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ABSTRACT
In this paper, a communication engineering model is pro-
posed for capturing the actual behavior of biological neu-
rons by accounting for the specific and unique processing
performed by the presynaptic terminals. Specifically, ex-
perimental evidences show that: i) the release sites from
a single axon can have variable release probabilities, even
when the axon contacts the same postsynaptic neuron; ii)
this variability in the release probability implies a compart-
mentalization at the level of the presynaptic terminals of
the neuronal processing; iii) the specificity of the presynap-
tic terminal processing is driven by and reflects the complex
biophysical mechanisms activated at the axon terminals by
the spikes fired by the neuron in response to a stimulus.
Stemming from these experimental evidences, we propose to
model the presynaptic terminals as an array of transmitters,
where each transmitter models the specific processing made
by a presynaptic terminal. We conduct the analysis through
a stochastic approach, since the synaptic transmission is in-
herently stochastic. In particular, we first analytically char-
acterize the stochastic filtering of the spike train performed
by each presynaptic terminal. Then, we characterize the
propagation of the presynaptic-filtered signal through the
synaptic cleft, and we derive the signaling delay as a func-
tion of the distance between the pre- and the postsynaptic
neurons. Finally, the conducted theoretical analysis is vali-
date through numerical simulation.

Keywords
Neuro-spike communications, neurons, intrabody nanonet-
works

1. INTRODUCTION
Recent developments in nanotechnology and communication
engineering are enabling the realization of a new generation
of nanoscale devices implantable inside the human body [1,
2]. When interconnected in a network, referred to as Intra-

body nanonetwork, these miniaturized devices or nanoma-
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Figure 1: Biophysical communication between a
presynaptic and a postsynaptic neuron.

chines are able to perform complex tasks, by overcoming
their individual limitations.
Very recently, intrabody nanonetworks have been proposed
for monitoring the human nervous system [3, 4] by exploiting
the dimensional similarity of the nanomachines with the ner-
vous biological structures. The aim is to develop radically
new medical diagnosis and treatment techniques. However,
several questions and challenges arise to design a fully func-
tional intrabody nanonetwork deployed inside the nervous
system. Certainly, the first step is to understand the physi-
ological mechanisms underlying the neuronal activities with
an engineering perspective for mapping such mechanisms
into communication engineering system models [5, 6].

The communication models available in literature con-
sider the synapses (illustrated in Fig. 1), i.e., the junctions
through which the neurons signal to each other, acting solely
as stochastic conveyers of information. However, this model
is too simplistic. In fact, biological synapses act as unique
dynamic signaling units, whose e↵ects on the transmitted
signal from one neuron to another can vary enormously de-
pending on the activity history at either or both side of the
synapse [7].
Specifically, numerous experimental evidences show that this
property, referred to as synapse-specific signaling, is a uni-
versal property and potentially unique for each synaptic con-
nection made by a single axon [7, 8, 9]. In fact, it is deter-
mined by the unique interaction between the pre- and the
postsynaptic neurons. More in detail, the synapse-specific
signaling is driven by and reflects the complex biophysi-



cal mechanisms activated at the presynaptic terminals by
the electrical signals, known as action potentials (APs) or
spikes, fired by the neuron in response to a stimulus. So,
when an AP reaches di↵erent presynaptic terminals, the
synapse-specific signaling determines di↵erent patterns of
neurotransmitter release. As a consequence, a presynaptic
neuron simultaneously transmits several di↵erent signals to
a targeted postsynaptic neuron.
Stemming from these experimental evidences, it is clear that
an e↵ective neuron communication model should take into
account for the synaptic signaling dynamics. Hence, in this
paper, a communication engineering model is designed for
capturing the actual behavior of biological neurons, by ac-
counting for the specific neural processing performed by the
presynaptic terminals. To the best of our knowledge, this is
the first work that address this key issue.
Specifically, we propose to model the presynaptic terminals
of a neuron as an array of transmitters, where each trans-
mitter models the local processing performed by the cor-
responding presynaptic terminal. We conduct the analysis
through a stochastic approach, since the biological synap-
tic transmission is inherently stochastic. More in detail, we
first analytically characterize the stochastic filtering of the
spike train performed by a presynaptic terminal. Then, we
characterize the propagation of the presynaptic-filtered sig-
nal within the synaptic cleft, and we derive the signaling
delay as a function of the distance between the presynaptic
transmitter and the postsynaptic receiver. Finally, the the-
oretical analysis is validated through numerical simulation.
Our theoretical analysis, in agreement with experimental ev-
idences [7, 8, 9], shows that the neuronal information is en-
coded in the neurotransmitter release patterns of the presy-
naptic terminals.
The rest of the paper is organized as follows. In Section 2,
we design the communication engineering model to take into
account for the complex local processing performed by the
presynaptic terminals. In Section 3, we validate the theo-
retical analysis. Finally, Section 4 concludes the paper.

