
ZedAndroid:

Google Android porting on ZedBoard

Ph.D Student Mario Barbareschi
Prof. Antonino Mazzeo

�rstname.lastname at unina.it
Ing. Antonino Vespoli

ant.vespoli at studenti.unina.it

13/05/13

October 29, 2013

http://wpage.unina.it/mario.barbareschi/zedroid/index.html

1

Contents

1 Hardware requirements 4

2 How to set up the local work environment 5

2.1 ARM tool-chain. 5
2.2 Installing required packages. 5
2.3 JDK. 5
2.4 Linux hardware design. 6
2.5 Linux Source. 6
2.6 Android Source. 6
2.7 Prepare the SD memory . 7

3 Generate boot.bin �le 8

3.1 Include the VGA core . 9

4 Prepare the kernel for Android. 15

4.1 Obtain the Android patches to apply at Linux kernel. 15
4.2 Obtain the xillinux patches to use VGA. 16
4.3 Kernel con�guration. 16
4.4 Build the patched and con�gurated kernel. 17
4.5 Know Issues. 17
4.6 Prepare the device tree . 20
4.7 Booting Linux OS . 21

5 Android �lesystem 22

5.1 Add a device in the tree. 22
5.2 Obtain the Android patches for Froyo version. 26
5.3 Build Android for your SoC.

26
5.4 Prepare the SD to boot Android 27
5.5 Connect Android at Internet by ethernet 28
5.6 ADB . 28
5.7 Known issues. 29

6 Bibliography and reference 29

2

Copyright (C) 2013 Ph.D Student Mario Barbareschi, Prof. Antonino Mazzeo,
Ing. Antonino Vespoli.
This guide explains how to port the OS Android on Zedboard FPGA.

This guide is free: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foun-
dation, either version 3 of the License. This guide is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABI-LITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details. You
should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.
It is also mandatory mention the reference and the authors of this guide in the
case of reproduction, also partial.

3

Version

Version 1.0:
How boot android on ZedBoard.
Android is equipped with video and keyboard drivers.

Version 1.1:
How to connect android to the developer machine from adb

Version 1.2:
How to connect android to Internet by Ethernet.

Version 1.3
How to obtain android without the use of the xillinux platform

Introduction

This guide allow to make the porting of OS Android on the ZedBoard. The result
is a properly working platform with high potential, there are a lot of project
that could �nd ful�llment through this platform. For example is possible to
develop hardware accelerators managed by App Android, it is also possible to
replace software modules heavy computationally with the mutual in hardware
version.

We implemented a primordial version of the operating system with basic
facilities (screen, keyboard etc etc). We want, in the following releases, add the
support to audio etc etc. We used as permanent memory support a SD Flash,
it is used to store the boot �les and the Android �le system.

This guide explains step by step how to do the porting of the Google Android
OS. For this aim, it will use the Xilinx tools, VHDL sources and Ubuntu 12.04
LTS-based.

1 Hardware requirements

� The ZedBoard: is an evaluation and development board based on the
Xilinx Zynq 7000. Combining a dual Corex-A9 Processing System (PS)
equipped with 85,000 Series-7 Programmable Logic (PL) cells;

� A monitor capable of displaying VESA-compliant 1024x768 @ 60Hz with
an analog VGA input (i.e. PC monitor);

� An analog VGA cable for the monitor;

� A USB keyboard;

� A USB mouse;

� A USB hub recognized by Linux 3.3.0, if the keyboard and mouse are not
combined in a single USB dongle;

� A SD card with 4GB or more (we suggest a Sandisk one);

4

� A PC with slot for SD cards.

2 How to set up the local work environment

For the smooth running of the project is necessary to prepare the development
environment providing all the required software components. For the purposes
of this guide have been used Ubuntu 12.04 for the kernel compiling part, but
is possible use di�erent versions. It is required Xilinx ISE Design Suite release
14.2 (or newer) also, with a license to use Xilinx series 7 tools.

2.1 ARM tool-chain.

It is fundamental to the implementation of the project to have a tool-chain in
order. For the purposes of this guide have been used the Sourcery G++ Lite
tool-chain, but is also possible to use others as Linaro.

2.2 Installing required packages.

These are the packages required for Ubuntu 12.04, for di�erent versions maybe
there are di�erences

sudo apt-get install git gnupg �ex bison gperf build-essential \ zip curl
libc6-dev libncurses5-dev:i386 x11proto-core-dev \ libx11-dev:i386 libreadline6-
dev:i386 libgl1-mesa-glx:i386 \ libgl1-mesa-dev g++-multilib mingw32 tofro-
dos \ python-markdown libxml2-utils xsltproc zlib1g-dev:i386 uboot-mkimage
gparted screen

Create the following link
sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.so

2.3 JDK.

JDK is required to build Android. To install it download the jdk binary from
oracles website[?] and follows the steps below:

