
 

  
Abstract—In ad hoc networks scalability is a critical 

requirement if these technologies have to reach their full 
potential. Most of the proposed routing protocols do not operate 
efficiently with networks of more than a few hundred nodes. In 
this paper, we propose an augmented tree-based address space 
structure and a hierarchical multi-path routing protocol, 
referred to as Augmented Tree-based Routing (ATR), which 
utilizes such a structure in order to solve the scalability problem 
and to gain good resilience against node failure/mobility and link 
congestion/instability. Simulation results and performance 
comparisons with existing protocols substantiate the effectiveness 
of the ATR. 

 
 

Index Terms—Networking, routing, mobile ad hoc network, 
dynamic addressing, distributed hash table. 

I. INTRODUCTION 

In the last ten years, Mobile Ad hoc NETwork (MANET) 
technologies are tremendously growing. Most of the research 
has mainly regarded relatively small networks and has been 
focused on performances and power consumption related 
issues. More recently, due to the importance of ad hoc 
paradigm in applications involving a large population of 
mobile stations interconnected by a multi-hop wireless 
network [1], great attention has been devoted to self-
organizing routing protocols with satisfactory scalability 
requirements since most of the available routing protocols 
operate satisfactorily only up to few hundred nodes [2, 3]. 

Such protocols don’t scale efficiently mainly because they 
have been derived by modifying traditional routing 
algorithms, conceived for fixed networks, to cope with the 
dynamic topology of MANET [4, 5]. More specifically, 
traditional routing procedures are based on the assumption that 
node identity equals node routing address (i.e. they exploit 
static addressing schemes), which of course is not yet valid in 
MANET scenarios. 

Recently, routing protocols have exploited the idea of 
decoupling identification from location, by resorting to 
Distributed Hash Tables (DHTs), which are used to distribute 
node’s location information throughout the topology. The 
information stored in the DHTs is a dynamic network address, 

 
All the authors are with the DIET, University of Naples “Federico II”, via 

Claudio 21, Naples (Italy), tel:+39-(0)-81-7683810, fax:+39-(0)81-7683149, 
emails: {name.surname}@unina.it. 

This work is partially supported both by National project Wireless 8O2.16 
Multi-antenna mEsh Networks (WOMEN) under grant number 2005093248 
and by the Italian Ministry of University (MIUR) project S.Co.P.E.. 
1-4244-1455-5/07/$25.00 ©2007 IEEE 

which reflects the node topological position inside the 
network. When the dynamic address of a node has been 
retrieved from the DHTs by the lookup procedure, the routing 
procedures [6-8, 11, 12] resort to the topological information 
present in the address, resembling the routing procedure 
utilized by wired networks. 

According to such dynamic addressing approach, the 
schemes [6-8, 12] are hierarchically organized exploiting a 
tree structure for the address space management and routing. 
Although this structure offers a simple and manageable 
procedure, it lacks for robustness against mobility and exhibits 
unsatisfactory route selection flexibility. Routing protocols 
based on such addressing schemes can determine low 
performance and poor resilience to node failure/mobility [11]. 
In order to face with the problem of the incomplete 
information embedded in the tree-based addressing scheme, 
we propose to augment the tree structure by storing additional 
information in the node routing tables. This information is 
simply acquired by each single node by using the underlying 
neighbour discovering procedure. The advantage of the 
proposed routing protocol, referred to as Augmented Tree-
based Routing (ATR) protocol, lies in the richer topology 
knowledge that allows one to resort to multi-path routing.  

The outline of the paper is the following: Section II 
introduces the preliminaries of the proposed protocol, whereas 
in Section III we describe it in detail. Then, in Section IV, an 
extensive simulation performance comparison between ATR 
and other routing protocols is presented. Finally, in Section V, 
conclusions are drawn. 

II. PRELIMINARIES TO ATR PROTOCOL 
The address space structure exploited by the proposed 

protocol can be represented as a binary tree of l+1 levels, 
where l is the number of bits used for an address (Fig. 1). 

