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Abstract—In this paper, the problem of estimating the link
quality in mesh networks has been considered. Such a process
is a major task to develop an efficient network layer, since it
allows routing protocols to efficiently use neighbors as relays
for multi-hop communications. In the last years, a number
of link-quality aware routing metrics have been proposed and
analyzed. However, such metrics usually adopt simple link-quality
estimators based on moving average filters, which lead to poor
performances due to their static nature. In this paper, we propose
to improve the estimation of the link quality resorting to a
bio-inspired estimator based on the neural network paradigm.
The effectiveness of the proposal has been proved by means
of a numerical performance comparison between the proposed
estimator and the traditional ones under several environmental
conditions.

I. INTRODUCTION

Wireless mesh networks have attracted tremendous attention

due to their properties of self-organization and inexpensive

deployment in presence of any or limited pre-existing infras-

tructure. However, their application in the real world requires

the development of a network layer able to assure satisfactory

throughput performances [1].

The selection of reliably connected neighbors plays a signifi-

cant role to successfully and efficiently support data transfers.

In fact, experimental results clearly show that the estimation

of neighbors’ link qualities has a substantiative impact on the

network throughput in traditional ad-hoc forwarding [2], [3],

as well as in opportunistic forwarding [4], [5] and network

coding [6] techniques.

In the last years, the problem of designing quality aware

routing metrics has received great attention and several met-

rics have been proposed and evaluated [7]–[13]. Despite

these efforts, all the cited metrics assess the link quality by

evaluating the loss rates of probe packets with very simple

estimators, usually the Simple Moving Average (SMA) or the

Exponentially Weighted Moving Average (EWMA). Recently,

more efficient estimators have been proposed by combining

the average and the standard deviation of observed channel
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loss rates [14], [15] or by resorting to supervised learning

algorithms [16]. However, such proposals introduces excessive

computational and memory requirements, due to the need of

recording probe packets at the bit level or storing large amount

of data sets.

In this paper, we propose a bio-inspired estimator based on

the neural network paradigm since it assures the ability to

learn from the environments in unsupervised mode. A neural

network is essentially an interconnected assembly of simple

processing elements, namely unit or neurons, in which the

processing ability is reached by means of inter-unit connection

strengths, or weights, which are set by a process of adaptation,

or learning.

The proposed solution has the suitable properties of having

computational and memory requirements comparable with

those of the moving average estimators, allowing so its im-

plementation in low-power devices. At the same time, the

proposal, thanks to its adaptive nature, will perform well in

different environmental conditions.

To test the effectiveness of the proposed solution, we have

compared its performances with those of SMA and EWMA

filters in terms of network throughput and hop count. Each

estimator has been used to assess the widely adopted Expected

Transmission Count (ETX) metric [8] for a proactive multi-

path routing protocol, namely the Augmented Tree-based

Routing (ATR) protocol [17], across a wide range of environ-

mental conditions and both for mesh and ad hoc topologies.

It is worthwhile to underline that the proposed solution can

be slightly modified to operate with different quality aware

routing metrics and, moreover, it does not require any change

in both the data-link and the network layers.

The outline of the paper is the following: Section II presents

the design and implementation details of the proposed esti-

mator, whereas in Section III the performance evaluation is

illustrated. Finally, in the last section conclusions and open

problems are drawn.

II. SYSTEM DESIGN

The Expected Transmission Count (ETX) [8] is a quality

aware routing metric which aims to minimize the expected

total number of layer-2 transmissions (including retransmis-



sions) required to successfully deliver a packet towards its

final destination.

The ETX of a link li,j between node i and j at time n is

defined as:

ETXi,j(n) =
1

di,j(n)dj,i(n)
(1)

where di,j(n) is the delivery ratio of the packets sent by node

i experienced by node j at time n.

Consequently, the ETX of the path Ps,d between source s and

destination d at time n is defined as:

ETXs,d(n) =
∑

li,j∈Ps,d

ETXi,j(n) (2)

To estimate the delivery ratios, each node broadcasts probe

packets with an average period τ . Thus, we can model the

probe reception events as binary independent random variable

x(n) ∈ {0, 1} and, since the channel is time-variant, the

probability that the node j receives a probe from the node

i depends on the time, namely P (xi,j(n) = 1) = pi,j(n).
Our proposal estimates the delivery ratio by predicting at time

n − 1 the next probe reception event for link li,j by means

of the M previous reception events and the bias coefficient θ,

according to the technique depicted in Fig. 1.