� chmod u+x jdk-xyz-linux-i586.bin

� ./jdk-xyz-linux-i586.bin

� sudo mkdir -p /usr/lib/jvm

� sudo mv jdk.xyz /usr/lib/jvm/

� sudo update-alternatives �install "/usr/bin/java" "java" "/usr/lib/jvm/jdk.xyz/bin/java"
1

� sudo update-alternatives �install "/usr/bin/javac" "javac" "/usr/lib/jvm/jdk.xyz/bin/javac"
1

5

� sudo update-alternatives �install "/usr/lib/mozilla/plugins/libjavaplugin.so"
"mozilla-javaplugin.so" "/usr/lib/jvm/jdkxyz/jre/lib/i386/libnpjp2.so" 1

� sudo update-alternatives �con�g java

� sudo update-alternatives �con�g javac

� sudo update-alternatives �con�g mozilla-javaplugin.so

� sudo update-alternatives �con�g javaws

2.4 Linux hardware design.

It is needed to use the Xilinx's tools XPS(Xilinx platform studio) and SDK
(Software Development Kit) to have the right con�guration of the FPGA and
PS, in fact these allows to obtain the boot �les that con�gure the board.

The Linux hardware design is available on the digilent web site[2].
Once you have downloaded the .rar �le, you should unzip it and put in a

folder with path without spaces.

2.5 Linux Source.

It is possible to obtain the linux sources from:
git clone https://github.com/Digilent/linux-digilent.git

The used kernel is based upon the commit tagged v3.3.0-digilent-12.07-zed-
beta

Downloading the Android kernel. The kernel that you can get from Google's
Android Open Source Project repository. It contains Google's changes to the
Mainline kernel, to support Android. You can get it from :

git clone https://android.googlesource.com/kernel/common -b android-3.3

2.6 Android Source.

� You have to use Repo, it is a tool that makes it easier to work with Git
in the context of Android.

� Make sure you have a bin/ directory in your home directory:
mkdir ~/bin

� Include it in your path:
PATH=~/bin:$PATH

� Download the Repo script:
curl http://commondatastorage.googleapis.com/git-repo-downloads/repo
> ~/bin/repo

6

� Ensure it is executable:
chmod a+x ~/bin/repo

� Create an empty directory to hold your working �les:
mkdir WORKING_DIRECTORY

� cd WORKING_DIRECTORY

� Run repo init to bring down the latest version of Repo with all its most
recent bug �xes. You must specify a URL for the manifest, which speci-
�es where the various repositories included in the Android source will be
placed within your working directory:

repo init -u https://android.googlesource.com/platform/manifest

To check out a branch other than "master", specify it with -b (ex):

repo init -u https://android.googlesource.com/platform/manifest -b android-
4.0.1_r1

� To pull down �les to your working directory from the repositories as spec-
i�ed in the default manifest, run:

repo sync

The Android source �les will be located in your working directory un-
der their project names. The initial sync operation will take an hour or
more to complete.

2.7 Prepare the SD memory

We needed a SD memory as permanent memory support. It has to split in two or
three parts, two are mandatory, another is facultative. A partition contains the
boot �les, the second contains the Android �le system, the facultative partition
contains the linux �le system. You could put the Linux �le system in a partition
to boot Linux OS, it allows you to make some useful tests, but it is not necessary
to Android boot.

We use for our purpose GParted application to format and create the parti-
tions.

� Open GParted.

� Select the peripheral in the showed dialog windows in the following photo.

7

� In each partition, with mouse right button open the menu and select
"unmount".

� In each partition, with mouse right button open the menu and select
"delete".

� Create a partition with "FAT 16" �lesystem and 16 MB size. This is for
the boot �les.

� Create a partition with "EXT4" �lesystem for Linux �lesystem, you can
choose your desiderata size.

� Create a partition with "EXT4" �lesystem for Android �lesystem, you
can choose your desiderata size (We recommend a size of at least 1 GB).

3 Generate boot.bin �le

The BOOT.bin �le allows to con�gure the two parts of the Zynq, programmable
logic(PL) and processing system(PS). This �le include the �rst stage boot
loader(FSBL), the second stage boot loader(SSBL), and bitstream �le. The
bitstream �le contains all the information to the programmable logic con�gura-
tion. The FSBL loads the bitstream, con�gure the PS and after load the SSBL
in memory. The SSBL takes a compressed version of the kernel and loads it
in the main memory, after the control is leaved to the operative system. The
needed sources to obtain this �le are in the linux hardware design folder, we call
it Hardware Design Source.

8

3.1 Include the VGA core

We use for our purpose the VGA support, but it could be substituted with the
HDMI support. The VGA core is developed by Xillinux[4], that provide all the
requests sources. Below is explained step by step the right procedure.

� From Xillinux website, download the requested sources[5], (we call their
[Xillinux sources]).

� Make sure that XPS is closed.

� Copy the [Xillinux sources]\system\pcores\xillyvga_v1_00_a folder in
the [Hardware Design Source]\hw\xps_proj\pcores path.

