
ZedAndroid:

Google Android porting on ZedBoard

Ph.D Student Mario Barbareschi
Prof. Antonino Mazzeo

�rstname.lastname at unina.it
Ing. Antonino Vespoli

ant.vespoli at studenti.unina.it

13/05/13

http://wpage.unina.it/mario.barbareschi/zedroid/index.html

1

Contents

1 Hardware requirements 4

2 Generate VHDL and boot.bin image 5

2.1 Generating the processor netlist. 5
2.2 Generating Xilinx IP cores. 6
2.3 Generating the bitstream �le. 6
2.4 Creating the boot.bin image. 7
2.5 Loading the SD with the image of Xillinux. 8

3 Run linux on Zedboard 8

3.1 Jumper settings. 8
3.2 Attaching peripherals. 9
3.3 Powering up the board. 10
3.4 Resize the �le system. 10

4 How to set up the local work environment 11

4.1 ARM tool-chain. 11
4.2 JDK. 11
4.3 Installing required packages. 11
4.4 Android Source. 12
4.5 Linux Source. 13

5 Prepare the kernel for Android 13

5.1 Installing xillinux patch. 13
5.2 Obtain the Android patches to apply at Linux kernel. 13
5.3 Kernel con�guration . 15
5.4 Build the Merged kernel. 17
5.5 Know Issues. 17

6 Android �lesystem 20

6.1 Add a device in the tree. 20
6.2 Obtain the Android patches for Froyo version. 24
6.3 Build Android for your SoC.

24
6.4 Prepare the SD to boot Android 24
6.5 Set the appropriate boot arguments. 25
6.6 Connect Android at Internet by ethernet 26
6.7 ADB . 26
6.8 Known issues. 27
6.9 Additions.

27

7 Bibliography and reference 28

2

Copyright (C) 2013 Ph.D Student Mario Barbareschi, Prof. Antonino Mazzeo,
Ing. Antonino Vespoli.
This guide explains how to port the OS Android on Zedboard FPGA.

This guide is free: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foun-
dation, either version 3 of the License. This guide is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABI-LITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.
It is also mandatory mention the reference and the authors of this guide in the
case of reproduction, also partial.

3

Version

Version 1.0:
How boot android on ZedBoard.
Android is equipped with video, keyboard and mouse drivers.

Version 1.1:
How to connect android to the developer machine from adb

Version 1.2:
How to connect android to Internet by ethernet.

Introduction

In this guide there are 4 parts to the Android porting on ZedBoard. It will
be explained step by step how to do the porting Google Android OS. For this
aim, It will use the VHDL sources and Ubuntu 12.04 LTS-based distribution
provided by Xilinux. [1]

We have implemented a primordial version of the operating system with
basic facilities (screen, keyboard etc etc). We want, in the following releases,
add the support to audio, Ethernet etc etc.

1 Hardware requirements

• The ZedBoard: is an evaluation and development board based on the
Xilinx Zynq 7000. Combining a dual Corex-A9 Processing System (PS)
equipped with 85,000 Series-7 Programmable Logic (PL) cells;

• A monitor capable of displaying VESA-compliant 1024x768 @ 60Hz with
an analog VGA input (i.e. PC monitor);

• An analog VGA cable for the monitor;

• A USB keyboard;

• A USB mouse;

• A USB hub recognized by Linux 3.3.0, if the keyboard and mouse are not
combined in a single USB dongle;

• A SD card with 4GB or more (we suggest a Sandisk one);

• A PC with slot for SD cards and Xilinx ISE Design Suite release 14.2 with
a license to use Xilinx series 7 tools.

4

2 Generate VHDL and boot.bin image

To generate all �les to boot a linux �avour on ZedBoard you have to download
the Xillinux distribution. It consists of two parts: a raw image of the SD card
containing the �le system needed by Linux at bootup, and a set of �les to create
a �rst boot image. To obtain the image we'll use Xilinx tools.
The distribution includes a demo of the Xillybus IP core for easy communi-
cation between the processors and logic fabric. This demo bundle includes a
speci�c con�guration of the Xillybus IP core, having a relatively low bandwidth
performance, as it's intended to use for simple tests.

The Xillinux distribution is available for download at Xillybus site. [2]
Unzip the previously downloaded xillinux-eval-zedboard-XXX.zip �le into a

working directory.

2.1 Generating the processor netlist.

Within the boot image kit, double-click the system.xmp �le in the �system� di-
rectory. This opens the Xilinx Platform Studio (XPS). Click �Generate Netlist�
to the left (as shown in the image below).

Figure 1:

5

The process takes up to 10 minutes. Several warnings are generated, but no
errors should be tolerated (which is unlikely to happen).

The console output reports �XST completed� and �Done!� when the process
complete successfully. At this point, close the XPS completely because you have
not to use it again in the normal use of Xillinux.