 
Figure 1 – Address space structure 

The leafs represent the network addresses, whereas the 
physical connections are represented by dotted lines and they 
do not necessarily correspond to the branches of the address 

Augmented Tree-based Routing Protocol 
for Scalable Ad Hoc Networks 

Marcello Caleffi, Giancarlo Ferraiuolo, and Luigi Paura 



 

space tree. In such structure, a level-k subtree is a set of nodes 
sharing an address prefix of (l-k) bits: a level-0 subtree is a 
leaf node, where [0xx] is a level-2 subtree containing the four 
addresses [000], [001], [010] and [011]. A level-k sibling of a 
given address is defined as the subtree that shares the same 
immediate parent of the level-k subtree of the considered 
address. Such an address allocation structure, exploited in the 
Dynamic Address RouTing (DART) protocol [12], assures 
that nodes, whose routing addresses share the same prefix, 
form a connected sub-graph in the network topology. In 
particular, the longer the shared address prefix between two 
nodes, the shorter the expected routing distance in the network 
topology. In few words, a tree-base logical structure on the 
address space based on connectivity between nodes is 
introduced and exploited by routing since it appears to be 
suitable for its hierarchical characteristic. However, this tree-
based structure has a low fault-tolerance, since it exists only 
one path between a node and a sub-set of destinations, i.e. a 
sibling. The failure of a next hop breaks the connectivity of 
the network, leaving the destination set disconnected from the 
node. Another major weakness is that this structure suffers 
from traffic congestion. This is due to the availability of a 
unique next hop as a gateway for a whole sibling, i.e. a set of 
destination nodes, which can be constituted by many nodes. 

To overcome such drawbacks, in this paper we propose to 
augment the tree structure by adding redundant paths for the 
packet forwarding. More specifically, unlike DART protocol 
in which each node maintains only one possible next hop 
toward the final destination (defining a single path along the 
tree structure of the address space), in ATR each node 
maintains and explores all the possible paths through its 
neighbours to reach the final destination. This is equivalent to 
use an augmented tree structure to perform forwarding, which 
slightly increases cost, as shown in Section IV. Moreover, the 
richer network-topology knowledge is exploited to implement 
temporal multi-path strategies, which guarantee better 
performance and a higher reliability [16]. 

 
Figure 2 – Adjacency matrix for 8 nodes network 

To understand the potentiality of the proposed method, in 
Fig. 2 we have represented the adjacency matrixes associated 
with the physical and overlay graphs referring to a network 
with eight nodes. These matrixes differ for their numbers of 
‘1’ (communication links). The first one on the left represents 
the physical graph, i.e. the graph in which the edge eij is 
present if a physical communication link is available between 
the nodes i and j. The other two matrixes represent the overlay 
graphs built upon the physical network by DART and ATR 
protocols, respectively. The lack of ten edges (‘1’) in the 
DART matrix, with respect to the physical and ATR ones, 

evidences the inability of shortest-path routing protocols, as 
DART, to build a complete topological view of the network.  

As regards the routing issues, Fig. 3 shows the overlay 
graphs associated with the different path discovery results 
(DART and ATR) for a full mesh network with four nodes. 
The graphs show the paths from each node towards two 
destinations, say node ‘2’ and ‘4’. The graphs evidence the 
presence of multiple paths towards the same destination in 
ATR. Moreover, they show that hierarchical single-path 
routing protocol does not always provide the shortest path, 
neither when the network is very simple. 
 

 
Figure 3 – Graphs referring to path discovery process 

III. AUGMENTED TREE-BASED ROUTING PROTOCOL 
We distinguish four primary processes in ATR protocol. 

The Path Discovery Process updates the routing table of each 
node with the routing update sent by neighbour nodes in the 
hello packets. The Packet Forwarding Process singles out the 
right path to route the packets towards the destination. The 
Address Allocation Process selects a network address that 
reflects the node topological position inside the network. 
Finally, the Address Lookup Process provides the mapping 
between the unique node identifier used by higher levels and 
the transient network address used by the Path Discovery and 
Packet Forwarding processes. 

A. Path Discovery Process 
The proposed path discovery process is a multi-path version 

of the proactive shortest-path distance-vector one adopted by 
DART. It takes advantage of the augmented tree structure 
previously introduced to reduce the effects of node mobility 
and wireless propagation instability, without increasing the 
routing overhead. 