� In the [Hardware Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a
path add a folder called netlist.

� Go in the [Xillinux sources]\runonce, and do double click on runonce.xise
�le.

� Click on vga_�fo, and in below windows do double click on Regenerate
Core.

� It will be generate in the runonce folder several �les, you have to copy the
�le vga_�fo.v in the [Hardware Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\hdl\verilog
folder.

� Copy the �le [Xillinux sources]\runonce\vga_�fo.ngc in the [Hardware
Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\netlist folder.

� Copy the �le [Xillinux sources]\cores\xillyvga_core.ngc in the [Hardware
Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\netlist folder.

� In the [Hardware Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\data\xillyvga_v2_1_0.pao
�le add the following row:
lib xillyvga_v1_00_a vga_�fo verilog

� In the �le [Hardware Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\hdl\verilog\xillyvga.v
add the following row (under the row N°83) :
FDCE vga_iob_� [13:0] (.Q({ vga_red, vga_green, vga_blue, vga_hsync,
vga_vsync}),
.D({ vga_red_app[7:4], vga_green_app[7:4], vga_blue_app[7:4], vga_hsync_app,
vga_vsync_app }),
.C(vga_clk_app), .CE(1'b1), .CLR(1'b0));

� In the [Hardware Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\hdl\verilog\xillyvga.v
�le modify the following rows

� (row N°69) output [7:0] vga_blue
with
output [3:0] vga_blue

9

� (row N°70) output [7:0] vga_green
with
output [3:0] vga_green

� (row N°72) output [7:0] vga_red
with
output [3:0] vga_red

� In the directory [Hardware Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\data
create a �le called xillyvga_v2_1_0.bbd

� In the xillyvga_v2_1_0.bbd �le add the following text:
Files
#####
vga_�fo.ngc,xillyvga_core.ngc

� In the [Hardware Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\data\xillyvga_v2_1_0.mpd
�le modify the following rows

� (row N°90) PORT vga_red = "", DIR = O, VEC = [7:0]
with
PORT vga_red = "", DIR = O, VEC = [3:0]

� (row N°91) PORT vga_green = "", DIR = O, VEC = [7:0]
with
PORT vga_green = "", DIR = O, VEC = [3:0]

� (row N°92) PORT vga_blue = "", DIR = O, VEC = [7:0]
with
PORT vga_blue = "", DIR = O, VEC = [3:0]

� In the [Hardware Design Source]\hw\xps_proj\pcores\xillyvga_v1_00_a\data\xillyvga_v2_1_0.mpd
�le add the following rows(under the row N°7)
OPTION STYLE = MIX
OPTION RUN_NGCBUILD = TRUE

� Open the project at [Hardware Design Source]\hw\xps_proj\system.xmp

� Click on Bus Interfaces button and delete in the photo circled components,
to delete they do right click on the component and select Delete Instance,
in the next windows click on �Delete instance and all its connections� and
click Ok. Do the same for all the circled components.

10

� Open the �le system.mhs (showed in the picture)

� change the row (row N°152)
PORT IRQ_F2P = axi_vdma_0_mm2s_introut & axi_dma_spdif_mm2s_introut
& hdmi_int & axi_dma_i2s_mm2s_introut & axi_dma_i2s_s2mm_introut
& axi_iic_i2s_IIC2INTC_Irpt
with
PORT IRQ_F2P = axi_vdma_0_mm2s_introut & axi_dma_spdif_mm2s_introut
& axi_dma_i2s_mm2s_introut & axi_dma_i2s_s2mm_introut &
axi_iic_i2s_IIC2INTC_Irpt

� Click on the IP Catalog manu, click on Project local PCores submanu,
click on User and then on XILLYVGA.

11

� In the XPS Core Con�g windows set the C_BASEADDR and C_HIGHADDR
�elds as the picture.

� In the Instantiate and Connect IP windows without change nothing click
Ok.

� Make sure that all the connection are as showed in the next picture.

12

� Click on Ports manu, with right button click on the clk_in xillyvga_0's
signal and select �make external�, do the same for the signals:

� vga_hsync

� vga_vsync

� vga_red

� vga_green

� vga_blue

� Click on the left side on Generate Bitstream

Now the bitstream �le have been generate. You can �nd it in [Hardware Design
Source]\hw\xps_proj\implementation\system.bit path. Now to generate the
FSBL you have to follow these steps:

� Click on Export Hardware Design

� Check �include bitstream and BMM �le� in the open dialog box.

� Press Export Only

� Once the process is �nished, open SDK and create a new workspace. We
call it WorkSpace.

� Import the Hardware Pro�le

� Open the File menu, click New and go on �Xilinx Hardware Platform
Speci�cation� to open a dialog window

13

� Click the browse button

� Select the hardware platform speci�cation �le. You can �nd it in [Hard-
ware Design Source]\hw\xps_proj\SDK\SDK_Export\hw\system.xml path.

� Under the File menu, click New and then �Xilinx C Project� to open the
dialog window.