2. PRESYNAPTIC TERMINALS: SYSTEM-
THEORETICAL MODEL

The mechanisms underlying the neurotransmitter release
have yet to be fully identified. However, the wealth and
complexity of the protein-protein and protein-lipid interac-
tions have been shown to control the release of neurotrans-
mitters [9, 10]. Specifically, experimental evidences have
shown that the overall probability that a given release site,
i.e., a specialized region of the plasma membrane at which
specific proteins involved in the release process are local-
ized, would release transmitters in response to a given AP is
an extremely complex phenomenon that can be modulated
by many factors and it can vary enormously at the di↵er-
ent terminals of an axon under the same conditions [9, 10].
Thus, release sites from a single axon can have di↵erent re-
lease probabilities, even when the axon contacts the same
postsynaptic neuron. However, the experiments also shown
that the release probability is very similar for synapses that
share the same dendritic branch, indicating so that the re-
lease probability is branch-specific. Specifically, the release
probability is not randomly distributed among the presy-
naptic terminals, but it is rather segregated at the level of
individual dendrites, since it reflects the non-uniformity of
the dendritic activities [10].

Figure 2: Transmitter Model for the Presynaptic
Terminals.

By accounting for these evidences, in the following the term
presynaptic terminal denotes a subset of the axon terminals
characterized by homogeneous release probability since they
share the same dendritic branch.
As previously described, each presynaptic terminal filters
independently and in a distinguishing manner the incoming
AP sequence. This phenomenon, along with the variation
observed in the release probability in the di↵erent presy-
naptic terminals, lead us to propose the systems-theoretic
communication model shown in Fig. 2. According to this
model, the set of the presynaptic terminals are modeled as
an array of transmitters, where each transmitter models the
stochastic processing specific of a particular presynaptic ter-
minal.
The number of the presynaptic terminals depends on the
neuron characteristics [9, 10], and, without loss of gener-

ality, we denote with T 4
= {1, 2, . . . , T} the set of distinct

presynaptic terminals, whose cardinality is |T | = T .
In the following, we first characterize the input-output rela-
tionship of each presynaptic terminal. Then, we characterize
the propagation of the presynaptic-filtered signal, by deter-
mining the signaling delay.

2.1 Presynaptic Terminal Filtering
The AP train v(t) traveling on the axon of the presynaptic
neuron is modeled as a non-homogeneous Poisson impulse
process, since this model has been shown to be able to ef-
fectively describe the neuron trial-to-trial variability [11].
Specifically, v(t) is equal to:

v(t) =

N(t)X

j=1

�(t� tj). (1)

In (1), tj is the arbitrary spike arrival time, and N(t) is a
non-homogeneous Poisson process whose rate �(t) is a func-
tion of the time, hence E[N(t)] =

R t

0
�(u)du.

Neurotransmitters are released in the form of packets, quanta.



A quantum corresponds to the content of a synaptic vesicle
[12] that instantaneously appears in the synaptic cleft. The
idealization of the vesicle discharge into the cleft as a point
source situated on the presynaptic membrane is reasonable,
since the pore radius though which neurotransmitters are
released is negligibly small in comparison with the radius of
the synaptic cleft [13]. Since a presynaptic terminal denotes
a subset of the axon terminals characterized by homoge-
neous release probability, a release of neurotransmitters from
a presynaptic terminal could correspond to the releases of
more than one vesicle. In the following, we denote with Qi

the overall neurotransmitter quantum discharged by the i-th
presynaptic terminal, that accounts for the quanta possibly
released by the axon terminals constituting the considered
presynaptic terminal.