2.2 Generating Xilinx IP cores.

Within the boot image kit, double-click the runonce.xise �le in the �runonce�
directory. This opens the Xilinx ISE Project Navigator. On the top left of
opened windows, click on �fo 32x512, then expand the �CORE Generator� line
in the process window below (clicking on the �+�), and �nally, double click
�Regenerate Core�, as shown in the image below.

Figure 2:

The process produces a tolerable warnings, but no errors, and ends with this
message: �Process Regenerate Core completed successfully�. You have to repeat
this for the two other IP cores: �fo 8x2048 and vga �fo. At this point, close the
ISE Project Navigator completely.

2.3 Generating the bitstream �le.

You can choose either VHDL or Verilog sources. So double-click the 'xilly-
demo.xise' �le in either the 'verilog' or 'vhdl' subdirectory. Both directories are

6

in the boot image kit. We choose the 'vhdl' subdirectory. The Project Navigator
will launch and open the project with the correct settings. Just click �Generate
Programming File�.

Figure 3:

The procedure will produce several warnings but no errors. The process
will end with the output �Process Generate Programming File completed suc-
cessfully�. The result can be found as xillydemo.bit in the 'verilog' or 'vhdl'
directory (whatever was chosen) with several other �les.
Close the ISE Project Navigator completely when this task is completed suc-
cessfully.

2.4 Creating the boot.bin image.

The boot.bin is a binary image containing the FSBL and u-boot images pro-
duced by bootgen.
Copy the xillydemo.bit �le (from the 'verilog' or 'vhdl' subdirectory, whichever
was chosen) into the 'boot' directory . Next, make sure that the ISE tools'
directory is in the execution path. Alternatively, makeboot.bat can be edited
to call the �bootgen� utility with a full path.
The boot image is created as boot.bin in the same directory from the xilly-
demo.bit �le and boot loader ELF �les that are already in the 'boot' directory.

7

If a boot.bin �le isn't generated, check the error message.

2.5 Loading the SD with the image of Xillinux.

The image was downloaded as a �le named xillinux.img.gz (or similar), and is a
gzip-compressed image of the SD card (the boot.bin �le, which was generated,
is missing in the image though). This image should be uncompressed and then
written to the SD card's �rst sector and on. There are several ways and tools to
accomplish this. The image contains a partition table, a partly populated FAT
�le system for placing the boot image, and the Linux root �le system of ext4
type. The linux �le system is not necessary to boot Android, but is useful to
test the functionality of the linux kernel on the board. The second partition is
ignored by almost all Windows computers, so the SD card will appear to be very
small in capacity (16 MB or so). Writing a full disk image is not an operation
intended for plain computer users, and therefore requires special software on
Windows computers like USB Image Tool and extra care on Linux.

Copying the boot.bin �le into the SD card.

3 Run linux on Zedboard

3.1 Jumper settings.

To boot by SD on the board is necessary to set the jumpers appropriately.
The correct setting is depicted in the following image. Typically, the follow-
ing jumper changes are necessary (be careful with a di�erent board may be a
di�erent setting):

8

Figure 4:

• Install a jumper for JP2 to supply 5V to USB device.

• JP10 and JP9 moved from GND to 3V3 position, the three others in that
row are left connected to GND.

• Install the jumper for JP6.

The required setting di�ers from the one detailed in the Zedboard Hard-
ware User Guide in that JP2 is jumpered, so that the USB devices attached
to the board (USB keyboard and mouse) receive their 5V power supply.

3.2 Attaching peripherals.

The following general-purpose hardware should be attached at the board:

• A computer monitor to the analog VGA connector.

• A mouse and keyboard to the USB OTG connector, through the USB
female cable that came with the board. The system will boot in the
absence of these, and there is no problem connecting and dis-connecting
the keyboard and mouse as the system runs. Note that JP2 on the board
must be installed for this USB port to function.

9

• The Ethernet port is optional for common network tasks. The Linux
machine con�gures the network automatically if the attached network has
a DHCP server.

• The UART USB port is optionally connected to a PC, but is redundant
in most cases.

3.3 Powering up the board.

• Plug the SD card into the Zedboard, and power it on. The following
sequence is expected:

• Only the green �POWER� LED goes on. Nothing else happens.

• About 8 seconds later, the blue �DONE� LED goes on, and a red LED
starts blinking. Other LEDs go on as well. The VGA monitor displays
a screensaver pattern with Xillybus' logo moving on white background.
All these indicate that the logic fabric (PL, �FPGA�) has been loaded
properly with the bitstream (xilly-demo.bit).

• After some additional 14 seconds (22 seconds from power-up), Linux bootup
text appears rapidly on the VGA monitor. This looks exactly like a PC
booting, with white text on black background.