More specifically, the predicted value x̃i,j(n) is the sum of

the M past values, weighted by the coefficients wi(n); 1 ≤
i ≤ M , plus bias θ, weighted by the coefficient wθ(n):

di,j = x̃i,j(n) =

M∑

k=1

wk(n)xi,j(n − k) + wθ(n)θ (3)

Consequently the prediction error at time n for the link li,j is

given by:

ei,j(n) = xi,j(n) − x̃i,j(n) = (4)

= xi,j(n) −
M∑

k=1

wk(n)xi,j(n − k) − wθ(n)θ (5)

To assess the weights w(n) = [w1(n), ..., wm(n), wθ(n)] at

time n we adopt an unsupervised algorithm that at each time

Fig. 1. Bio-inspired link-quality estimator

adapts the weights’ values in order to minimize the prediction

error.

As minimization criteria, we chose the least square error (LSE)

criterion, and the process of estimating the weights’ values

w(n), namely the learning process, is based on the delta rule

[18]:

∆w(n) = 2ηei,j(n)xi,j(n) + α∆w(n) (6)

w(n) = w(n − 1) + ∆w(n) (7)

where xi,j(n) = [xi,j(n − 1), ..., xi,j(n − M)], η is the

learning rate and α is the momentum term which increases

the speed of convergence.

III. PERFORMANCE EVALUATION

To evaluate the effectiveness of the proposed estimator from

a networking point of view, we consider as performance metric

the widely adopted network throughput one and we state out

a performance comparison with two representative traditional

estimators, namely the SMA and the EWMA.

More in detail, we have implemented the considered estimators

on the widely adopted network simulator ns-2 [19] version

2.33 to assess the delivery ratios, which have been utilized by

the routing protocol to estimate the ETX metric according to

(1).

As regard to Simple Moving Average (SMA) filtering, each

node has to remember the packets received by its neighbors

during the last Mτ seconds and the delivery ratios are esti-

mated as:

di,j(n) =

M−1∑

m=0

bmxi,j(n − m) (8)

where b(m) is the weighting factor.

With reference to Exponential Weighted Moving Average

(EWMA) filter, the delivery ratios are estimated according to:

di,j(n) = αx(n) + (1 − α)di,j(n − 1) (9)

where α ∈ [0, 1] is the smoothing factor.

While the SMA is an un-weighted mean of the previous M

data points, the EWMA is an weighted average which applies

to data points weighting factors which decrease exponentially,

and the degree of weighing decrease is expressed by α. In

other words, the EWMA gives much more importance to

recent observations without discarding the older observations

entirely.

A. Experimental setup

Usually, performance analyses adopt a deterministic radio

propagation model which is clearly unrealistic. Therefore, we

consider a propagation model, namely the Shadowing, which

accounts for the long-term fading effects by means of a zero-

mean Gaussian variable N(0, σ). According to it, the received

mean power PdB(d) at distance d is:

PdB(d) = PdB(d0) − logβ
d

d0

+ N(0, σ) (10)



Fig. 2. ATR overlay network

where PdB(d0) is the received mean power at the first meter,

β is the path-loss exponent and σ is the shadow deviation,

both empirically determined for a certain environment.

In our performance analysis, we set β to 3.8 to model a

shadowed urban area, and we vary σ from 1.0 to 12.0dB in

order to assess the behavior of the analyzed protocols under a

wide range of variability levels of the propagation conditions.

Moreover, we set the values of the parameters of the data

link layer to simulate an IEEE 802.11b Orinoco network

interface [20] with long preamble, CCK11 modulation and

two-handshake mechanism, resulting in a transmission range

of roughly 35 meters.

For each experiment we made 100 trials, and the duration

of each trial is 1500 seconds. After the initial 500 seconds

which are used to assure that the routing protocol reaches

a steady state, the nodes involved in the traffic generation

start to generate CBR data traffic over UDP transport protocol.

Each traffic source sends packets of 1000 bytes, deferring the

subsequent transmissions of 1 second.

B. Routing Protocol

It is worthwhile to note that the comparison among the

considered estimators must be carried out for any fixed

arbitrary routing protocol, provided that it adopts the ETX

as routing metric. Therefore, we have adopted as routing

protocol the Augmented Tree-based Routing (ATR), a

proactive routing protocol based on a Distributed Hash Table

(DHT), for convenient reasons since we have more familiarity

with it. In the following we give only a brief overview of

ATR, since further details can be found in [5], [17], [21],

[22] .