The Path Discovery Process uses the locally broadcasted 
hello packets exchanged by neighbour nodes to build up and 
update the routing tables. ATR differs from DART in the 
number of entries to reach each sibling stored in the routing 
tables. DART stores a unique entry for each sibling, the 
shortest one that the node could find. Differently, ATR stores 
all the available paths that the node could find towards the 
same sibling. In this way, if the shortest path is unavailable 
due to mobility, congestion or wireless propagation instability, 



 

the node could immediately route the data packets along one 
of the multiple available paths. 

Table 1 – Routing update of node 1 (address [000]) 
level sibling NID cost routeLog 

0 001 3 1 001 
1 01X 2 1 010 
2 1XX 1 1 100 

Table 1 shows an example of the routing update 
broadcasted by the node ‘3’ with network address [000] in the 
network of Fig. 3. This routing update advices neighbour 
nodes only about which destination siblings the sending node 
could forward packets to, but it does not give information 
concerning the specific path the packets will be forwarded 
along. The routing updates need to store only binary 
information: “There is no route” or “There is at least one 
route”, so that the routing overhead is the same for both in 
DART and ATR, as shown by the results concerning the 
routing overhead in Section IV.B. In Table 1, the Network ID 
(NID) is the identifier of the sibling, i.e. the lowest id present 
in the sibling. It is used by the Address Allocation Process 
(see Section III.C) to detect the address-duplication event. The 
cost is self-explanatory and in this work we adopt a simple 
hop count metric. The routeLog is used by the loop avoidance 
mechanism [12] to discard a route updating, already received. 
If a node does not receive any hello packets from a neighbour 
in a certain number of update periods, the expired routing 
update of that neighbour is discarded from the routing table. 

Table 2 – DART routing table of node 4 (address [001]) 
level sibling nextHop ID cost 

0 000 000 1 1 
1 01X 010 3 1 
2 1XX 100 2 1 

Let’s describe how a node updates its routing table. 
Suppose that the node ‘4’ with network address [001] (Fig. 3) 
receives the routing update from node ‘1’, as shown in Table 
1. First, node ‘4’ adds an entry for the sibling the address 
‘000’ belongs to, i.e. the level-0 sibling [000], with a one-hop 
cost and node ‘1’ as next hop. Then it looks if the neighbour 
could act as forwarder for the higher level-k siblings, 
inspecting if the corresponding cost of the routing update has a 
finite value. In this example the node ‘4’ adds node ‘000’ as 
forwarder towards the level-1 sibling [01X] and the level-2 
sibling [1XX], both with cost 2.  

Table 3 – ATR routing table of node 4 (address [001]) 
level sibling nextHop ID cost 

0 000 000 1 1 
000 1 2 1 01X 010 3 1 
000 1 2 
010 2 2 2 1XX 
100 2 1 

In Table 2 we report the routing table of node ‘4’, for the 
network of Fig. 3, built by DART protocol, while Table 3 
shows the same routing table built by ATR protocol. Also 
when the network size is very small, only four nodes, the ATR 
Path Discovery Process can take advantages of multiple 
neighbours in order to forward packets, thanks to its multi-

path approach and its augmented tree-based address-space 
structure. 

B. Packet Forwarding Process 
The ATR multi-path routing exhibits temporal diversity, i.e. 

the Path Discovery Process performs a pre-emptive route 
discovery before the occurrence of route errors. Moreover, 
ATR could be easily extended to split a data transfer on 
multiple paths in the spatial domain, to reduce congestion 
effects and end-to-end delay. 

Let us describe the proposed Packet Forwarding Process. 
According to Table 3, if node ‘4’ with network address [001] 
must forward a data packet to a node with network address 
[010], it first looks the entries related to the sibling the 
destination network address belongs to, i.e. the level-1 sibling 
[01X]. In this case there are two entries in the routing table, so 
node ‘4’ will pick up the one exhibiting the least hop count 
metric, i.e. the node [010]. Otherwise, if there are no entries 
for the level-1 sibling, node ‘4’ will expand its search to 
higher sibling, i.e. level-2 sibling [1XX]. 