• A login prompt should appear no later than 10 seconds after the bootup
text was �rst seen on the VGA monitor. The system auto-logins as root,
presenting a greeting message and a shell prompt.

• Type �startx� at command prompt to launch a Gnome graphical desktop.
The desktop takes some 15-30 seconds to initialize.

• Now is possible to use the graphical desktop to check e�ectively that the
linux kernel works on the ZedBoard.

3.4 Resize the �le system.

The root �le system image is kept small so that writing it to the device is as
fast as possible. On the other hand, there is no reason not to use the SD card's
full capacity. Under linux os is possible to use for this purpose gparted.

• Open the shell and type:
sudo apt-get install gparted

• Run GParted type: sudo gparted from the shell

• Select on the top right the SD device

• Now is possible choose the favorite size for the �le system partition

10

4 How to set up the local work environment

For the smooth running of the project is necessary to prepare the development
environment providing all the required software components. For the purposes
of this guide have been used Ubuntu 12.04, but is possible use di�erent versions.

4.1 ARM tool-chain.

It is fundamental to the implementation of the project have a tool-chain in
order. For the purposes of this guide have been used the Sourcery G++ Lite
tool-chain, but is possible use others like Linaro.

4.2 JDK.

JDK is required to build Android. To install it download the jdk binary from
oracles website and follow the steps below:

• chmod u+x jdk-xyz-linux-i586.bin

• ./jdk-xyz-linux-i586.bin

• sudo mkdir -p /usr/lib/jvm

• sudo mv jdk.xyz /usr/lib/jvm/

• sudo update-alternatives �install "/usr/bin/java" "java" "/usr/lib/jvm/jdk.xyz/bin/java"
1

• sudo update-alternatives �install "/usr/bin/javac" "javac" "/usr/lib/jvm/jdk.xyz/bin/javac"
1

• sudo update-alternatives �install "/usr/lib/mozilla/plugins/libjavaplugin.so"
"mozilla-javaplugin.so" "/usr/lib/jvm/jdkxyz/jre/lib/i386/libnpjp2.so" 1

• sudo update-alternatives �con�g java

• sudo update-alternatives �con�g javac

• sudo update-alternatives �con�g mozilla-javaplugin.so

• sudo update-alternatives �con�g javaws

4.3 Installing required packages.

These are the packages required for Ubuntu 12.04, for di�erent versions maybe
there are di�erence

sudo apt-get install git gnupg �ex bison gperf build-essential \ zip curl
libc6-dev libncurses5-dev:i386 x11proto-core-dev \ libx11-dev:i386 libreadline6-
dev:i386 libgl1-mesa-glx:i386 \ libgl1-mesa-dev g++-multilib mingw32 tofrodos
\ python-markdown libxml2-utils xsltproc zlib1g-dev:i386

11

Create the following link

sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.so

4.4 Android Source.

• Installing Repo (Repo is a tool that makes it easier to work with Git in
the context of Android).

• Make sure you have a bin/ directory in your home directory:
mkdir ~/bin

• Include it in your path:
PATH=~/bin:$PATH

• Download the Repo script:
curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo

• Ensure it is executable:
chmod a+x ~/bin/repo

• Create an empty directory to hold your working �les:
mkdir WORKING_DIRECTORY

• cd WORKING_DIRECTORY

• Run repo init to bring down the latest version of Repo with all its most
recent bug �xes. You must specify a URL for the manifest, which speci-
�es where the various repositories included in the Android source will be
placed within your working directory:

repo init -u https://android.googlesource.com/platform/manifest

To check out a branch other than "master", specify it with -b (ex):

repo init -u https://android.googlesource.com/platform/manifest -b android-
4.0.1_r1

• To pull down �les to your working directory from the repositories as spec-
i�ed in the default manifest, run:

repo sync

The Android source �les will be located in your working directory un-
der their project names. The initial sync operation will take an hour or
more to complete.

12

4.5 Linux Source.

It is possible to obtain the linux sources from:

git clone https://github.com/Digilent/linux-digilent.git

The used kernel is based upon the commit tagged v3.3.0-digilent-12.07-zed-
beta

Downloading the Android kernel. The kernel that you can get from Google's
Android Open Source Project repository. It contains Google's changes to the
Mainline kernel, to support Android. You can get it from :

git clone https://android.googlesource.com/kernel/common -b android-3.3

5 Prepare the kernel for Android

5.1 Installing xillinux patch.

In the directory /usr/src/xillinux/kernel-patches are provided as git patches,
the patch to add at the source to have the xillinux developed driver for linux
kernel. Go on the top level of the linux source after have unzipped it and run:

sudo git apply �ignore-whitespace �ignore-space-change �check name-patch

It is used �ignore-whitespace �ignore-space-change to ignore few not relevant
di�erence in the code
It is used �check for the check of potentials merge-con�ict. After it makes sure
that all the merge-con�icts are resolved run:

sudo git apply �ignore-whitespace �ignore-space-change �apply name-patch

Make the same for all the patches.

