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Abstract—In this paper, the problem of estimating the link
quality in mesh networks has been considered. Such a problem
is a major task to develop an efficient network layer, since
an accurate knowledge of the link qualities allows routing
protocols to efficiently use neighbors as relays for multi-hop
communications. In the last years, a number of link-quality aware
routing metrics based on the packet delivery ratio have been
proposed and analyzed. However, very few works have addressed
the problem of correctly estimating the delivery ratio of a wireless
link. Therefore, in this paper we resort to a 802.11b mesh network
to carry on a performance comparison between two widely
adopted delivery ratio estimators, namely the Simple Moving
Average and the Exponentially Weighted Moving Average, and a
recently proposed one based on the neural network paradigm.

Index Terms—ad hoc, mesh, 802.11, link quality, estimation,
test bed, bio-inspired, neural network.

I. INTRODUCTION

Wireless mesh networks have attracted tremendous attention
due to their properties of self-organization and inexpensive
deployment. However, their application in the real world
requires the development of a network layer able to assure
satisfactory throughput performances [1].

The selection of reliably connected neighbors plays a signif-
icant role to successfully and efficiently support data transfers.
In fact, experimental results clearly show that the estimation
of neighbors’ link qualities has a substantiative impact on the
network throughput in traditional ad-hoc forwarding [2], [3],
as well as in opportunistic forwarding [4], [5], [6] and dynamic
spectrum [7], [8] techniques.

In the last years, the problem of designing quality aware
routing metrics has received great attention and several met-
rics have been proposed and evaluated [9], [10], [11], [12],
[13], [14], [15]. Despite these efforts, very few works have
addressed the problem of correctly estimating the delivery
ratio of a wireless link . All the cited metrics assess the link
quality by evaluating the delivery ratios or the loss rates with
simple estimators, namely the Simple Moving Average (SMA)
or the Exponentially Weighted Moving Average (EWMA).
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Moreover, none of the previous works studied the impact of
the parameter setting on the accuracy of the estimators.

For these reasons, in this work we carry on a perfor-
mance comparison of three link quality estimators: the SMA,
the EWMA and the Simple Unsupervised Neuron Estimator
(SUNE) [16], a recently proposed estimator based on the
neural network paradigm. The performance comparison has
been accomplished by using the link-level measurements of
the MIT Roofnet topology [10] and by considering several
performance metrics.

The outline of the paper is the following: Section II presents
the considered estimators, whereas in Section III the perfor-
mance comparison is described. Finally, in the last section
conclusions and open problems are drawn.

II. DELIVERY RATIO ESTIMATORS

In this section, we present the three estimators considered
for the performance comparison.

All the considered estimators try to assess the quality of a
wireless link by resorting to probe packets broadcasted with an
average period τ [2]. Thus, we can model the probe reception
event at time n by introducing a binary independent variable
xi,j(n) ∈ {0, 1}, which indicates if the node j has received a
probe from the node i (xi,j(n) = 1) or not (xi,j(n) = 0) .

Since the wireless channel is time-variant, the probability
that the node j receives a probe from the node i depends on
the time, namely

P (xi,j(n) = 1) = pi,j(n) (1)

and in the following we refer to such a probability as the
delivery ratio di,j(n) of the link li,j .

A. Simple Moving Average

The Simple Moving Average (SMA) estimates at time n the
delivery ratio di,j(n) as:

d̃smai,j (n) =

M−1∑
m=0

bmxi,j(n−m) (2)

where b(m) is the weighting factor and M is the order of the
moving average filter.



Fig. 1. Simple Un-supervised Neuron Estimator

We note that the SMA requires the setting of both the
weighting factors and the order values. Usually [2], the weight-
ing factors are set to the same value bm = 1

M ∀m and in such
a case the SMA is an un-weighted mean of the previous M
realizations of the random variable xi,j .

B. Exponential Weighted Moving Average

The Exponential Weighted Moving Average (EWMA) esti-
mates at time n the delivery ratio di,j(n) as:

d̃ewmai,j (n) = αxi,j(n) + (1− α)d̃ewmai,j (n− 1) (3)

where α ∈ [0, 1] is the smoothing factor.
We note that the EWMA requires the setting of the only

smoothing factor. With respect to the SMA, the EWMA
applies to data points weighting factors which decrease expo-
nentially, and the degree of weighting decreasing is expressed
by α. In other words, the EWMA gives much more importance
to recent observations without entirely discarding the older
observations.

