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Abstract: In this letter, we study the throughput achievable by an unlicensed sensor network
operating over TV white space spectrum in presence of coexistence interference. Through the letter,
we first analytically derive the achievable throughput as a function of the channel ordering. Then, we
show that the problem of deriving the maximum expected throughput through exhaustive search
is computationally unfeasible. Finally, we derive a computational-efficient algorithm characterized
by polynomial-time complexity to compute the channel set maximizing the expected throughput
and, stemming from this, we derive a closed-form expression of the maximum expected throughput.
Numerical simulations validate the theoretical analysis.
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1. Introduction

In recent years, regulatory bodies such as FCC and Ofcom [1–3] have approved the dynamic
access of unlicensed sensor networks, referred to in the following as Secondary Sensor Networks
(SSNs), to the TV White Space (TVWS) spectrum. The existing regulations circumvented the need
for sensing algorithms for establishing the availability of free TVWS spectrum [4–7], since they
require the SSNs to periodically obtain the the list of TVWS channels free from licensed users from
a geolocated database [8,9]. Hence, it is reasonable to expect that multiple and heterogeneous SSNs
based on different standards such as [10–12] are expected to coexist within the same geographical
region over shared TVWS spectrum. Stemming from this, in this paper we develop an analytical
framework for modeling the throughput achievable by an arbitrary SSN operating over shared
TVWS spectrum in presence of coexistence interference. Specifically, we first analytically derive
the expected throughput as a function of the channel ordering. Then, the problem of deriving the
maximum expected throughput through exhaustive search is shown to be computationally unfeasible.
Furthermore, a computational-efficient algorithm for ordering the channels to maximize the expected
throughput is designed and, stemming from this, a closed-form expression of the maximum expected
throughput is derived. Finally, numerical results validate the theoretical analysis.

2. System Model

We consider a SSN communicating through the TVWS spectrum in agreement with the existing
standards and regulations. Hence, with an access to the TVWS database, the SSN obtains the list of
channels free from licensed users. In the following, we denote with N = {1, 2, . . . , N} the set of free
channels, and with Ti the expected throughput for the i-th channel. For the reasons described in the
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introduction, any incumbent-free channel in N may be affected by coexisting interference caused
by other heterogenous SSNs operating over the same TVWS channel within the same geographical
area. In the following, pi denotes the probability of the i-th channel being not affected by coexistence
interference (the SSN can estimate the interference probability through the past interference history [8]),

with p̄i
4
= 1− pi. Furthermore, C denotes an arbitrary channel set, i.e., an ordered sequence of available

channels without repetition:

C = {(cα1 , cα2 , . . . , cαN ) : cαi 6= cαj ∧ αi ∈ N} (1)

The order among the channels reflects the priorities for channel utilization, i.e., channel cαi is
used if and only if: (i) all the channels with higher priority cα1 , . . . , cαi−1 are affected by coexistence
interference; (ii) channel cαi is not affected by coexistence interference. In the following, we denote
with C∗ the optimal channel set, i.e., the channel set that maximizes the expected throughput.

3. Expected Throughput

In this section, we first derive the closed-form expression of the expected throughput as a function
of the adopted channel set, say C = (cα1 , cα2 , . . . , cαN ). To this aim, some preliminaries are needed.
We denote with qcαi

the probability that the first i− 1 channels cα1 , . . . , cαi−1 with higher priority with
respect to cαi are affected by coexistence interference. By exploiting the reasonable hypothesis of
independent SSN activities over different channels, it results that qcαi

is given by:

qcαi
=

i−1

∏
k=1

p̄cαk
(2)

Hence, the expected achievable throughput T̄C is equal to:

T̄C =
N

∑
i=1

pcαi

(
i−1

∏
k=1

p̄cαk

)
Tcαi

=
N

∑
i=1

pcαi
qcαi
Tcαi

(3)

with pcαi
denoting the probability of channel cαi being not affected by coexistence interference and Tcαi

denoting channel cαi expected throughput, respectively. From Equation (3), it results that T̄C depends
on the adopted channel set. In the following, by deriving the optimal channel set C∗, we are able to
compute the maximum expected throughput T̄ ∗ achievable by an arbitrary SSN operating over shared
TVWS spectrum:

T̄ ∗ = max
C
{T̄C} (4)

We first observe that the computation of the maximum throughput T̄ ∗ through exhaustive
search is computationally unfeasible. In fact, the number of channel sets is equal to the number N!
of permutations of N = |N | distinct objects. Consequently, computing T̄ ∗ via exhaustive search
is as much computational hard as solving the NP-hard traveling salesman problem via brute-force
search. Nevertheless, in the following, we derive a rule for ordering the channels to maximize the
expected throughput and, stemming from this result, we design a computational feasible algorithm for
computing T̄ ∗.

4. Maximum Expected Throughput

Let us suppose that Tcαm > Tcαm+1
. We prove that channel cαm must have higher priority than

channel cαm+1 with a reductio ad absurdum by supposing that there exist a channel set C ′ different by
channel set C = (cα1 , cα2 , . . . , cαN ) defined as:
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C ′ = (c′α1
, c′α2

, . . . , c′αN
) :


c′αi

= cαi ∀ i 6= m, m + 1

c′αm = cαm+1

c′αm+1
= cαm

(5)

so that:

T̄C =
N

∑
i=1

pcαi
qcαi
Tcαi

< T̄C ′ =
N

∑
i=1

pc′αi
qc′αi
Tc′αi

(6)

By accounting for Equation (2), we have

qc′αi
=

i−1

∏
k=1

p̄c′αk
=

i−1

∏
k=1

p̄cαk
= qcαi

∀i ≤ m (7)