� In the dialog window, choose �Zynq FSBL� under the �Select Project
Template� header. Leave all the other options as defaults, press Next.

� Leave all options as defaults again and click Finish.

� Replace [Work Space]\zynq_fsbl_0\src\main.c with [Hardware Design
Source]\sw\zynq_fsbl\src\main.c.

� Under the Project menu, click Clean then select �Clean all projects,� and
then press OK. Pressing OK should clean and rebuild the project.

After the rebuild has completed, you �nd the FSBL binary at [Work Space]\zynq_fsbl_0\Debug\zynq_fsbl_0.elf.
The SSBL is the u-boot.elf �le, you can �nd it in the [Hardware Design Source]\boot_image\u-
boot.elf. path. If you would like to customize it you should:

� Download the source �les from the git repository with this command
git clone https://github.com/Digilent/u-boot-digilent

� Find the board setting, for the Zedboard you should �nd in include/con�gs/zynq_zed.h
�le.

� Con�gure U-Boot through a series of macros.

Now you have all the necessary �les to generate the boot.bin �le.

� Open Xilinx SDK and set a workspace.

� Click on Xilinx Tools menu, and then Create Boot Image.

� In the dialog window, set the Bif �le to �Create a new Bif �le. . . �

� Browse to select the your choosing FSBL.

� Click on the Add button and select you choosing bitstream.

� Click on the Add button and select the SSBL (u-boot.elf �le).

� Choose the Output Folder.

� Click Create Image, you should �nd the boot.bin �le in the output folder.

14

4 Prepare the kernel for Android.

4.1 Obtain the Android patches to apply at Linux kernel.

It is necessary to apply a patch from google source to obtain a �t kernel for our
purposes. This patch is derivable via git repository. The expected patch size is
about 2MB. To extract the patches we using "git log".
Go to the top level of the Linux kernel source tree and run:

git log �pretty=oneline �format="%Cgreen%h %Creset%s" \ �grep="Linux
3.3." -n 20

which will generate 20 one-line log entries that have the expression "Linux
3.3." in the subject or in the commit message. The output should look like:

192cfd5 Linux 3.3-rc6
d5a74af Merge tag 'iommu-�xes-v3.3-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git

f2273ec Merge branch 'lpc32xx/�xes' of git://git.antcom.de/linux-2.6 into �xes

6b21d18 Linux 3.3-rc5
b01543d Linux 3.3-rc4 �afe77 Merge branch 'v3.3-samsung-�xes-3' of git://
git.kernel.org/pub/scm/linux/kernel/
d65b4e9 Linux 3.3-rc3
62aa2b5 Linux 3.3-rc2
f94f72e Merge tag 'nfs-for-3.3-3' of git://git.linux-nfs.org/projects/trondmy/linux-
nfs
6c02b7b Merge commit 'v3.3-rc1' into stable/for-linus-�xes-3.3 dcd6c92 Linux
3.3-rc1
a12587b Merge tag 'nfs-for-3.3-2' of git://git.linux-nfs.org/projects/trondmy/linux-
nfs
93b8a58 xfs: remove the deprecated nodelaylog option

Since you need the patches to be on top of the 3.3.0 kernel release, run the
following command:

git di� 192cfd5 HEAD > 3.3-rc6-to-Android.patch

This gives you a patch �le (named 3.3-rc6-to-Android.patch) containing the
changes to be merged. Check for merging con�icts, before attempting to per-
form the actual merge, by running:

git apply �ignore-whitespace �ignore-space-change �check [path/to/3.3-rc6-
to-Android.patch]

which produces a list of merging con�icts (if any). Make sure that you re-

15

solve these con�icts and that the patch applies cleanly to your tree before you
continue. After solved all the merge-con�icts type:

git apply �ignore-whitespace �ignore-space-change �apply [path/to/3.3-rc6-
to-Android.patch]

4.2 Obtain the xillinux patches to use VGA.

From the Xillinux Web site download the Xillinux �le system[6]. You have
to mount the .img �le only to obtain the Xilly patches, you can �nd them in
/usr/src/xillinux/kernel-patches path.

You will �nd six patches but you have to apply for VGA core only:

� 0002-FPGA1-clock-frequency-and-others-settings-to-match-h.patch

� 0004-Added-xillyvga-driver-to-kernel-tree.patch

� 0005-To-be-removed-HP2-AXI-bus-width-set-to-32-bits-in-VG.patch

To apply you have to use the following command:
sudo git apply �ignore-whitespace �ignore-space-change �check name-patch

It is used �ignore-whitespace �ignore-space-change to ignore few not relevant
di�erence in the code
It is used �check for the check of potentials merge-con�ict. After it makes sure
that all the merge-con�icts are resolved run:

sudo git apply �ignore-whitespace �ignore-space-change �apply name-patch

Make the same for all the patches.

4.3 Kernel con�guration.

To have a correct con�guration of the kernel is necessary to work on the .con�g
�le present in the main directory of the linux kernel source.