C. Simple Unsupervised Neuron Estimator

The Simple Unsupervised Neuron Estimator (SUNE) [16]
is a delivery ratio estimator based on a simple neural network.
The processing ability of SUNE is reached by means of
connection strengths, or weights, which are set by a process
of adaptation, or learning.

The SUNE estimates at time n the delivery ratio di,j(n) by
predicting the next probe reception event x̃i,j(n + 1) basing
on the M previous reception events and the bias coefficient θ
as shown in Fig. 1.

More specifically, the estimated delivery ratio is the sum of
the M past values, weighted by the coefficients wi(n); 1 ≤
i ≤M , plus bias θ, weighted by the coefficient wθ(n):

d̃SUNEi,j (n) =

M−1∑
k=0

wk(n− 1)xi,j(n− k) + wθ(n)θ (4)

To assess the weights w(n) = [w1(n), ..., wm(n), wθ(n)] at
time n, SUNE adopts an unsupervised algorithm that at each

Fig. 2. A map of Roofnet test bed

time should adapts the weight values in order to minimize the
estimation error, namely

eSUNEi,j (n) = di,j(n+ 1)− d̃SUNEi,j (n) (5)

Since such an error cannot be evaluated due to the lack of
knowledge of the true value di,j(m), in [16] it is proposed to
replace a such an error with the following estimate:

ẽSUNEi,j (n) = xi,j(n+ 1)− d̃SUNEi,j (n) (6)

The minimization criteria is the least square error (LSE)
criterion, and the process of estimating the weight values
w(n), namely the learning process, is based on the delta rule
[17]:

∆w(n) = 2ηei,j(n)xi,j(n) + α∆w(n) (7)

w(n) = w(n− 1) + ∆w(n) (8)

where xi,j(n) = [xi,j(n), ..., xi,j(n−M+1)], η is the learning
rate and α is the momentum term which controls the speed of
convergence.

III. EXPERIMENTAL RESULTS

In this section, we present the results of the performance
comparison of the three estimators based on a IEEE 802.11b
test bed.

A. Setup

To evaluate the performance of the considered estimators,
we use the link-level measurements of the MIT Roofnet test
bed [10].

The network of the test-bed is composed by 38 nodes IEEE
802.11b, and in Fig. 2 shows a map of the network. During the
experiment each Roofnet node in turn sends 1500byte packets
as fast as possible for 90 seconds at each of the 802.11b bit-
rates: 1, 2, 5.5 and 11Mbps. Meanwhile, all other nodes in the
network listen and record in a trace file the received packets.
The experiment uses IEEE 802.11 broadcast packets since they
involve no link-level acknowledgments or retransmissions. For



sake of space, in the following we report the results regarding
a bit-rate equal to 1Mbps.

We exploit the traces produced by the nodes to generate the
probe reception events x(n) ∈ {0, 1} used by the estimators to
assess the delivery ratios. Moreover, the estimation errors for
SMA and EWMA at time n for the link li,j are respectively:

ẽsmai,j (n) = xi,j(n+ 1)− dsmai,j (n) (9)

ẽewmai,j (n) = xi,j(n+ 1)− dewmai,j (n) (10)

We note that only links with more than 3000 probe reception
events have been considered to improve the accuracy of the
statistical estimations and to limit the transitory effects.

As regard to the window size M , we study the performances
for two values commonly adopted in literature: 10 [2] and 32
[18]. Moreover, we also consider a larger value, say 512, which
better accounts for static mesh network topology features like
the Roofnet ones.

As regard to the EWMA estimator, we consider two values
for the smoothing factor α: 0.1 and 0.9, referring to the former
as slow since in such a case the estimator slowly adapts to the
link quality changes and to the latter as fast for the opposite
reason.

As regard to the SUNE estimator, we adopt the same setting
of the original work [16], namely w(0) = [ 12 , ...,

1
2 ,

1
2 ], η =

0.001 and α = 0.5.