5.2 Obtain the Android patches to apply at Linux kernel.

It is not necessary obtain the Android patches to apply at the reference-kernel
(the kernel that you have for your board) to obtain the merged-kernel(the kernel
that is the result of merging Android patches to the Reference kernel. A Merged
kernel should support Android.)
The expected size of the patch is about 2MB. To extract the patches, �nd the
point in time (using "git log") where the Mainline kernel was imported to the
Android kernel source tree.
Go to the top level of the Android kernel source tree and run:

13

git log �pretty=oneline �format="%Cgreen%h %Creset%s" \ �grep="Linux
3.3." -n 20

which will generate 20 one-line log entries that have the expression "Linux
3.3." in the subject or in the commit message. The output should look like:

192cfd5 Linux 3.3-rc6
d5a74af Merge tag 'iommu-�xes-v3.3-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git

f2273ec Merge branch 'lpc32xx/�xes' of git://git.antcom.de/linux-2.6 into �xes

6b21d18 Linux 3.3-rc5
b01543d Linux 3.3-rc4 �afe77 Merge branch 'v3.3-samsung-�xes-3' of git://
git.kernel.org/pub/scm/linux/kernel/
d65b4e9 Linux 3.3-rc3
62aa2b5 Linux 3.3-rc2
f94f72e Merge tag 'nfs-for-3.3-3' of git://git.linux-nfs.org/projects/trondmy/linux-
nfs
6c02b7b Merge commit 'v3.3-rc1' into stable/for-linus-�xes-3.3 dcd6c92 Linux
3.3-rc1
a12587b Merge tag 'nfs-for-3.3-2' of git://git.linux-nfs.org/projects/trondmy/linux-
nfs
93b8a58 xfs: remove the deprecated nodelaylog option

Since you need the patches to be on top of the 3.3.0 Mainline kernel release,
run the following command:

git di� 192cfd5 HEAD > 3.3-rc6-to-Android.patch

This gives you a patch �le (named 3.3-rc6-to-Android.patch) containing the
changes to be merged. Check for merging con�icts, before attempting to per-
form the actual merge, by running:

git apply �ignore-whitespace �ignore-space-change �check [path/to/3.3-rc6-
to-Android.patch]

which produces a list of merging con�icts (if any). Make sure that you re-
solve these con�icts and that the patch applies cleanly to your tree before you
continue. After solved all the merge-con�icts type:

git apply �ignore-whitespace �ignore-space-change �apply [path/to/3.3-rc6-
to-Android.patch]

14

5.3 Kernel con�guration .

To have a correct con�guration of the kernel is necessary to work on the .con�g
�le present in the main directory of the linux kernel source.

• Add the following rows
CONFIG_PANIC_TIMEOUT=0
#CONFIG_FIQ_DEBUGGER is not set
#CONFIG_ARM_FLUSH_CONSOLE_ON_RESTART is not set
CONFIG_KEXEC=y
CONFIG_ATAGS_PROC=y
CONFIG_HAS_WAKELOCK=y
CONFIG_WAKELOCK=y
#CONFIG_SUSPEND_TIME is not set
CONFIG_ANDROID_PARANOID_NETWORK=y
#CONFIG_NET_ACTIVITY_STATS is not set
#CONFIG_NETFILTER_XT_MATCH_QUOTA2 is not set
#CONFIG_IP_NF_TARGET_REJECT_SKERR is not set
#CONFIG_IP6_NF_TARGET_REJECT_SKERR is not set
#CONFIG_CFG80211_ALLOW_RECONNECT is not set
CONFIG_RFKILL_PM=y
CONFIG_MTD_NAND_IDS=y
CONFIG_SENSORS_AK8975=m
CONFIG_UID_STAT is not set
CONFIG_MAX8997_MUIC=m
CONFIG_WL127X_RFKILL is not set
CONFIG_PPPOLAC is not set
CONFIG_PPPOPNS is not set
#CONFIG_WIFI_CONTROL_FUNC is not set
CONFIG_BCMDHD is not set
#CONFIG_INPUT_KEYRESET is not set
#CONFIG_TOUCHSCREEN_SYNAPTICS_I2C_RMI is not set
#CONFIG_INPUT_KEYCHORD is not set
#CONFIG_INPUT_GPIO is not set
CONFIG_DEVMEM=y
#CONFIG_DCC_TTY is not set
#CONFIG_ION is not set
CONFIG_HID_BATTERY_STRENGTH=y
#CONFIG_USB_OTG_WAKELOCK is not set
CONFIG_MMC_EMBEDDED_SDIO is not set
CONFIG_MMC_PARANOID_SD_INIT is not set
#CONFIG_MMC_BLOCK_DEFERRED_RESUME is not set
CONFIG_SWITCH=y
CONFIG_SWITCH_GPIO is not set
CONFIG_ANDROID_BINDER_IPC=y
CONFIG_ASHMEM=y
CONFIG_ANDROID_LOGGER=y