Definition 1. Ri denotes the subset of the spike arrival

times {tj}N(t)
j=1 that produce an overall neurotransmitter quan-

tum release at the i-th presynaptic terminal.

Stemming from this definition and with reference to the ar-
bitrary k-th AP of the incoming train, the signal si(t) at the
output of the i-th presynaptic terminal is given by:

si(t) = Qi�(t� tk)1Ri(tk), (2)

where 1Ri(·) is the indicator function of Ri, defined as:

1Ri(tk) =

(
1, if tk 2 Ri

0, if tk /2 Ri.
(3)

By accounting for (2) and (1), it results that the response
of the i-th presynaptic terminal to the spike train v(t) is:

svi (t) = Qi

N(t)X

k=1

�(t� tk)1Ri(tk) = Qi

Ni(t)X

j=1

�(t� tj), (4)

where Ni(t) is the stochastic process representing the num-
ber of releases until time t due to the incoming stimulating
train v(t)1. By denoting with Preli the release probability
of the i-th presynaptic terminal, the rate of the releases can
be calculated as2:

�i(t) = Preli�(t). (5)

Hence the expected value of Ni(t) is given by:

E[Ni(t)] =

Z t

0

�i(u)du = Preli

Z t

0

�(u)du = (6)

= PreliE[N(t)].

Remark 1. From (4) and (5), it results that the presy-

naptic terminals modulate the incoming spike train through

their release probabilities, according to the experimental ev-

idences [9, 10, 7, 8].

1In (4) we supposed that the overall neurotransmitter quan-
tum does not change with the AP time instants of the in-
coming train. More in general, Qi could be a function of
such time instants since the axon terminals involved in the
release could vary with the AP time instants. However, the
generalization to such a case is immediate to obtain, and the
rest of the analysis continues to hold.
2The release is assumed to occur only when a spike invades
the presynaptic terminal, i.e., the spontaneous release prob-
ability is assumed to be zero [14].

2.2 Transmission of the Presynaptic Signals
When an overall quantum of neurotransmitters is released,
it propagates throughout the synaptic cleft. The propaga-
tion of this pulse can be analytically modeled by solving the
Fick’s laws of the di↵usion for a two-dimensional disc [13,
12]. Hence, by accounting for (2), if at tj 2 Ri a quantum
Qi is released from the i-th presynaptic terminal, the con-
centration at the m-th postsynaptic dendrite located at a
distance rim from the i-th presynaptic terminal as a func-
tion of time t is given by [13, 12]:

ci,m(t, rim) =
Qi

4⇡aD(t� tj)
e
�

r2im
4D(t�tj) , (7)

where D is the di↵usion coe�cient of the synaptic cleft, and
a denotes the height of the disc. By exploiting (4), it results
that the released spike train of the i-th presynaptic terminal
creates a variation in the neurotransmitter concentration at
the distance rim from the i-th presynaptic terminal given by
the following pulse train:

ci,m(t, rim) =

Ni(t)X

j=1

Qi

4⇡aD(t� tj)
e
�

r2im
4D(t�tj) . (8)

Remark 2. The rate of the concentration pulse train gen-

erated by the i-th presynaptic terminal coincides with the

rate of the released spike, i.e., �i(t) = Preli�(t). This im-

plies that the information carried on the postsynaptic neu-

ron is dictated by the dynamic processing of the presynaptic

terminal, in agreement with the experimental evidences. In

other words, the neuronal information is encoded in the re-

lease patterns of the presynaptic terminals, that in turns are

driven by and reflects the complex biophysical mechanisms

of protein-protein and protein-lipid interactions between the

presynaptic and postsynaptic neurons [7, 8, 9].

To derive the delay with which a neurotransmitter concen-
tration pulse arrives at the m-th postsynaptic dendrite lo-
cated at a distance rim from the i-th presynaptic terminal,
we compute the time instant at which ci,m(t, rim) reaches
its global maximum [15]. In fact, ci,m(t, rim) has only one
local maximum, which is also its global maximum. We can
therefore compute the position of this maximum by taking
the time derivative of the pulse equation and finding the
time instant at which it is equal to zero:

dci,m(t, rim)
dt

=
d
dt

Qie
�

r2im
4D(t�tj)

4⇡aD(t� tj)
= 0. (9)

From (9), by isolating the variable t we can obtain the time
at which the pulse has its maximum. This time can be
interpreted as the time tim the concentration pulse spends to
reach the postsynaptic membrane located at a distance rim
from the i-th presynaptic terminal if the neurotransmitter
quantum was released at tj , i.e., tim can be interpreted as
the delay:

tim = tj +
r2im
4D

. (10)

Since the i-th presynaptic terminal generates the pulse train
ci,m(t, rim) and since the temporal distance between two
successive releases is 1

�i(t)
, at the distance rim, the maximum



Figure 3: NMO-07522 Neuron morphology with
two presynaptic terminals.