� Make you sure to have these con�guration modules
CONFIG_ARCH_ZYNQ=y
CONFIG_ANDROID_PARANOID_NETWORK=y
CONFIG_ANDROID=y
CONFIG_ANDROID_BINDER_IPC=y
CONFIG_ASHMEM=y
CONFIG_ANDROID_LOGGER=y
CONFIG_ANDROID_PERSISTENT_RAM=y
CONFIG_ANDROID_RAM_CONSOLE=y
CONFIG_ANDROID_TIMED_OUTPUT=y
CONFIG_ANDROID_LOW_MEMORY_KILLER=y
CONFIG_CLKDEV_LOOKUP=y

16

CONFIG_HAVE_CLK_PREPARE=y
CONFIG_COMMON_CLK=y
CONFIG_HAS_WAKELOCK=y
CONFIG_WAKELOCK=y

Note that the names above are those which can be found in the 3.3.0 Android
kernel con�guration - be aware that these tend to change from version to version!
We have also found that in multiprocessor systems, CPU hotplugging support
is required. You should enable this if your ARM based SoC has more than one
core in order to boot a kernel with multiprocessor support.

CONFIG_HOTPLUG_CPU is not set -> CONFIG_HOTPLUG_CPU=y

4.4 Build the patched and con�gurated kernel.

Build the Merged kernel with:

make ARCH=arm CROSS_COMPILE=[path-to-arm-gcc] uImage
which will produce a kernel Image, uImage and zImage in arch/arm/boot

directory in the Linux kernel source tree.

4.5 Know Issues.

In the following part are shown some possible problems/bugs

� Error message:

In �le included from drivers/video/xylon/xylonfb/xylonfb-main.c:45:0:
drivers/video/xylon/xylonfb/xylonfb-main.c:
In function 'xylonfb_set_timings':
drivers/video/xylon/xylonfb/xylonfb-pixclk.h:19:12:
error: inlining failed in call to always_inline 'pixclk_change':
function body not available drivers/video/xylon/xylonfb/xylonfb-main.c:1368:21:

error: called from here

� Solution:
comment the following row in the �le /drivers/video/xylon/xylonfb/xylonfb-
pixclk.c

/*inline int pixclk_change(struct fb_info *fbi)
{

17

#if HW_PIXEL_CLOCK_CHANGE_SUPPORTED == 0
return 0;
#elif HW_PIXEL_CLOCK_CHANGE_SUPPORTED == 1
return 1;
#endif
}
*/
modify the following row in the �le /drivers/video/xylon/xylonfb/xylonfb-
pixclk.h
inline int pixclk_change(struct fb_info *fbi);

with

inline int pixclk_change(struct fb_info *fbi)
{
#if HW_PIXEL_CLOCK_CHANGE_SUPPORTED == 0
return 0;
#elif HW_PIXEL_CLOCK_CHANGE_SUPPORTED == 1
return 1;
#endif
};

� error message:

.tmp_vmlinux1 arch/arm/kernel/built-in.o: In function `__cpu_disable':
:(.text+0x5658):
unde�ned reference to `platform_cpu_disable' arch/arm/kernel/built-in.o:

In function `__cpu_die': :(.text+0x576c): unde�ned reference to `plat-
form_cpu_kill' arch/arm/kernel/built-in.o:
In function `handle_IPI': :(.text+0x5ac8): unde�ned reference to `plat-
form_cpu_kill' arch/arm/kernel/built-in.o:
In function `cpu_die': :(.ref.text+0x40): unde�ned reference to `plat-
form_cpu_die'
make: *** [.tmp_vmlinux1] Errore 1

� solution: This error occurs when is checked CONFIG_HOTPLUG_CPU
in the .con�g �le, to solved this problem either unchecked CONFIG_HOTPLUG_CPU
or add the following code in the �le /arch/arm/kernel/smp.c
under the row "#ifdef CONFIG_HOTPLUG_CPU" add

#include <asm/smp.h>
static inline void cpu_enter_lowpower(void)
{
unsigned int v;

18

�ush_cache_all();
asm volatile(
" mcr p15, 0, %1, c7, c5, 0\n" " dsb\n" /* * Turn o� coherency */ "
mrc p15, 0, %0, c1, c0, 1\n" " bic %0, %0, #0x40\n"
" mcr p15, 0, %0, c1, c0, 1\n" "
mrc p15, 0, %0, c1, c0, 0\n" " bic %0, %0, %2\n"
" mcr p15, 0, %0, c1, c0, 0\n" : "=&r" (v) : "r" (0), "Ir" (CR_C) :
"cc");
}