Moreover, we take advantage of multi-path defining a cross 
layer solution to handle with link failures. If a node detects a 
link failure after the forwarding of a data packet, namely if it 
does not receive the acknowledgement, the previously used 
next hop is invalidated. Then the data packet will be re-
forwarded using a different path already discovered by the 
Path Discovery Process. Evidently this leads to higher delays 
in packet delivery, however it is often more convenient to wait 
a little more instead of wasting the resources used up to here 
in packet forwarding [2]. The use of this link-breakage 
detection technique is another difference of the proposed 
approach with respect to DART. 

C. Address Allocation Protocol 
ATR protocol makes use of the same address allocation 

presented in [12], which is a distributed stateful approach [14, 
15] based on multiple disjoint allocation tables. In few words, 
when a node joins a network and selects an address, it keeps 
also the control over a subset of the address space, i.e. a 
sibling. Nodes exchange information about the utilized 
addresses and perform both the network-merging event 
detection and the partition one by locally broadcasting the 
hello packets. Here, we point out only our following change to 
address allocation process utilized by DART protocol [12], 
which allows to solve the following issue present in the 
original address selection procedure. When a node joins a 
network, it must choose a neighbour to get a valid network 
address. DART protocol suggests to choose the neighbour 
with the largest unoccupied address space, i.e. the highest free 
level-k sibling, to balance the routing table size among nodes. 
This procedure, as shown by simulation results (Section IV.C), 
never converges also for small networks since the routing 
table of the selected neighbour could be not update, and, 
therefore, the joining node could pick up an invalid address. 

Our proposal solves this issue by using as metric for the 
neighbour selection both the free address-space criteria and 
the node identifier. Moreover, if an invalid address is acquired 
from the first selected neighbour, the ATR address selection 
procedure scrolls the set of neighbours until a valid address 
will be obtained. 



 

D. Address Lookup Process 
The Address Lookup Process is built upon a DHT [22]. 

Unlike DART, our proposal makes use of caching techniques 
to reduce the delay and the overhead due to the procedure of 
looking up a network address of a node starting from its 
identifier. We want to underline that the proposed caching 
technique could be also used to provide fault tolerance to the 
whole process. Moreover, we investigate the issue of finding a 
good hash function, i.e. a hash one that balances the lookup 
traffic among nodes, with respect to the adopted address 
allocation procedure. 

Every node is part of the DHT system, storing a subset of 
pairs <identifier, network address>. Which pair a node must 
store depends on the hash function. Let’s make an example: 
suppose the node with identifier id1 joins the network and 
picks up the network address add1. Then, it will send a 
Network Address Update (NAUP) packet to the node whose 
network address is equal to add3=hash(id1), i.e. the network 
address [111], where hash is a globally known function. Every 
node belonging to the route path of the NAUP packet will 
cache the pair <id1, add1>. If there is no node with network 
address [111] in the network, the NAUP packet will be routed 
to the node having the network address with the bigger 
common prefix with [111], i.e. the address [110] or [100]. 
When a node, i.e. the node id2 with address add2, must send a 
packet to node id3, it will send a Network Address Request 
(NARQ) packet to the node with network address 
add3=hash(id1), i.e. [111]. If add3 is not used, the route process 
is the same as for NAUP packets. Every node belonging to the 
route path of the NARQ packet will cache the pair <id2, add2> 
and, if it caches the request pair, it will immediately reply to 
the request. Differently, it will be the node with network 
address add3 and identifier id3 that will reply to the request 
with a Network Address Reply (NARP). Every node belonging 
to the route path of the NARP packet will cache the pairs 
<id2,add2>, <id1,add1> and <id3,add3>. Moreover, the hello 
packets are also used to broad the pairs among neighbours for 
caching. 

Owing to the adopted address allocation procedure, the 
network addresses are not assigned with the same occurrence. 
For example, the address with all zeros is more frequent than 
the address with all ones. Therefore, we propose a simple yet 
effective hash function that tries to uniformly distribute the 
pairs among the nodes whenever the network addresses are not 
all employed. More specifically, our proposed hash function 
operates as follows: the returned network address is the binary 
representation of the id, reversed in the order of the symbols 
and, finally, with the most significant bit flipped. 

