
Robotics Lab: Homework 2
Control a manipulator to follow a trajectory

Mario Selvaggio

1



Mario Selvaggio Robotics Lab: Homework 2

This document contains the homwework 2 of the Robotics Lab class.

Control a manipulator to follow a trajectory

The goal of this homework is to develop a ROS package to dynamically control a 7-degrees-of-freedom

robotic manipulator arm into the Gazebo environment. The kdl_ros_control package (at the following

link: https://github.com/mrslvg/kdl_robot) must be used as starting point. The student is requested to

address the following points and provide a detailed report of the employed methods. In addition, a personal

github repo with all the developed code must be shared with the instuctor. The report is due in one week

from the homewerk release.

1. Substitute the current trepezoidal velocity profile with a cubic polinomial linear trajectory

(a) Modify appropriately the KDLPlanner class (files kdl_planner.h and kdl_planner.cpp) that pro-

vides a basic interface for trajectory creation. First, define a new KDLPlanner::trapezoidal_vel

function that takes the current time t and the acceleration time tc as double arguments and re-

turns three double variables s, ṡ and s̈ that represent the curvilinear abscissa of your trajectory1.

Remember: a trapezoidal velocity profile for a curvilinear abscissa s ∈ [0, 1] is defined as follows

s(t) =


1
2 s̈ct

2 0 ≤ t ≤ tc
1
2 s̈c(t− tc/2) tc < t < tf − tc
1− 1

2 s̈c(tf − tc)
2 tf − tc < t ≤ tf

(1)

where tc is the acceleration duration variable while ṡ(t) and s̈(t) can be easily retrieved calculating

time derivative of (1).

(b) Create a function named KDLPlanner::cubic_polinomial that creates the cubic polynomial

curvilinear abscissa for your trajectory. The function takes as argument a double t representing

time and returns three double s, ṡ and s̈ that represent the curvilinear abscissa of your trajectory.

Remember, a cubic polinomial is defined as follows

s(t) = a3t
3 + a2t

2 + a1t+ a0 (2)

where coefficients a3, a2, a1, a0 must be calculated offline imposing boundary conditions, while

ṡ(t) and s̈(t) can be easily retrieved calculating time derivative of (2).

2. Create circular trajectories for your robot

(a) Define a new constructor KDLPlanner::KDLPlanner that takes as arguments the time duration

_trajDuration, the starting point Eigen::Vector3d _trajInit and the radius _trajRadius

of your trajectory and store them in the corresponding class variables (to be created in the

kdl_planner.h).

(b) The center of the trajectory must be in the vertical plane containing the end-effector. Create the

positional path as function of s(t) directly in the function KDLPlanner::compute_trajectory:

first, call the cubic_polinomial function to retrieve s and its derivatives from t; then fill in the

trajectory_point fields traj.pos, traj.vel, and traj.acc. Remember that a circular path in

the y − z plane can be easily defined as follows

x = xi, y = yi − r cos (2πs) , z = zi − r sin (2πs) (3)

(c) Do the same for the linear trajectory.

1Use passage by reference to return multiple arguments: https://www.w3schools.com/cpp/cpp_function_reference.asp

2

https://github.com/mrslvg/kdl_robot
https://www.w3schools.com/cpp/cpp_function_reference.asp


Mario Selvaggio Robotics Lab: Homework 2

3. Test the four trajectories

(a) At this point, you can create both linear and circular trajectories, each with trapezoidal velocity

of cubic polinomial curvilinear abscissa. Modify your main file kdl_robot_test.cpp and test the

four trajectories with the provided joint space inverse dynamics controller.

(b) Plot the torques sent to the manipulator and tune appropriately the control gains Kp and Kd until

you reach a satisfactorily smooth behavior. You can use rqt_plot to visualize your torques at

each run, save the screenshot.

(c) Optional: Save the joint torque command topics in a bag file and plot it using MATLAB.

You can follow the tutorial at the following link https://www.mathworks.com/help/ros/ref/

rosbag.html.

4. Develop an inverse dynamics operational space controller

(a) Into the kdl_contorl.cpp file, fill the empty overlayed KDLController::idCntr function to

implement your inverse dynamics operational space controller. Differently from joint space inverse

dynamics controller, the operational space controller computes the errors in Cartesian space.

Thus the function takes as arguments the desired KDL::Frame pose, the KDL::Twist velocity and,

the KDL::Twist acceleration. Moreover, it takes four gains as arguments: _Kpp position error

proportional gain, _Kdp position error derivative gain and so on for the orientation.

(b) The logic behind the implementation of your controller is sketched within the function: you must

calculate the gain matrices, read the current Cartesian state of your manipulator in terms of end-

effector parametrized pose x, velocity ẋ, and acceleration ẍ, retrieve the current joint space inertia

matrix M and the Jacobian (compute the analytic Jacobian) and its time derivative, compute the

linear ep and the angular eo errors (some functions are provided into the include/utils.h file),

finally compute your inverse dynamics control law following the equation

τ = By + n, y = J†
A

(
ẍd +KD

¨̃x+KP x̃− J̇Aq̇
)

(4)

(c) Test the controller along the planned trajectories and plot the corresponding joint torque com-

mands.

3

https://www.mathworks.com/help/ros/ref/rosbag.html
https://www.mathworks.com/help/ros/ref/rosbag.html

	Control a manipulator to follow a trajectory

