
Robotics Lab: Homework 1
Building your robot manipulator

Mario Selvaggio

1



Mario Selvaggio Robotics Lab: Homework 1

This document contains the homwework 1 of the Robotics Lab class.

Building your robot manipulator

The goal of this homework is to build ROS packages to simulate a 4-degrees-of-freedom robotic manipulator

arm into the Gazebo environment. The student is requested to address the following points and provide a

detailed report of the employed methods. In addition, a personal github repo with all the developed code

must be shared with the instuctor. The report is due in one week from the homewerk release.

1. Create the description of your robot and visualize it in Rviz

(a) Download the arm_description package from the repo https://github.com/RoboticsLab2023/

arm_description.git into your catkin_ws using git commands

(b) Within the package create a launch folder containing a launch file named display.launch that

loads the URDF as a robot_description ROS param and starts the robot_state_publisher

node, the joint_state_publisher node, and the rviz node. Launch the file using roslaunch.

Note: To visualize your robot in rviz you have to changhe the Fixed Frame in the lateral bar

and add the RobotModel plugin interface. Optional: save a .rviz configuration file, thad auto-

matically loads the RobotModel plugin by default, and give it as an argument to your node in the

display.launch file

(c) Substitute the collision meshes of your URDF with primitive shapes. Use <box> geometries of

reasonabe size approximating the links. Hint: Enable collision visualization in rviz (go to the

lateral bar > Robot model > Collision Enabled) to adjust the collision meshes size

(d) Create a file named arm.gazebo.xacro within your package, define a xacro:macro inside your

file containing all the <gazebo> tags you find within your arm.urdf and import it in your URDF

using xacro:include. Remember to rename your URDF file to arm.urdf.xacro, add the string

xmlns:xacro="http://www.ros.org/wiki/xacro" within the <robot> tag, and load the URDF

in your launch file using the xacro routine

2. Add transmission and controllers to your robot and spawn it in Gazebo

(a) Create a package named arm_gazebo

(b) Within this package create a launch folder containing a arm_world.launch file

(c) Fill this launch file with commands that load the URDF into the ROS Parameter Server and spawn

your robot using the spawn_model node. Hint: follow the iiwa_world.launch example from the

package iiwa_stack: https://github.com/IFL-CAMP/iiwa_stack/tree/master. Launch the

arm_world.launch file to visualize the robot in Gazebo

(d) Now add a PositionJointInterface as hardware interface to your robot: create a

arm.transmission.xacro file into your arm_description/urdf folder containing a xacro:macro

with the hardware interface and load it into your arm.urdf.xacro file using xacro:include.

Launch the file

(e) Add joint position controllers to your robot: create a arm_control package with a

arm_control.launch file inside its launch folder and a arm_control.yaml file within its config

folder

(f) Fill the arm_control.launch file with commands that load the joint controller configurations from

the .yaml file to the parameter server and spawn the controllers using the controller_manager

package. Hint: follow the iiwa_control.launch example from corresponding package

2

https://github.com/RoboticsLab2023/arm_description.git
https://github.com/RoboticsLab2023/arm_description.git
https://github.com/IFL-CAMP/iiwa_stack/tree/master


Mario Selvaggio Robotics Lab: Homework 1

(g) Fill the arm arm_control.yaml adding a joint_state_controller and a

JointPositionController to all the joints

(h) Create an arm_gazebo.launch file into the launch folder of the arm_gazebo package loading the

Gazebo world with arm_world.launch and spawning the controllers within arm_control.launch.

Go to the arm_description package and add the gazebo_ros_control plugin to your main

URDF into the arm.gazebo.xacro file. Launch the simulation and check if your controllers are

correctly loaded

3. Add a camera sensor to your robot

(a) Go into your arm.urdf.xacro file and add a camera_link and a fixed camera_joint with

base_link as a parent link. Size and position the camera link opportunely

(b) In the arm.gazebo.xacro add the gazebo sensor reference tags and the libgazebo_ros_camera

plugin to your xacro (slide 74-75)

(c) Launch the Gazebo simulation with using arm_gazebo.launch and check if the image topic is

correctly published using rqt_image_view

(d) Optionally: You can create a camera.xacro file (or download one from https://github.com/

CentroEPiaggio/irobotcreate2ros/blob/master/model/camera.urdf.xacro) and add it to

your robot URDF using <xacro:include>

4. Create a ROS publisher node that reads the joint state and sends joint position commands to your

robot

(a) Create an arm_controller package with a ROS C++ node named arm_controller_node. The

dependencies are roscpp, sensor_msgs and std_msgs. Modify opportunely the CMakeLists.txt

file to compile your node. Hint: uncomment add_executable and target_link_libraries lines

(b) Create a subscriber to the topic joint_states and a callback function that prints the current

joint positions (see Slide 45). Note: the topic contains a sensor_msgs/JointState

(c) Create publishers that write commands onto the controllers’ /command topics (see Slide 46). Note:

the command is a std_msgs/Float64

3

https://github.com/CentroEPiaggio/irobotcreate2ros/blob/master/model/camera.urdf.xacro
https://github.com/CentroEPiaggio/irobotcreate2ros/blob/master/model/camera.urdf.xacro

	Building your robot manipulator