IV. SIMULATION RESULTS 
In this section, we present a numerical performance 

analysis of the proposed routing protocol, resorting to ns-2 
(version 2.30) network simulator [21]. We adopt the standard 
values for both the physical and the link layer to simulate an 
IEEE 802.11a Lucent network interface with Two-Ray Ground 
as channel model. The duration of simulation experiment is set 
to 750 seconds, while the sizes of the scenario areas are 
chosen to keep the node density equal to 64 nodes/Km2. This 
value corresponds to a mean node connectivity degree of 12, 

which is a reasonable value to avoid the presence of isolated 
nodes [17]. To generate mobile topologies, we have adopted 
the Random Way-Point as mobility model [18]. Since 
proactive routing protocols are not suitable for networks with 
very high levels of mobility, the mobility parameters have 
been set to simulate moderate mobility; specifically, the speed 
values are uniformly taken in the [0.5m/s; 5m/s] range, and the 
pause times uniformly taken in [0s; 100s]. Our comparison 
does not include the network address lookup layer, which is 
replaced with a global lookup table available to all nodes. 
However in order to develop the proposed address lookup 
process, and in particular to adopt effective caching 
techniques, we have extensively investigate the overhead due 
to the network address lookup and update functions, and here 
we report a subset of the simulation results. 

A. Path Discover Process 
As already explained, the proposed multi-path approach has 

no effect on the routing overhead: both the size and the rate of 
the hello packets are the same for DART and ATR protocols. 
Instead, the node memory requirements are not the same: ATR 
protocol requires that nodes store all the available paths 
towards each sibling. 

In this subsection, we evaluate the memory requirements of 
ATR and compare them with the ones of DART, in terms of 
routing table size. We have run a set of trials to measure the 
average number of routing tables entries of all participating 
nodes. As shown in Fig. 4, ATR exhibits stronger memory 
requirements. However, as the number of nodes grows, the 
number of routing table entries saturates: this confirms that the 
proposed augmented tree-based address space structure scales 
satisfactorily. 

 
Figure 4 - Memory requirements comparison 

Clearly, the routing table size depends on the node density. 
Different node densities have been experimented, confirming 
the same general trend. 

B. Packet Forwarding Process 
Neither DART nor ATR were designed to optimize the 

throughput. In fact, their main requirement is to achieve 
scalability.  Moreover, they are lacking in optimization work 
behind more widespread protocols. Nevertheless, we are 
interested in comparing ATR not only with DART, but also 
with other two popular routing protocols, AODV [9] and DSR 



 

[10]. Let us underline that ATR does not adopt spatial 
diversity multi-path routing, so the comparison with shortest-
path protocols makes sense. 

In comparing these protocols, we choose to evaluate them 
using the following metrics: packet delivery ratio, path stretch 
measured in number of hops, and routing overhead. The data 
traffic is modeled as CBR flows over UDP protocol. We do 
not adopt the TCP as transport protocol to avoid the effects of 
elasticity of TCP flow control on routing performances [19]. 
The data pattern is the most common one in simulation for ad 
hoc networks: the Random Traffic Model. The global load 
offered is kept constant at 250Kb/s, in order to avoid running 
out of capacity due to multi-hop approach. The node load 
offered scales as O(1/n) to simulate sustainable data traffic, 
taking in account the routing overhead [20]. Each flow has a 
start- and end- time uniformly picked in [450s, 720s], in order 
to achieve the address allocation convergence before data 
forwarding can be performed (Section IV.C), and to guarantee 
a 30 seconds cold-down period to complete data packets 
delivery. 

The packet delivery ratio describes the loss rate that will be 
seen by upper layers protocols. Fig. 5 (and the following in 
this subsection) shows this metric normalized to the packet 
delivery ratio of the ATR protocol. The experimental results 
show that the ATR scales always better than DART. 
Regarding to reactive protocols, when the number of nodes is 
relatively small, they perform well. However, the 
performances of ATR remain comparable with respect to 
AODV and DSR ones also in such situation. Differently, when 
the number of nodes grows, the reactive protocols lose their 
initial performance advantage and ATR outperforms. This 
trend is earlier manifested by DSR that exhibits the worst 
performance. 