static inline void cpu_leave_lowpower(void)
{
unsigned int v;
asm volatile(" mrc p15, 0, %0, c1, c0, 0\n" " orr %0, %0, %1\n"
" mcr p15, 0, %0, c1, c0, 0\n" " mrc p15, 0, %0, c1, c0, 1\n"
" orr %0, %0, #0x40\n" " mcr p15, 0, %0, c1, c0, 1\n" : "=&r" (v) :
"Ir" (CR_C) : "cc");
}
static inline void platform_do_lowpower(unsigned int cpu, int *spurious)
{
/*
* there is no power-control hardware on this platform, so all
* we can do is put the core into WFI; this is safe as the calling
* code will have already disabled interrupts
*/
for (;;)
{
dsb();
w�();
/*
* Getting here, means that we have come out of WFI without
* having been woken up - this shouldn't happen
*
* Just note it happening - when we're woken, we can report
* its occurrence.
*/
(*spurious)++;
}
}
int platform_cpu_kill(unsigned int cpu)
{ return 1; }
/*
* platform-speci�c code to shutdown a CPU
*
* Called with IRQs disabled
*/

19

void platform_cpu_die(unsigned int cpu)
{
int spurious = 0;
/*
* we're ready for shutdown now, so do it
*/
cpu_enter_lowpower();
platform_do_lowpower(cpu, &spurious);
/*
* bring this CPU back into the world of cache
* coherency, and then restore interrupts
*/
cpu_leave_lowpower();
if (spurious) pr_warn("CPU%u: %u spurious wakeup calls\n", cpu, spu-
rious);
}
int platform_cpu_disable(unsigned int cpu)
{
/*
* we don't allow CPU 0 to be shutdown (it is still too special * e.g. clock
tick interrupts)
*/
return cpu == 0 ? -EPERM : 0;
}

4.6 Prepare the device tree

The Device Tree is a data structure for describing hardware. Rather than hard
coding every detail of a device into an operating system, many aspect of the
hardware can be described in a data structure that is passed to the operating
system at boot time.

You can �nd a device tree source in [Hardware Design Source]/linux path.
You to apply the following modi�cations

� comment these rows

� From 213 to 293

� From 300 to 329

� From 343 to 355

� modify these rows

� modify the row (467) compatible = "xlnx,ps7-sdio-1.00.a", "generic-
sdhci";
with
compatible = "xlnx,ps7-sdio-1.00.a", "generic-sdhci";

20

� modify the row (469) interrupts = < 0 24 4 >;
with
interrupts = < 0 24 0 >;

� modify the row (50) bootargs = "console=ttyPS0,115200 root=/dev/ram
rw initrd=0x800000,8M earlyprintk rootwait devtmpfs.mount=1";
linux,stdout-path = "/axi@0/serial@e0001000";
for Linux boot with
bootargs = "console=ttyPS0,115200 consoleblank=0 root=/dev/mmcblk0p2
rw rootwait earlyprintk rootfstype=ext4";
for Android boot with
bootargs = "consoleblank=0 root=/dev/mmcblk0p3 fsroot=j�s2, nolock,
wsize=1024, resize=1024 rw init=init noinitrd mem=1024M user_debug=31
earlyprintk";

� add these rows

� xillyvga@50001000 {
compatible = "xlnx,xillyvga-1.00.a";
reg = < 0x50001000 0x1000 >; } ;

Now to compile the device tree you have to copy the modi�ed �le in [Linux
Kernel Source]/arch/arm/boot/dts folder, then in the [Linux Kernel Source]
path type from the Linux shell:

make ARCH=arm CROSS_COMPILE=[path-to-arm-gcc] devicetree.dtb
You will �nd in [Linux Kernel Source]/arch/arm/boot/ folder the device-

tree.dtb �le.

4.7 Booting Linux OS

It could be useful to boot linux for test reason or to check the previous steps
correctness. To do this you have to follow these steps:

� Copy the linux �le system in the partition created for this purpose.

� Copy in the boot �les partition the boot.bin, devicetree.dtb and zImage
�les.

� Set the board jumpers like is shown in the picture.

� Connect the usb cable to the UART and a VGA monitor.

� Put the sd card in the reader.

� Turn on the board.

� Type on the Linux shell this command:
screen /dev/ttyACM0 115200

21

If all works well you will see the linux shell in the terminal, the Linux symbol
on the VGA monitor. This thing is important because we use the VGA monitor
to show the Android GUI.

Figure 1: Board jumpers con�guration

5 Android �lesystem

5.1 Add a device in the tree.

Each build target de�nes the con�guration of the ARM based SoC/board and
selects which sources should be built for Android. The build target directory
that the Android build system uses depends on the Android version. In Froyo
and Gingerbread the location is:
[android_root]/device whereas in Eclair it is:
[android_root]/vendor

In this guide, we assume that you are using Froyo.
Below there is an example of adding a couple of ARM generic Android build
targets, along with a mock target.
An example is downloadable here. [?]

