
Robotics Lab 2023-2024

Prof. Mario Selvaggio
mario.selvaggio@unina.it

PRISMA Lab
Department of Electrical Engineering and Information Technology

University of Naples Federico II

www.wpage.unina.it/mario.selvaggio
www.prisma.unina.it

mailto:mario.selvaggio@unina.it
http://wpage.unina.it/mario.selvaggio/index.html
www.prisma.unina.it

Outline

Introduction
Course description
Setup your PC

Programming for robotics
ROS - Introduction
ROS - Programming
ROS - Tools
ROS - Simulation
ROS - Sensors & controllers
ROS - Motion planning

Motion control of robotic manipulators
ROS - Kinematics and dynamic control

Robotic vision
ROS - Vision sensors
ROS - Computer vision
ROS - Visual Servoing

Control of mobile robots
Autonomous navigation and path
planning

Introduction

Course description

Aim of the course: introduce students to build robotic applications quickly and
efficiently using the Robot Operating System (ROS)

Prerequisites: there are no formal prerequisites. Basic knowledge of the following
tools can make the life a bit easier

Linux operating system (Ubuntu)

Software versioning (Git)

Programming languages (C/C++)

Robot operating System (ROS)

Course description

Student learning outcomes
Understanding the ROS architecture and tools
Creating ROS C++ programs using external libraries
Simulating and controlling a robotic system

Job opportunities for robotics engineers
Check this video

https://youtu.be/4exT9R0lKLE?si=7K4koNT-JdVbx-4w&t=337

Course description

Evaluation

Homeworks will be scheduled and evaluated on course days. You have to be
physically present to hand them in

The final project is to be presented in the form of a report on the day of the exam

The work may be carried out individually or in a group of maximum 3-4 people. In
the latter case, the work carried out by each member of the group must be clearly
evidenced

Video of some previous years projects (2021, 2022, 2023)

Grading

Homeworks: 60%

Project: 40%

https://www.youtube.com/watch?v=db1AFCl3g_o
https://www.youtube.com/watch?v=YBMJIPK96lY
https://www.linkedin.com/posts/jocacace_what-a-fantastic-year-for-my-course-robotics-activity-7086999450019147776-6I25/?utm_source=share&utm_medium=member_desktop

Setup your PC

This course requires you set up your PC. You’ll find instructions on how to install and
get familiar with the following computer software tools in a separate document

Linux
To develop ROS applications, you will need to work in a Ubuntu environment.
Install it from https://ubuntu.com/

ROS
Main tool used to develop and running robotics applications. You need to install
ROS and follow the preliminary tutorials on https://www.ros.org/

https://ubuntu.com/
https://www.ros.org/

Setup your PC

Version control software (VCS)
Git is a VCS used to share code and keep track of it. Create an account on
https://github.com/ to hosts your Git repositories

Docker
Tool for creating and managing application containers to run your applications
anywhere. Visit https://www.docker.com/ for more information

Computer programming
It is highly recommended to refresh your C++ skills using any C++ tutorial, e.g.
https://www.learncpp.com/

https://github.com/
https://www.docker.com/
https://www.learncpp.com/

Programming for robotics

ROS - Introduction

History of ROS

Originally developed in 2007 at the Willow Garage and Stanford Artificial
Intelligence Laboratory under GPL license

The goal was to establish a standard way to program robots while offering
off-the-shelf software components easily integrable in custom robotic applications

Since 2013 managed by Open-Source Robotics Foundation, now Open Robotics1

Today used by many robots, universities and companies

De facto standard for robot programming

1https://www.openrobotics.org/

ROS - Introduction

ROS main features

Code sharing and reuse (do not reinvent the wheel)

Distributed, modular design (nodes grouped in packages, scalable)

Language independent (C++, Python, Java, ...)

Individual programs communicate over defined API (ROS messages, services, etc.)

Easy testing (ready-to-use)

Vibrant community & collaborative environment2

2https://robotics.stackexchange.com/

https://robotics.stackexchange.com/

ROS - Introduction

What is ROS?

ROS is a set of software libraries and tools that help you build robot applications

From drivers to state-of-the-art algorithms, to user interfaces, ROS provides
powerful developer tools that allow you to focus on the development of your robot
application

ROS - Introduction

Plumbing

ROS processes are represented as nodes in a graph structure, connected by edges
called topics

ROS nodes can pass messages to one another through topics, make service calls
to other nodes, provide a service for other nodes, or set or retrieve shared data
from a communal database called the parameter server

ROS - Introduction

Plumbing (Cont’d)

A process called the ROS Master makes all of this possible by registering nodes
to itself, setting up node-to-node communication for topics, and controlling
parameter server updates

Messages and service calls do not pass through the master, rather the master
sets up peer-to-peer communication between all node processes after they register
themselves with the master

This decentralized architecture lends itself well to robots, which often consist of a
subset of networked computer hardware, and may communicate with off-board
computers for heavy computing or commands

ROS - Introduction

Tools

ROS provides an extensive set of tools to configure, manage, debug, visualize,
data log, and test your application

ROS - Introduction

Capabilities

ROS provides a broad collection of robot-agnostic libraries organized in packages
that implement useful robot functionalities such as

the device driver for your GPS

a walk and balance controller for your quadruped

a mapping system for your mobile robot

External libraries like OpenCv, PCL, and so on, are integrated in ROS thanks to
proper wrappers

ROS - Introduction

Community

ROS is supported and constantly improved by a large community of engineers and
hobbyists from around the globe with a shared interest in robotics and
open-source software

Some useful links:

docs.ros.org contains ROS documentation

wiki.ros.org webpage provides basic and advanced tutorial to learn how to install and
use ROS

robotics.stackexchange.com Q&A website allows you to directly ask you solution for
your own problems (and contains thousand of questions already answered)

discourse.ros.org contains news and general discussion about ROS

http://docs.ros.org/
https://wiki.ros.org/
https://robotics.stackexchange.com/
https://discourse.ros.org/

ROS - Introduction

ROS philosophy

Peer to peer: individual programs communicate over defined API (ROS
messages, services, etc.)

