementary CDF for a random variable X denotes the
probability P(X ≥ x). The results show approximate normal distributions. Moreover, they show that when only a fraction of
the nodes are involved in alarm forwarding, the infection rates deeply depend on how these nodes are selected. For instance,
if we consider the scenarios in which roughly half of the nodes cooperate for alarm diffusion (300 and 400 active nodes
respectively), we have that after 30 min the infection rate varies between 20% and 70% for the smaller area and between
10% and 40% for the larger one.

In the second scenario, we consider again an alarm originating at the concert area at 05:00 pm, but with an enabling
radius equal to 200 m. Clearly, the larger the enabling area is, the higher the infection rates are, as shown by Figs. 7 and 8.
However, by comparing Fig. 5 with Figs. 6 and 7 with Fig. 8, respectively, it is easy to see that the behavior of the considered
metrics does not change significantly when the enabling radius is doubled.

In the third scenario, we consider an alarm originating at the shopping center at 05:00 pm, and we compare the results
for the infection rates with those obtained for the first scenario. Looking at Fig. 9, we observe that, not only are the infection
rate values after 30 min similar to those obtained for the concert area scenario, but also the behavior of the curves is quite
similar. This behavior is reasonable since the two originating locations are close to each other and thus both the mobility
patterns and the human density are quite similar.

Therefore, in the fourth scenario we consider an alarm originating at the concert area at 09:00 pm. Here we have that
all the infection rate values are higher than those obtained in the previous scenarios (Fig. 10). Moreover, we have that the
infection rates increase rapidly at the beginning of the alarm spread. Themain reason for this is that the characteristics of the
mobility patterns of this scenario slightly differ from those of the previous two, mainly because people congregate around
the concert area at 09:00 pm to attend the concert.
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(a) Enabling nodes. (b) Infected nodes.

(c) Infection rate for 1 km target area. (d) Infection rate for 2 km target area.

Fig. 7. Concert area, 5:00 pm: average of 50 simulations with the enabling radius equal to 200 m.

To confirm this reasoning, in the last figure (Fig. 11) we analyze the distribution of the number of nodes infected by
each active node (at the end of the alarm spread) by means of the complementary CDF with logarithmic scale. Here, the
complementary CDF for a value x denotes the probability that an active node is responsible for having infected more than x
nodes.

We found that in general a few active nodes are responsible for most of the information spreading. In fact, for both the
scenarios the distributions approximate a power-law (straight lines in logarithmic scale), confirming the results obtained in
smaller experiments. Moreover, by comparing the two scenarios we have that during the 09:00 pm scenario (Fig. 11-b) the
distributions of infected (and thus met) nodes are higher than those of the 05:00 pm scenario (Fig. 11-a). Finally, when the
number of active nodes is smaller, the distributions are rather flat, because each active node has the possibility of infecting
many passive nodes. This is in contrast with what happens for a larger number of active nodes, where the distribution
decreases more sharply.

5. Experimental limitations

Only one large scale event happened in the Boston metropolitan area during the considered time interval. We plan to
collect data for other events in other cities in order to compare performance based on the type of event.

The number of nodes considered is a subset of the real number of mobile phone users at the event. This limitation is
derived from the requirement to select users for which location information is sufficiently frequent to infer traces. This may
create biases in the selected users. We expect that increasing the number of users would improve routing performance.

Finally, it is important to note that the large scale event analyzed did not involve any emergency situation. While we
agree that human behavior might change in the case of emergencies [18], we believe that our analysis is still of interest as it
relies on real human spatial distribution over large areas, and simulates communication opportunities during special events
not involving large changes in mobility patterns.
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(a) 1 km target area, after 10 min. (b) 1 km target area, after 20 min. (c) 1 km target area, after 30 min.

(d) 2 km target area, after 10 min. (e) 2 km target area, after 20 min. (f) 2 km target area, after 30 min.

Fig. 8. Concert area, 5:00 pm: complementary CDF for the infection rate with the enabling radius equal to 200 m.

(a) Infection rate for 1 km target area. (b) Infection rate for 2 km target area.

Fig. 9. Shopping center, 5:00 pm: average of 50 simulations with the enabling radius equal to 100 m.

6. Conclusions

In this paper we have presented the results of an experiment in which the positions of seven hundred humans have
been anonymously traced during a social gathering event to evaluate the possibility to disseminate alarms in a human
mobility-enabled wireless network. During our experiments we found that the considered paradigm can effectively enable
emergency communications among a significant subset of nodes, although the connectivity of the network strictly depends
on the number of cooperating devices and on the maximum allowed delay. We hope that the encouraging results of this
work will stimulate new data collection campaigns to further study large scale event scenarios for ad hoc communications.
These results could be useful as a baseline for other experiments involving different mobility traces (e.g. from volunteers)
during similar scenarios (large scale events), and for actual deployment of social communication based networks. As a future
work, we are planning to analyze the mobility and inter-contact characteristics of the infecting nodes and design alarm
dissemination strategies able to exploit these characteristics to minimize the overhead and resource requirements.
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(a) Infection rate for 1 km target area. (b) Infection rate for 2 km target area.

Fig. 10. Concert area, 9:00 pm: average of 50 simulations with the enabling radius equal to 100 m.

(a) 5:00 pm. (b) 9:00 pm.

Fig. 11. Concert area: distribution of the number of nodes infected by the active ones after 30 min. Average of 50 simulations with the enabling radius
equal to 100 m.
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