� Create a directory in [android_root]/device, with the desired name.
E.g.:

mkdir [android_root]/device/arm

Enter the new directory and create a products folder:

mkdir [android_root]/device/arm/products

22

In the products folder you need an AndroidProducts.mk �le that lists
all of the products that you have under the arm folder.
This should be as follows:

PRODUCT_MAKEFILES := \
$(LOCAL_DIR)/armboards_v7a.mk \
$(LOCAL_DIR)/another_product.mk \

As this implies, you also need to have one "Product_Make�le" per prod-
uct in the
[android_root]/device/arm/products/ folder.
Therefore, for our example you need:

armboards_v7a.mk
another_product.mk

Each of these �les must contain the following, adapted to match the prod-
uct and device naming :

$(call inherit-product, $(SRC_TARGET_DIR)/product/generic.mk)
#
#
Overrides
PRODUCT_NAME := [product_name]
PRODUCT_DEVICE := [board_name]
where PRODUCT_NAME is the build target name used by the Android
build system, and PRODUCT_DEVICE de�nes the name of the directory
that contains the �les which describe the device.

For our example the �rst product is :
$(call inherit-product, $(SRC_TARGET_DIR)/product/generic.mk)
#
#
Overrides PRODUCT_NAME := armboard_v7a
PRODUCT_DEVICE := armboard_v7a
Note that the PRODUCT_NAME does not have to be the same as the
PRODUCT_DEVICE.

Following the example above, create the required directories:

mkdir [android_root]/device/arm/armboard_v7a/
mkdir [android_root]/device/arm/another_product/

and populate them accordingly.

23

Each one of these directories should contain at least the "Android.mk"
and "BoardCon�g.mk" �les. The �rst one is the make�le for the product
and the second, as the name implies, is the con�g �le for the product.

make �le for new hardware from
#
LOCAL_PATH := $(call my-dir)
#
#
this is here to use the pre-built kernel

ifeq ($(TARGET_PREBUILT_KERNEL),)
TARGET_PREBUILT_KERNEL := $(LOCAL_PATH)/kernel
endif
#
�le := $(INSTALLED_KERNEL_TARGET)
ALL_PREBUILT += $(�le)
$(�le): $(TARGET_PREBUILT_KERNEL) | $(ACP) $(transform-prebuilt-
to-target)
#
no boot loader, so we don't need any of that stu�..
#
LOCAL_PATH := vendor/[company_name]/[board_name]
#
include $(CLEAR_VARS)
#
include more board speci�c stu� here? Such as Audio parameters.
#

which, when adapted to our example, becomes:

#make �le for ARMv7-A based SoC
LOCAL_PATH := $(call my-dir)
#
this is here to use the pre-built kernel
ifeq ($(TARGET_PREBUILT_KERNEL),)
TARGET_PREBUILT_KERNEL := $(LOCAL_PATH)/kernel
endif
#
�le := $(INSTALLED_KERNEL_TARGET)
ALL_PREBUILT += $(�le)
$(�le): $(TARGET_PREBUILT_KERNEL) | $(ACP)
$(transform-prebuilt-to-target)
#
no boot loader, so we don't need any of that stu�..
#

24

LOCAL_PATH := device/arm/armboard_v7a
#
include $(CLEAR_VARS)
#
include more board speci�c stu� here? Such as Audio parameters.
#
PRODUCT_COPY_FILES += \
$(LOCAL_PATH)/armboard_v7a.kl:system/usr/keylayout/armboard_v7a.kl

Note the added line in the PRODUCT_COPY_FILES de�nition, that
contains two locations separated by a colon. The �rst is the location of
the keyboard �le in the local Android source tree, and the second is where
it will be installed on the target. This is added because we wanted to have
our own, tweaked, keyboard layout.
The BoardCon�g.mk �le for armboard_v7a product is:

These de�nitions override the defaults in con�g/con�g.make for arm-
board_v7a
#
TARGET_NO_BOOTLOADER := false
TARGET_HARDWARE_3D := false
#
TARGET_CPU_ABI := armeabi-v7a
TARGET_CPU_ABI2 := armeabi
TARGET_NO_KERNEL := true
TARGET_ARCH_VARIANT := armv7-a-neon

BOARD_USES_GENERIC_AUDIO := true
USE_CAMERA_STUB := true

where you de�ne that you are using the armeabi-v7a and that the tar-
get architecture variant is ARMv7-A with NEON.
*Note the support for 2 ABIs that was introduced in Froyo.
For any further system properties con�guration, add a system.prop �le
containing the things you need, at the same location as the above �les
(device/arm/[DEVICE_NAME]).
The template for this is :

system.prop for
This overrides settings in the products/generic/system.prop �le
#
rild.libpath=/system/lib/libreference-ril.so
rild.libargs=-d /dev/ttyS0

You should now be ready to build the Android �le system for your SoC,
with the device folder containing all the necessary con�guration and build

25

�les. For our example, the device folder should look like this:

arm/
+� armboard_v7a
| +� Android.mk
| +� armboard_v7a.kl
| +� BoardCon�g.mk
| \� system.prop
+� another_product
| +� Android.mk
| +� another_product.kl
| +� BoardCon�g.mk
| \� system.prop
\� products
+� AndroidProducts.mk
+� armboard_v7a.mk
\� another_product.mk