 
Figure 5 – Normalized packet delivery ratio 

Fig. 6 shows the mean path stretch (that is the number of 
hops a packet spends to reach its destination) normalized to 
the one of ATR protocol. In absence of congestion, the path 
stretch measures the ability of a routing protocol to efficiently 
use network resources by selecting the shortest path to reach 
the destination. Clearly, the ATR multi-path property leads to 
longer paths with respect to shortest-path protocols, as 
illustrated in Fig. 6. However, it is important to note that this 
metric is evaluated on the base of the correctly delivered 
packets. When the number of node grows, ATR delivers more 

packets with respect to the other protocols; then it is 
reasonable to assume that the packets delivered by ATR, and 
missed by the other ones, experience longer paths. This is also 
confirmed by comparing DART and ATR performances for 
small networks. When both the protocols reach the same 
packet delivery ratio values, ATR is able to find paths shorter 
of about 65% with respect to DART induced ones. 

 
Figure 6 – Normalized path stretch 

The last metric, the mean routing overhead normalized to 
the one of ATR protocol, measures the ability of a protocol of 
working well in congested or low-bandwidth environments. 
Let us note that, for DSR and AODV simulations, we count 
routing packets sent over multiple hops as a single 
transmission, as usually done, also if DART and ATR use 
only locally broadcasted routing packets. Fig.7 points out that 
the routing overhead of DART and ATR are perfectly 
comparable, that is the packet delivery performance gain of 
ATR is obtained with no additional overhead, with the 
exception of memory requirements. With respect to reactive 
protocols, ATR suffers from very high overhead for small 
networks. Whereas, when the number of nodes grows, the 
hierarchical routing overhead becomes perfectly comparable 
with the reactive one, wasting the aim of reactive protocols. 

.  
Figure 7 - Normalized routing overhead 

C. Address Allocation Process 
To evaluate the improvements of our Address Allocation 

Process with respect to DART one, we set up a set of 



 

experiments with static topologies, no data traffic, simulation 
time equal to 450 seconds and nodes uniformly distributed. 
We measure the average times of last duplicate address and 
last invalid address event, for all the participating nodes. As 
shown in Fig. 8, the DART address allocation procedure never 
converges when the number of nodes is mode than 32. 

 
Figure 8 - Address Allocation Process convergence 

D. Address Lookup Process 
To analyze the overhead due to the address lookup and 

update functions, we have chosen two metrics: the mean rate 
of network address updates and the mean number of network 
address bits that have been changed. The former measures the 
temporal locality of the network addresses; the latter measures 
the spatial locality of the network address, and should be used 
to define the caching techniques. 

 
Figure 9 - Address Lookup Process metrics 

The mean address-update rate is measured in updating per 
second and its trend initially grows more then linearly. 
However, when the number of nodes grows up, it is going to 
steady. The maximum value is in the order of an updating 
every 20 seconds, that is almost an order of magnitude higher 
than the time period necessary to route a data packet. Regards 
to the spatial locality metric, the high number of changed bits 
suggests to adopt distributed caching techniques. 

V. CONCLUSION 

The paper proposes a hierarchical multi-path routing 
protocol, referred to as Augmented Tree-based Routing (ATR) 
protocol, which exploits a new augmented tree-based address-
space structure, in order to solve the scalability problem and to 
gain good resilience against node failure/mobility and link 
congestion/instability in MANETs. Simulation results and 
performance comparisons with existing protocols substantiate 
the effectiveness of the ATR. 

REFERENCES 
[1] X. Hong, K. Xu and M. Gerla. "Scalable routing protocols for mobile ad 

hoc networks Network". IEEE Network, vol. 16, no. 4, 2002, pp. 11-21. 
[2] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu and J. A. Jetcheva. “A 

performance comparison of multi-hop wireless ad hoc network routing 
protocols”. In MobiCom '98: Proceedings of the 4th annual ACM/IEEE 
international conference on Mobile computing and networking, Dallas, 
Texas, United States,1998, pp. 85-97. 

[3] Y. Tseng, S. Ni, Y. Chen and J. Sheu. “The broadcast storm problem in 
a mobile ad hoc network”. Wireless Networks, vol. 8, no. 2, 2002, pp. 
153-167. 