15

CONFIG_ANDROID_PERSISTENT_RAM=y
CONFIG_ANDROID_RAM_CONSOLE=y
CONFIG_PERSISTENT_TRACER is not set
CONFIG_ANDROID_TIMED_OUTPUT=y
CONFIG_ANDROID_TIMED_GPIO is not set
CONFIG_ANDROID_LOW_MEMORY_KILLER=y
CONFIG_ANDROID_SWITCH is not set
CONFIG_ANDROID_INTF_ALARM_DEV is not set
CONFIG_YAFFS_FS is not set
CONFIG_STACKTRACE=y
CONFIG_CPU_NOTIFIER_ERROR_INJECT is not set
CONFIG_DEBUG_RODATA is not set
CONFIG_REED_SOLOMON_ENC8=y
CONFIG_REED_SOLOMON_DEC8=y

• remove the following rows

CONFIG_MTD_NAND_IDS=y
CONFIG_MAX8997_MUIC=m
CONFIG_SENSORS_AK8975=m
CONFIG_PMODCLS=m
CONFIG_PMODCLP=m
CONFIG_PMODDA1=m
CONFIG_PMODAD1=m

• modify the following rows

CONFIG_INET_TUNNEL=m -> CONFIG_INET_TUNNEL=y
CONFIG_IPV6=m -> CONFIG_IPV6=y
CONFIG_POWER_SUPPLY=m -> CONFIG_POWER_SUPPLY=y
CONFIG_PDA_POWER=m -> CONFIG_PDA_POWER=y
CONFIG_IPV6_SIT=m -> CONFIG_IPV6_SIT=y
CONFIG_ANDROID is not set -> CONFIG_ANDROID=y
CONFIG_REED_SOLOMON=m ->CONFIG_REED_SOLOMON=y

Note that the names above are those which can be found in the 3.3.0 Android
kernel con�guration - be aware that these tend to change from version to version!
We have also found that in multiprocessor systems, CPU hotplugging support
is required. You should enable this if your ARM based SoC has more than one
core in order to boot a kernel with multiprocessor support.

CONFIG_HOTPLUG_CPU is not set -> CONFIG_HOTPLUG_CPU=y

16

5.4 Build the Merged kernel.

Build the Merged kernel with:

make ARCH=arm CROSS_COMPILE=[path-to-arm-gcc] uImage
which will produce a kernel Image, uImage and zImage in arch/arm/boot

directory in the Merged kernel source tree.

5.5 Know Issues.

In the following part are shown some possible problems/bugs

• Error message:

In �le included from drivers/video/xylon/xylonfb/xylonfb-main.c:45:0:
drivers/video/xylon/xylonfb/xylonfb-main.c:
In function 'xylonfb_set_timings':
drivers/video/xylon/xylonfb/xylonfb-pixclk.h:19:12:
error: inlining failed in call to always_inline 'pixclk_change':
function body not available drivers/video/xylon/xylonfb/xylonfb-main.c:1368:21:

error: called from here

• Solution:
comment the following row in the �le /drivers/video/xylon/xylonfb/xylonfb-
pixclk.c

/*inline int pixclk_change(struct fb_info *fbi)
{
#if HW_PIXEL_CLOCK_CHANGE_SUPPORTED == 0
return 0;
#elif HW_PIXEL_CLOCK_CHANGE_SUPPORTED == 1
return 1;
#endif
}
*/
modify the following row in the �le /drivers/video/xylon/xylonfb/xylonfb-
pixclk.h
inline int pixclk_change(struct fb_info *fbi);

with

inline int pixclk_change(struct fb_info *fbi)
{
#if HW_PIXEL_CLOCK_CHANGE_SUPPORTED == 0

17

return 0;
#elif HW_PIXEL_CLOCK_CHANGE_SUPPORTED == 1
return 1;
#endif
};

• error message:

.tmp_vmlinux1 arch/arm/kernel/built-in.o: In function `__cpu_disable':
:(.text+0x5658):
unde�ned reference to `platform_cpu_disable' arch/arm/kernel/built-in.o:

In function `__cpu_die': :(.text+0x576c): unde�ned reference to `plat-
form_cpu_kill' arch/arm/kernel/built-in.o:
In function `handle_IPI': :(.text+0x5ac8): unde�ned reference to `plat-
form_cpu_kill' arch/arm/kernel/built-in.o:
In function `cpu_die': :(.ref.text+0x40): unde�ned reference to `plat-
form_cpu_die'
make: *** [.tmp_vmlinux1] Errore 1