5.2 Obtain the Android patches for Froyo version.

It is now required to apply some patch to the Android kernel source tree:

� Type in the shell the following comand:

sudo git clone git://linux-arm.org/armdroid.git

� Go in the armdroid/fs/src/Froya directory

� Apply the four patches present in this directory

5.3 Build Android for your SoC.

Build the Android �lesystem for one of your added targets, by going to the top
directory of the Android source tree, and entering:

make PRODUCT-armboard_v7a-eng

After some time, and if everything was set up correctly, you will get the Android
root �lesystem and a compressed version of it at:

[android_root]/out/target/product/armboard_v7a

26

5.4 Prepare the SD to boot Android

� Copy [android_root]/out/target/product/armboard_v7a/root directory
content in the Android partition to create the [android_root_�lesystem]

� Copy [android_root]/out/target/product/armboard_v7a/system directory
content in [android_root_�lesystem]/system

� For this �lesystem to work, you also need to make changes in the [an-
droid_root_�lesystem]/init.rc �le. For Froyo you need to do the following
changes:
Locate and comment out the following lines:

mount rootfs rootfs /ro remount
mount ya�s mtd@system /system
mount ya�s2 mtd@system /system ro remout
mount ya�s2 mtd@cache /cache nosuid nodev

To get root privileges in the shell, change:
...
service console /system/bin/sh
console
disabled
user shell
group log
...
to:
...
service console /system/bin/sh
console
disabled
user root
group log
...
To get DNS working, add the indicated line
basic network init
ifup lo
hostname localhost
domainname localdomain
�> setprop net.dns1 [DNS]
and replace [DNS] with your local DNS server.

� Now all is ready to boot Android. Keep in mind to change the boot args
to be suitable to Android boot. If all works properly you will see the
Android GUI on VGA monitor, you have to connect your keyboard via

27

USB OTG to use Android.

5.5 Connect Android at Internet by ethernet

� Connect Lan cable to the board

� Type ALT + left arrow to obtain the command line.

� Type netcfg to obtain information about the connections con�guration

� Type netcfg eth0 up

� Type netcfg eth0 dhcp, now the board should be connects to the network
Type netcfg eth0 dhcp, now the board should be connects to the network

� If you run the browser it will appear a error message that says that Internet
doesn't work, but is not true. You now can use internet.

5.6 ADB

For the developer of Android applications is really important to connect the
android platform to the development machine. For this purpose is possibile to
use ADB. ADB by OTG usb is not works yet, but it is possible use ADB by
ethernet.
Below is explained how to carry out it.

� Turn on "USB Debugging" on your board.

� Go to home screen, press MENU, Select Applications, select Development,
then enable USB debugging.

� Type ALT + left arrow to obtain the command line.

� Connect Android at Internet by ethernet

� Type netcfg and take note of ip address

� Type setprop service.adb.tcp.port 5555

� Type stop adbd

� Type start adbd

From the host machine carry out the following steps:

� The adb tool is a part of Android SDK package. Once you install Android
SDK export the platform-tools and tools directory path as shown below.
export PATH=<android_sdk_path>/platform-tools/:<android_sdk_path>/tools/:$PATH

� export ADBHOST=<target's ip address>

� adb kill-server

28

� adb start-server

� adb devices

Now it should appear something like this:
List of devices attached
emulator-5554 device

5.7 Known issues.

� Issue: Double screen on your lcd display, probably is con�gured 32 BPP
for your lcd panel.

� Solution: in theWORKING_DIRECTORY/hardware/libhardware/modules/gralloc/framebu�er.cpp
�le modify the following row
const_cast<int&>(dev->device.format) = HAL_PIXEL_FORMAT_RGB_565;

with

const_cast<int&>(dev->device.format) = HAL_PIXEL_FORMAT_RGBX_8888

6 Bibliography and reference

This guide is based on the following sources. Thank you to the respective au-
thors.

� http://blogs.arm.com/software-enablement/498-from-zero-to-boot-porting-
android-to-your-arm-platform/

� http://source.android.com/source/initializing.html

� ZedBoard� Linux Hardware Design Project Guide made by digilent

� http://linux-arm.org/LinuxKernel/LinuxAndroidPlatform

� http://processors.wiki.ti.com/index.php/Android_ADB_Setup

� http://stackover�ow.com

29

References

[1] http://www.oracle.com/us/downloads/index.html

[2] http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1028&Prod=ZEDBOARD

[3] http://linux-arm.org/git?p=armdroid.git;a=blob_plain;f=fs/src/Froyo/Froyo-
device.tar.bz2;hb=6706399926a700f2f9b939277349f7196671af21

[4] https://www.xillybus.com/xillinux

[5] http://www.xillybus.com/downloads/xillinux-eval-zedboard-1.2.zip

[6] http://www.xillybus.com/downloads/xillinux-eval-zedboard-1.2.zip

30