Figure 4: Presynaptic Terminal Responses vs
time: i) incoming AP train (1st plot); ii) response
of the first presynaptic terminal (2nd plot) with
Prel1 = 0.3; iii) response of the second presynaptic
terminal (3rd plot) with Prel2 = 0.7.

of the concentration pulse is assumed every Ti seconds with
Ti given by:

Ti
4
=

1
�i(t)

=
1

Preli�(t)
. (11)

3. VALIDATION OF THE THEORETICAL
RESULTS

In this section, we validate the theoretical results through
simulations. Specifically, we use the realistic experimentally
reconstructed mouse neuron morphology ”NMO-07522” [16]
released by NeuroMorpho.org archive. The neuron morphol-
ogy is shown in Fig. 3. The considered neuron exhibits
two di↵erent presynaptic terminals, since, as described in
Section 2, it is possible to individuate two di↵erent ho-
mogeneous release zones contacting two di↵erent dendritic
branches. The release probabilities of the two presynaptic
terminals are set equal to 0.3 and 0.7 according to the data
reported in [7].
In Fig. 4, we report the responses of the two presynaptic
terminals when they are stimulated by a non-homogeneous
Poisson AP train with a sinusoidal rate whose average values
is 32Hz. We note that the first presynaptic terminal, char-
acterized by a lower release probability, generates a signal
sv1(t) whose rate is lower than the one of sv2(t), generated by
the second presynaptic terminal, characterized by a larger
release probability. These results are in agreement with the
theoretical analysis, and they confirm that the presynaptic
terminals modulate the incoming spike train through their
release probabilities.
In Fig. 5, we report the concentration pulse train generated
at a distance of r1m = 20nm by the signal emitted from the
first presynaptic terminal as function of the time. We adopt
the same simulation setting described in [12], i.e., Q1 = 4700
molecules, a = 20nm and D = 7.6 · 108nm2/s. We first note
that the results confirm the theoretical analysis, i.e., the rate
of the concentration pulse train generated by the first presy-
naptic terminal coincides with the rate of the released spike,
i.e., �1(t) = Prel1�(t). This implies that the neuronal infor-

mation is encoded in the release patterns of the presynaptic
terminals. Furthermore, we observe that the the maximum
of the concentration pulse is achieved every T1 = 1

Prel1
�(t) ,

as predicted analytically.
In Fig. 6, we report the concentration pulse train generated
at a distance of r2m = 20nm by the signal emitted by the sec-
ond presynaptic terminal as function of the time. We adopt
the same simulation setting described above, and all the pre-
vious consideration continue to hold. Furthermore, since the
processing performed by the second presynaptic terminal is
di↵erent from the one performed by the first presynaptic
terminal, the concentration pulse train is di↵erent.

4. CONCLUSIONS
In this paper, we proposed a transmitter model for captur-
ing the actual behavior of biological neurons. Specifically, we
have modeled the presynaptic terminals as an array of trans-
mitters, with each transmitter characterizing the stochas-
tic filtering performed by a presynaptic terminal. Then,
we have analytically characterized the propagation of the
presynaptic-filtered signal, and we derived the signaling de-
lay as a function of the distance between the pre- and the
postsynaptic neurons. The conducted theoretical analysis,
in agreement with the experimental evidences, shows that
the neuronal information is encoded in the release patterns
of the presynaptic terminals. These patterns, in turns, are
driven by and reflects the complex biophysical mechanisms
of protein-protein and protein-lipid interactions between the
presynaptic and postsynaptic neurons.
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Figure 5: Concentration Pulse Train due to the
first Presynaptic Terminal.

Figure 6: Concentration Pulse Train due to the
second Presynaptic Terminal.
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