As a consequence, by using Equations (5) and (6), it results:

qc′αm+1
=

m

∏
k=1

p̄c′αk
= p̄c′αm

m−1

∏
k=1

p̄cαk
= p̄cαm+1

qcαm (8)

qc′αm+2
=

m+1

∏
k=1

p̄c′αk
= p̄c′αm+1

p̄cαm+1
qcαm = qcαm+2

(9)

By accounting for Equations (7) and (9), we have pcαi
qcαi
Tcαi

= pc′αi
qc′αi
Tc′αi

for any i 6= m, m + 1.
Hence, Equation (6) is equivalent to:

T̄C < T̄C ′ ⇐⇒ (10)

pcαm qcαmTcαm + pcαm+1
qcαm+1

Tcαm+1
<

pc′αm
qc′αm
Tc′αm

+ pc′αm+1
qc′αm+1

Tc′αm+1

By substituting Equations (2) and (8) in Equation (10), and by using again Equations (5) and (7),
with some algebraic manipulations, it results:

T̄C < T̄C ′ ⇐⇒ pcαm qcαmTcαm + pcαm+1
p̄cαm qcαmTcαm+1

<

pcαm+1
qcαmTcαm+1

+ pcαm p̄cαm+1
qcαmTcαm ⇐⇒

pcαm+1
pcαm qcαmTcαm < pcαm+1

pcαm qcαmTcαm+1
(11)

Equation (11) constitutes an absurdum since for hypothesis Tcαm > Tcαm+1
.

By exploiting this result, it follows that to obtain the optimal channel set C∗, i.e., the channel set
that maximizes the expected throughput, the channels must be sorted according to their expected
throughput, i.e.,

C∗ = {(c∗α1
, c∗α2

, . . . , c∗αN
)) : Tc∗αi

≥ T c∗αi+1
} (12)

Equation (12) constitutes also a computational-efficient algorithm for evaluating the maximum
expected throughput T̄ ∗. In fact, its time complexity is bounded byO(n log n) due to the sort operation.
From Equations (3) and (12), we finally obtain the expression of the maximum expected throughput T̄ ∗:

T̄ ∗ =
N

∑
i=1

pc∗αi
qc∗αi
Tc∗αi

(13)

5. Numerical Results

In this section, we adopt, as case study, a sensor network operating in the TVWS spectrum
according to the IEEE 802.11af standard. This standard, also referred to as White-Fi, allows wireless
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local area network operation in TV white space spectrum in the VHF and UHF bands between 54 and
790 MHz.

First, we validate Equation (12) by showing that the expected throughput derived in Equation (13)
constitutes the maximum expected throughput. The set of parameters is as follows. The TVWS
spectrum is organized in N = 5 channels, and the corresponding interference probabilities are
uniformly distributed in [0, 1]. By adopting a 6MHz bandwidth for the IEEE 802.11af standard, the
set of achievable data rates is {0, 1.8, 3.6, 5.4, 7.2, 10.8, 14.4, 16.2, 18, 21.6, 24}Mbit/s, and the channel
throughputs are uniformly distributed within the set.

Figure 1 shows the expected throughput T̄C for each of the N! = 120 sets {C}. Furthermore, we
report the expected throughput derived in Equation (13). First, we note that expected throughput
derived in Equation (13) effectively constitutes the maximum expected throughput. Hence, Equation (12)
provides the sorting rule maximizing the expected throughput. Furthermore, we note that there exists
a significant variability in terms of expected throughput among the different channel sets, ranging from
less than 1 Mbit/s to over 15 Mbit/s. This result highlights the importance of studying the throughput
achievable by an unlicensed sensor network operating over TV white space spectrum in presence of
coexistence interference.
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Figure 1. Expected Throughput T̄C : exhaustive search versus proposed algorithm.

To better characterize the effects of the parameters on the expected throughput, in Figure 2 we
show the maximum expected throughput T̄ ∗ as a function of the channel availability probability
for different values of the number N of TVWS channels, i.e., N = {1, 3, 5, 7, 9}. The simulation set
is as follows: pi = p and Ti = 24 Mbps for any i ∈ N . We can observe that the maximum average
throughput is significantly affected not only by the probability p, but also by N. Specifically, we
observe that, for the lower values of p, there exists a difference in terms of T̄ ∗ for different values of N.
In contrast, for the larger values of p, the difference in terms of T̄ ∗ for different values of N decreases as
N increases. Furthermore, we observe that the maximum expected throughput increases as N increases.
This effect is reasonable, since N controls the degrees of freedom in terms of channel opportunities.

The conducted analysis has proved that the throughput available at an arbitrary secondary
sensor network operating over shared TVWS space in presence of coexistence interference depends
on the channel set. Furthermore, it has shown that there exists a computational-efficient algorithm
for determining the channel set maximizing the throughput. Hence, in a nutshell, secondary sensor
networks can maximize the throughput by scanning the channels in decreasing order of expected
throughput and by utilizing the first channel not affected by coexistence interference.
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Figure 2. Maximum Expected Throughput T̄ ∗ versus probability p for different number N of
TVWS channels.

6. Conclusions

In this letter, we studied the throughput achievable by an unlicensed sensor network operating
over TV white space spectrum in presence of coexistence interference. Through the letter,
first we analytically derived the achievable expected throughput as a function of the channel
ordering, by showing that the derivation of the maximum expected throughput through exhaustive
search is computationally unfeasible. Then we designed a computational-efficient algorithm with
polynomial-time complexity for evaluating the maximum expected throughput. Finally, numerical
results validated the theoretical analysis
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