B. Qualitative Comparison

In this section we present a qualitative performance compar-
ison of the considered estimators by means of density scatter
plots.

Each dot (x, y) in the figure represents a probe reception
event xi,j(n) (x) and the correspondent probe reception event
predicted x̃i,j(n) by the estimator at time n − 1 (y). The
density of the scatter plot is determined with a 2D histogram,
using 25 equally spaced bins in both directions. The more
darkness is a zone in the plot, the more dots are present in the
same zone. Clearly, for a perfect estimator all the dots would
be at the coordinates (0, 0) or (1, 1).

In the first set of experiments (Fig. 3) we consider a link
with a data-rate equal to 1Mbps and with an average delivery
ratio equal to 0.55. Moreover, the window size M has been
set to 10. The results show that the fast EWMA is very
sensitive to link quality changes. Therefore, sometimes it is
able to correctly estimate the link quality (since we have
some darkness zone around (0, 0) or (1, 1)) and sometimes
it completely screws up (darkness around (1, 0) or (0, 1)).
The other estimators perform pretty the same with the dots
concentrated around (0, 0.5) or (0.5, 0)

In the second set (Fig. 4) we consider the same link of the
previous experiments, but we set the window size M = 512.
As regard to the EWMA estimators, their performances are
quite similar to those of the previous set, with the slow EWMA
outperforming the fast one. On the other hand, the SMA
darkness zone is now more concentrated the around (0, 0.5)
or (0.5, 0) while the SUNE performs the best since it presents
the darkest zones around (0, 0) and (1, 1).

C. Quantitative Comparison

In this section we present a quantitative performance com-
parison of the considered estimators for three different values
of M , namely 10, 32 and 500. For each experiment, we
consider two performance metrics: the mean absolute error
(MAE)

emae =
1

n

n∑
k=1

|ẽi,j(k)| (11)

and the mean square error (MSE)

emse =

n∑
k=1

(ẽi,j(k))2

n
(12)

In the figure, the x axis represents the value of the average
delivery ratio for a certain link, while the y one is the value
of the MAE or of the MSE for the same link. We note that
the figure presents the results for all the links of the test bed
(more than five hundred).

In the first set of experiments (Fig. 5) we plot the MSE and
we note that the fast EWMA performs the worst for each value
of the window size. As regard to the SUNE, it performs the
best for smaller window size, while its performance gain with
respect to the SMA and the slow EWMA decreases for the
largest window size. Moreover, in such a case its values are
notably scattered. Finally, we note that SMA and slow EWMA
perform pretty the same.

In the second set (Fig. 6) we plot the MAE. The results
substantiate the comments made previously. More in detail,
the MAE values of all the estimators are less than the MSE
ones due to the effects of the square function. Moreover, with
respect to the SUNE performances for M = 512, we note that
performs the worst when the average delivery ratios assume
edge values.

IV. CONCLUSION

In this paper, the problem of estimating the link quality in
mesh networks has been considered. More in detail, by resort-
ing to the link-level measurements of a 802.11b test bed, we
carry on a performance comparison between three delivery ra-
tio estimators, namely the the Simple Moving Average (SMA),
the Exponentially Weighted Moving Average (EWMA) and the
Simple Unsupervised Neuron Estimator (SUNE) for different
values of the estimator order. The results of the comparison
substantiates that the performances of the estimators depend
from several parameters, although novel techniques based on
neural network paradigm, like SUNE, seem able to perform
well in different environmental conditions.
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Fig. 3. Density scatter plot for M = 10
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SMA: data−rate=1Mbps, windows−size=10
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Fast EWMA: data−rate=1Mbps, windows−size=10
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Slow EWMA: data−rate=1Mbps, windows−size=10
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SUNE: data−rate=1Mbps, windows−size=10



Fig. 4. Density scatter plot for M = 512
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SMA: data−rate=1Mbps, windows−size=512
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Fast EWMA: data−rate=1Mbps, windows−size=512
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Slow EWMA: data−rate=1Mbps, windows−size=512
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SUNE: data−rate=1Mbps, windows−size=512

Fig. 5. Mean Square Error
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Fig. 6. Mean Absolute Error
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