[4] I. Chlamtac, M. Conti and J. Liu. “Mobile ad hoc networking: 
imperatives and challenges”. Ad Hoc Networks, vol. 1, no. 1, 2003. 

[5] I. Akyildiz, X.  Wang and W. Wang. “Wireless mesh networks: a 
survey”. Computer Networks, vol. 47, no. 4, 2005, pp. 445-487. 

[6] M. Gerla, X. Hong and G. Pei. “Landmark routing in ad hoc networks 
with mobile backbones”. J. of Parallel and Distributed Computing, vol. 
63, no. 2, 2003, pp. 110-122. 

[7] B. Chen and R. Morris. “L+: Scalable landmark routing and address 
lookup for multi-hop wireless networks”. Tech. rep., Massachusetts 
Institute of Technology, MIT LCS-TR-837, 2002. 

[8] J. Eriksson, M. Faloutsos and S. Krishnamurthy. “Peernet: Pushing 
peer-2-peer down the stack”. In Proc. of IPTPS, 2003. 

[9] C. Perkins and E. Royer. “Ad hoc on-demand distance vector routing”. 
2nd IEEE Workshop on Mobile Computing Systems and Applications, 
New Orleans, LA, United States, 1999, pp. 90-100. 

[10] D. B. Johnson and D. A. Maltz. “Dynamic source routing in ad hoc 
wireless networks”. In Mobile Computing, vol. 353, 1996, pp. 153-181. 

[11] J. I. Alvarez-Hamelin, A. C. Viana and M. D. De Amorim. 
“Architectural Considerations for a Self-Configuring Routing Scheme 
for Spontaneous Networks”. Page 1. arXiv:cs.NI/0510082, vol.1, 2005. 

[12] J. Eriksson, M. Faloutsos and S. Krishnamurthy. “DART: Dynamic 
Address RouTing for Scalable Ad Hoc and Mesh Networks”. IEEE- 
ACM Transactions on Networking, vol.15, no. 1, 2007, pp.119-132. 

[13] S. Nesargi and R. Prakash. “MANETconf: Configuration of hosts in a 
mobile ad hoc network”. In Proc. of IEEE INFOCOM, 2002. 

[14] H. Zhou, L. M. Ni and M. W. Mutka, “Prophet address allocation for 
large scale MANETs,”. Ad Hoc Networks, vol. 1, no. 4, 2003. 

[15] M. Caesar, M. Castro, E. B. Nightingale, G. O'Shea and A. Rowstron. 
“Virtual ring routing: network routing inspired by DHTs”. In Proc. of 
SIGCOMM, 2007. 

[16] M. Caleffi, G. Ferraiuolo, and L. Paura. “On reliability of dynamic 
addressing routing protocols in mobile ad hoc networks. In proc of 
WRECOM ’07, Rome, Italy, 2007. 

[17] C. Bettstetter, “On the minimum node degree and connectivity of a 
wireless multihop network”. In Proc. of ACM International Symposium 
on Mobile Ad Hoc Networking & Computing, pp.80–91, 2002. 

[18] J. Yoon, M. Liu and B. Noble. "Random waypoint considered harmful". 
In Proceedings of IEEE INFOCOM 2003, vol.2, pp. 1312-1321, 2003. 

[19] G. Holland and N. Vaidya. "Analysis of TCP performance over mobile 
ad hoc networks". In Proc. of the ACM/IEEE international conference 
on Mobile computing and networking, pp.219-230, 1999. 

[20] J. Li, C. Blak, D. S. J. De Couto, H. I. Lee and R. Morris. "Capacity of 
Ad Hoc wireless networks". In Proc. of the international conference on 
Mobile computing and networking, pp.61-69, 2001. 

[21] The VINT Project. The ns Manual (formerly ns Notes and 
documentation). Available at http://www.isi.edu/nsnam/ns/doc. 

[22] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. 
Panigrahy, "Consistent hashing and random trees: Distributed caching 
protocols for relieving hot spots on the world wide web". On Proc. ACM 
Symp. Theory of Computing, pp.654-663, 1997. 