• solution: This error occurs when is checked CONFIG_HOTPLUG_CPU
in the .con�g �le, to solved this problem either unchecked CONFIG_HOTPLUG_CPU
or add the following code in the �le /arch/arm/kernel/smp.c
under the row "#ifdef CONFIG_HOTPLUG_CPU" add

#include <asm/smp.h>
static inline void cpu_enter_lowpower(void)
{
unsigned int v;
�ush_cache_all();
asm volatile(
" mcr p15, 0, %1, c7, c5, 0\n" " dsb\n" /* * Turn o� coherency */ "
mrc p15, 0, %0, c1, c0, 1\n" " bic %0, %0, #0x40\n"
" mcr p15, 0, %0, c1, c0, 1\n" "
mrc p15, 0, %0, c1, c0, 0\n" " bic %0, %0, %2\n"
" mcr p15, 0, %0, c1, c0, 0\n" : "=&r" (v) : "r" (0), "Ir" (CR_C) :
"cc");
}

static inline void cpu_leave_lowpower(void)
{
unsigned int v;
asm volatile(" mrc p15, 0, %0, c1, c0, 0\n" " orr %0, %0, %1\n"
" mcr p15, 0, %0, c1, c0, 0\n" " mrc p15, 0, %0, c1, c0, 1\n"
" orr %0, %0, #0x40\n" " mcr p15, 0, %0, c1, c0, 1\n" : "=&r" (v) :

18

"Ir" (CR_C) : "cc");
}
static inline void platform_do_lowpower(unsigned int cpu, int *spurious)
{
/*
* there is no power-control hardware on this platform, so all
* we can do is put the core into WFI; this is safe as the calling
* code will have already disabled interrupts
*/
for (;;)
{
dsb();
w�();
/*
* Getting here, means that we have come out of WFI without
* having been woken up - this shouldn't happen
*
* Just note it happening - when we're woken, we can report
* its occurrence.
*/
(*spurious)++;
}
}
int platform_cpu_kill(unsigned int cpu)
{ return 1; }
/*
* platform-speci�c code to shutdown a CPU
*
* Called with IRQs disabled
*/
void platform_cpu_die(unsigned int cpu)
{
int spurious = 0;
/*
* we're ready for shutdown now, so do it
*/
cpu_enter_lowpower();
platform_do_lowpower(cpu, &spurious);
/*
* bring this CPU back into the world of cache
* coherency, and then restore interrupts
*/
cpu_leave_lowpower();
if (spurious) pr_warn("CPU%u: %u spurious wakeup calls\n", cpu, spu-
rious);
}

19

int platform_cpu_disable(unsigned int cpu)
{
/*
* we don't allow CPU 0 to be shutdown (it is still too special * e.g. clock
tick interrupts)
*/
return cpu == 0 ? -EPERM : 0;
}

6 Android �lesystem

6.1 Add a device in the tree.

Each build target de�nes the con�guration of the ARM based SoC/board and
selects which sources should be built for Android. The build target directory
that the Android build system uses depends on the Android version. In Froyo
and Gingerbread the location is:
[android_root]/device whereas in Eclair it is:
[android_root]/vendor

In this guide, we assume that you are using Froyo.
Adding a build target.

Below is an example of adding a couple of ARM generic Android build tar-
gets, along with a mock target.
An example is downloadable here. [3]

• Create a directory in
[android_root]/device,
with the desired name.
E.g.:

mkdir [android_root]/device/arm

Enter the new directory and create a products folder:

mkdir [android_root]/device/arm/products

In the products folder you need an AndroidProducts.mk �le that lists
all of the products that you have under the arm folder.
This should be as follows:

PRODUCT_MAKEFILES := \
$(LOCAL_DIR)/armboards_v7a.mk \

20

$(LOCAL_DIR)/another_product.mk \

As this implies, you also need to have one "Product_Make�le" per prod-
uct in the
[android_root]/device/arm/products/ folder.
Therefore, for our example you need:

armboards_v7a.mk
another_product.mk

Each of these �les must contain the following, adapted to match the prod-
uct and device naming :

$(call inherit-product, $(SRC_TARGET_DIR)/product/generic.mk)
#
#
Overrides
PRODUCT_NAME := [product_name]
PRODUCT_DEVICE := [board_name]
where PRODUCT_NAME is the build target name used by the Android
build system, and PRODUCT_DEVICE de�nes the name of the directory
that contains the �les which describe the device.

For our example the �rst product is :
$(call inherit-product, $(SRC_TARGET_DIR)/product/generic.mk)
#
#
Overrides PRODUCT_NAME := armboard_v7a
PRODUCT_DEVICE := armboard_v7a
Note that the PRODUCT_NAME does not have to be the same as the
PRODUCT_DEVICE.