Upon the network topology, the ATR builds an overlay

network (Fig. 2-b) by assigning location-dependent network

Fig. 3. Physical network topology

Fig. 4. Simple topology

addresses, namely strings of l bits, to nodes by means of a

distribute procedure and of locally broadcasted probe packets.

Thus, the address space can be represented as a complete

binary tree of l +1 levels, that is a binary tree in which every

vertex has zero or two children and all leaves are at the same

level (Fig. 2-a).

ATR performs the whole routing process resorting to an

iterative procedure which explores the topological meaning of

the network addresses with a hierarchical form of multi-path

proactive distance-vector routing.

Each node stores a routing table with l sections, one for each

bit, and the k-th section stores the routes towards destinations

whose network addresses share the same prefix of l − k bits

with the node’s address.

With reference to the topology depicted in Fig. 3 where

l = 5, we suppose that the node with address 10000 has to

communicate with the node with address 11000. Since 10000
and 11000 share a 1-bit prefix, the source will forward a

packet along the route stored in the 4-th section which has

the lowest ETX value.

C. Numerical Results

The performance comparison considers two different

scenarios: a simple mesh topology and a more complex

random one. The metrics are the network throughput and the

hop count, and we evaluate both the average value and the

standard deviation as a function of the shadow deviation (we

note that in some cases the standard deviation values are too

small to be depicted).

In the first scenario, we deploy a topology, illustrated by

Fig. 4, which allows us to evaluate the effect of the link

quality estimation over multiple hops. In fact, the source

and the destination nodes are static and they are connected

through nine intermediate nodes, which move in accordance

with the arrows with a speed value taken uniformly in the

range [0.1; 1.0] m/s without generating data traffic1. The

distances among the nodes are chosen to allow the data

packets to reach the destination in about four hops in absence

of intermediate node mobility as well as link dynamic.

1We ran different sets of experiments to explore the impact of node mobility
on the performances, but here we present only a subset of such experiments
for sake of brevity.
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Fig. 5. Network throughput vs. shadow deviation for simple topology

Fig. 5 reports the network throughput as a function of the

shadow deviation. The results shows that the performances

of all the estimators are strongly affected by the shadow

deviation. Moreover, the proposed neural-based estimator

outperforms the traditional ones for each value of σ.

More in detail, the network throughput exhibits a maximum

in correspondence of a deviation equal to 3 − 4 (depending

on the particular estimator) and a minimum for σ = 6. For

values of σ lower than 3 − 4 and higher than 6 the network

throughput grows with the shadow deviation, while for values

of deviation in the range (4, 6) the ratios decrease.

It is worthwhile to note that this surprising behavior is

reasonable, also if unintuitive. It is well known that the

overall system throughput grows for increasing shadow

deviation [23] in random medium access control (MAC)

techniques due to the capture effect. However, when σ exceed
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Fig. 6. Hop count vs. shadow deviation for simple topology
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Fig. 7. Network throughput vs. shadow deviation for random topology

the value of 3 − 4, the capture effect allows the nodes to

route the packets along shorter but less reliable paths due

to the peculiar topology, as confirmed by the results which

account for the average hop number (Fig. 6). In particular,

the average hop number decreases from about four hops for

σ = 3 to about three hops for σ = 6.

In the second scenario, we deploy a random topology in which

30 nodes move according to the random way-point model

[24] with no pause time and at a steady speed over a square

area, sizes to avoid the presence of isolated nodes. Each node

generates data traffic toward a destination randomly selected

according to a uniform distribution.

Fig. 7 shows the network throughput vs. the shadow deviation

for such a scenario. The results are in accordance with those

of Fig. 5, and the increasing of the overall throughput with

the shadow deviation is particularly evident. The neural
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Fig. 8. Hop count vs. shadow deviation for random topology



estimator, thanks to its adaptive nature, is able to outperform

the other ones for each value of sigma. Moreover, we note

that performance gain is more significant for σ = 6, which

accounts for indoor propagation.

Finally, Fig. 8 accounts for the last results, the hop count vs.

the shadow deviation, for the 30 nodes topology. The results

are intuitive: the more considerable are shadowing effects

become the longer become the routes.

IV. CONCLUSION

The paper proposes a bio-inspired link quality estimator

based on the neural network paradigm. Numerical performance

comparison with two representative traditional estimators

substantiate the effectiveness of the proposed estimator for

both mesh and ad hoc scenarios. Currently, we are working

on applying the proposed estimator to the opportunistic

routing paradigm.
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