Following the example above, create the required directories:

mkdir [android_root]/device/arm/armboard_v7a/
mkdir [android_root]/device/arm/another_product/

and populate them accordingly.

Each one of these directories should contain at least the "Android.mk"
and "BoardCon�g.mk" �les. The �rst one is the make�le for the product
and the second, as the name implies, is the con�g �le for the product.

make �le for new hardware from
#
LOCAL_PATH := $(call my-dir)

21

#
#
this is here to use the pre-built kernel

ifeq ($(TARGET_PREBUILT_KERNEL),)
TARGET_PREBUILT_KERNEL := $(LOCAL_PATH)/kernel
endif
#
�le := $(INSTALLED_KERNEL_TARGET)
ALL_PREBUILT += $(�le)
$(�le): $(TARGET_PREBUILT_KERNEL) | $(ACP) $(transform-prebuilt-
to-target)
#
no boot loader, so we don't need any of that stu�..
#
LOCAL_PATH := vendor/[company_name]/[board_name]
#
include $(CLEAR_VARS)
#
include more board speci�c stu� here? Such as Audio parameters.
#

which, when adapted to our example, becomes:

#make �le for ARMv7-A based SoC
LOCAL_PATH := $(call my-dir)
#
this is here to use the pre-built kernel
ifeq ($(TARGET_PREBUILT_KERNEL),)
TARGET_PREBUILT_KERNEL := $(LOCAL_PATH)/kernel
endif
#
�le := $(INSTALLED_KERNEL_TARGET)
ALL_PREBUILT += $(�le)
$(�le): $(TARGET_PREBUILT_KERNEL) | $(ACP)
$(transform-prebuilt-to-target)
#
no boot loader, so we don't need any of that stu�..
#
LOCAL_PATH := device/arm/armboard_v7a
#
include $(CLEAR_VARS)
#
include more board speci�c stu� here? Such as Audio parameters.
#
PRODUCT_COPY_FILES += \

22

$(LOCAL_PATH)/armboard_v7a.kl:system/usr/keylayout/armboard_v7a.kl

Note the added line in the PRODUCT_COPY_FILES de�nition, that
contains two locations separated by a colon. The �rst is the location of
the keyboard �le in the local Android source tree, and the second is where
it will be installed on the target. This is added because we wanted to have
our own, tweaked, keyboard layout.
The BoardCon�g.mk �le for armboard_v7a product is:

These de�nitions override the defaults in con�g/con�g.make for arm-
board_v7a
#
TARGET_NO_BOOTLOADER := false
TARGET_HARDWARE_3D := false
#
TARGET_CPU_ABI := armeabi-v7a
TARGET_CPU_ABI2 := armeabi
TARGET_NO_KERNEL := true
TARGET_ARCH_VARIANT := armv7-a-neon

BOARD_USES_GENERIC_AUDIO := true
USE_CAMERA_STUB := true

where you de�ne that you are using the armeabi-v7a and that the tar-
get architecture variant is ARMv7-A with NEON.
*Note the support for 2 ABIs that was introduced in Froyo.
For any further system properties con�guration, add a system.prop �le
containing the things you need, at the same location as the above �les
(device/arm/[DEVICE_NAME]).
The template for this is :

system.prop for
This overrides settings in the products/generic/system.prop �le
#
rild.libpath=/system/lib/libreference-ril.so
rild.libargs=-d /dev/ttyS0

You should now be ready to build the Android �le system for your SoC,
with the device folder containing all the necessary con�guration and build
�les. For our example, the device folder should look like this:

arm/
+� armboard_v7a
| +� Android.mk
| +� armboard_v7a.kl

23

| +� BoardCon�g.mk
| \� system.prop
+� another_product
| +� Android.mk
| +� another_product.kl
| +� BoardCon�g.mk
| \� system.prop
\� products
+� AndroidProducts.mk
+� armboard_v7a.mk
\� another_product.mk

6.2 Obtain the Android patches for Froyo version.

It is now required to apply some patch to the Android kernel source tree:

• Type in the shell the following comand:

sudo git clone git://linux-arm.org/armdroid.git

• Go in the armdroid/fs/src/Froya directory

• Apply the four patches present in this directory

6.3 Build Android for your SoC.

Build the Android �lesystem for one of your added targets, by going to the top
directory of the Android source tree, and entering:

make PRODUCT-armboard_v7a-eng

Note: You do not need to build Android as the root user.

After some time, and if everything was set up correctly, you will get the Android
root �lesystem and a compressed version of it at:

[android_root]/out/target/product/armboard_v7a

6.4 Prepare the SD to boot Android

• Create a new partition on the SD of dimension more than 1 GB, necessary
to put the Android �le system.

24

• Copy [android_root]/out/target/product/armboard_v7a/root directory
content in the new partition to create the [android_root_�lesystem]

• Copy [android_root]/out/target/product/armboard_v7a/system directory
content in [android_root_�lesystem]/system

• For this �lesystem to work, you also need to make changes in the [an-
droid_root_�lesystem]/init.rc �le. For Froyo you need to do the following
changes:
Locate and comment out the following lines:

mount rootfs rootfs /ro remount
mount ya�s mtd@system /system
mount ya�s2 mtd@system /system ro remout
mount ya�s2 mtd@cache /cache nosuid nodev

To get root privileges in the shell, change:
...
service console /system/bin/sh
console
disabled
user shell
group log
...
to:
...
service console /system/bin/sh
console
disabled
user root
group log
...
To get DNS working, add the indicated line
basic network init
ifup lo
hostname localhost
domainname localdomain
�> setprop net.dns1 [DNS]
and replace [DNS] with your local DNS server.

6.5 Set the appropriate boot arguments.

• Go in /arch/arm/boot/dts directory

25

• Edit the digilent-zed.dts �le

• Set the boot argoment as:

bootargs = "consoleblank=0 root=/dev/mmcblk0p3 fsroot=j�s2, nolock,
wsize=1024 rw init=init noinitrd mem=1024M user_debug=31 earlyprintk;
linux,stdout-path = "/amba@0/uart@E0001000";

• On the top level of Linux Kernel source tree type in the shell the following
command:

sudo make ARCH=arm CROSS_COMPILE= [path-to-arm-gcc] digilent-
zed.dtb

• It is now generated the digilent-zed.dtb �le, change it name in device-
tree.dtb and put it in the SD card, in the partition (16 M dimentioned)
where they are located boot.bin and zImage �les.

• It is now possible boot your ZedAndroid.

6.6 Connect Android at Internet by ethernet

• Connect Lan cable to the board

• Type ALT + left arrow to obtain the command line.

• Type netcfg to obtain information about the connections con�guration

• Type netcfg eth0 up

• Type netcfg eth0 dhcp, now the board should be connects to the network
Type netcfg eth0 dhcp, now the board should be connects to the network

• If you run the browser it will appear a error message that says that Internet
doesn't work, but is not true. You now can use internet.

6.7 ADB

For the developer of Android applications is really important to connect the
android platform to the development machine. For this purpose is possibile to
use ADB. ADB by OTG usb is not works yet, but it is possible use ADB by
ethernet.
Below is explained how to carry out it.

• Turn on "USB Debugging" on your board.

• Go to home screen, press MENU, Select Applications, select Development,
then enable USB debugging.

• Type ALT + left arrow to obtain the command line.

26

• Connect Android at Internet by ethernet

• Type netcfg and take note of ip address

• Type setprop service.adb.tcp.port 5555

• Type stop adbd

• Type start adbd

From the host machine carry out the following steps:

• The adb tool is a part of Android SDK package. Once you install Android
SDK export the platform-tools and tools directory path as shown below.
export PATH=<android_sdk_path>/platform-tools/:<android_sdk_path>/tools/:$PATH

• export ADBHOST=<target's ip address>

• adb kill-server

• adb start-server

• adb devices

Now it should appear something like this:
List of devices attached
emulator-5554 device

6.8 Known issues.

• Issue: Double screen on your lcd display, probably is con�gured 32 BPP
for your lcd panel.

• Solution: in theWORKING_DIRECTORY/hardware/libhardware/modules/gralloc/framebu�er.cpp
�le modify the following row
const_cast<int&>(dev->device.format) = HAL_PIXEL_FORMAT_RGB_565;

with

const_cast<int&>(dev->device.format) = HAL_PIXEL_FORMAT_RGBX_8888

6.9 Additions.

• Mouse. It is also possible add a patch to use the mouse on Android. This
patch is available to download from here. [4]

27

7 Bibliography and reference

The following guide is based on the following sources. Thank you to the respec-
tive authors.

• http://blogs.arm.com/software-enablement/498-from-zero-to-boot-porting-
android-to-your-arm-platform/

• http://source.android.com/source/initializing.html

• http://xillybus.com/downloads/doc/xillybus_getting_started_zynq.pdf

• http://linux-arm.org/LinuxKernel/LinuxAndroidPlatform

• http://processors.wiki.ti.com/index.php/Android_ADB_Setup

• http://stackover�ow.com

References

[1] http://xillybus.com/

[2] http://xillybus.com/zynq-download

[3] http://goo.gl/bxE2N

[4] https://patch-hosting-for-android-x86-support.googlecode.com/�les/0001-
1.-added-mouse-cursor.patch

28