Distributed: programs can be run on multiple computers and communicate over
the network

Multi-lenguage: ROS modules can be written in any language for which a client
library exists (C++, Python, MATLAB, Java, etc.)

Light-weight: stand-alone libraries are wrapped around with a thin ROS layer

Free and open-source: most ROS software is open-source and free to use

ROS - Introduction

ROS master3

Manages the communication between nodes (processes)

Every node registers at startup with the master to be able to find each other and
exchange messages

In a distributed system, we should run the master on one computer

Remote nodes can find each other by communicating with this master

Start a ROS master

$ roscore

3http://wiki.ros.org/Master

http://wiki.ros.org/Master

ROS - Introduction

ROS nodes

Nodes are the processes that perform computation (executable)

ROS nodes are written using ROS client libraries implementing different ROS
functionalities such as communication between nodes

Allow building multiple simple processes rather than a large process with all the
functionality (modularity)

Run a ROS node

$ rosrun package_name node_name

ROS - Introduction

ROS topics

Nodes communicate over topics

Nodes can publish or subscribe to a
topic (1 publisher and n subscribers)

Topic is a name for a stream of
messages

List active topics

$ rostopic list

Subscribe and print the contents of a topic

$ rostopic echo /topic

Show information about a topic

$ rostopic info /topic

ROS - Introduction

ROS messages

Set of standard and custom data
structures

The message definition consists in a
typical data structure composed by
two main types (fields and constants)

Defined in *.msg files

Show the type of a topic

$ rostopic type /topic

Publish a message to a topic

$ rostopic pub /topic type data

ROS - Introduction

Example ROS message

geometry_msgs::PoseStamped is used to share the timed pose of an object

ROS - Introduction

ROS services

Request/response communication
between nodes is realized with
services

The service server advertises the
service

The service client accesses this
service

Similar in structure to messages,
services are defined in *.srv files

List active services

$ rosservice list

Send a service request

$ rosservice call /service data

ROS - Introduction

ROS param

Rosparam allows you to store and manipulate data on the ROS Parameter Server

The Parameter Server can store integers, floats, boolean, dictionaries, and lists

Rosparam has many commands that can be used on parameters, as shown below

Set parameter

$ rosparam set param name value

Get parameter

$ rosparam get param name

List parameter names

$ rosparam list

Load parameters from file

$ rosparam load file name namespace

ROS - Introduction

Publisher/subscriber example

Start a roscore

$ roscore

ROS - Introduction

Publisher/subscriber example (cont’d)

Run a talker demo node

$ rosrun roscpp_tutorials talker

See the list of active nodes

$ rosnode list

ROS - Introduction

Publisher/subscriber example (cont’d)

Show information about the talker node

$ rosnode info /talker

See information about the chatter topic

$ rostopic info /chatter

ROS - Introduction

Publisher/subscriber example (cont’d)

Check the type of the chatter topic

$ rostopic type /chatter

Show the message contents of the topic

$ rostopic echo /chatter

Analyze the frequency

$ rostopic hz /chatter

ROS - Introduction

Publisher/subscriber example (cont’d)

Run a listener demo node

$ rosrun roscpp_tutorials listener

See the new listener node

$ rosnode list

Show the connection of the nodes over the
chatter topic

$ rostopic info /chatter

Close the talker node (Ctrl + C) and publish
your own message

$ rostopic pub /chatter std_msgs/

String "data: ’Robotics Lab Course’"

ROS - Introduction

ROS 2

Communication: ROS 2 bases its communication on Data Distribution Service

Decentralized: No master node. This, combined with the ROS 2 intra-process
API, offers users an enhanced transmission mechanism

Multi-platform: ROS 1 limits itself to Ubuntu or Debian. ROS 2 runs on
macOS, Windows, real-time operating system, and other operating systems

Real-time control: ROS 2 makes up for this ROS 1 weakness by improving
robots’ performance and timeliness of control

Multiple robot systems: ROS 2 improves network performance and support for
multi-robot systems

Microcontrollers: ROS 2 supports embedded microcontrollers units such as M7
and ARM-M4

ROS - Programming

Workspace environment

The default ROS workspace is /opt/ros/distro

To load a workspace

$ source /opt/ros/noetic/setup.bash

It is a good practice to add source commands to the .bashrc file

ROS - Programming

Workspace environment (cont’d)

Working with your workspace

Initialize, build and load a new workspace

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin init

$ cd ..; catkin build

$ source devel/setup.bash

src = source code space
build = cmake and cache info
devel = targets

Check your workspace path

$ echo $ROS_PACKAGE_PATH

ROS - Programming

Catkin build system

Catkin is the ROS build system to generate executables, libraries, and interfaces

It is suggested to use the Catkin Command Line Tools (use catkin build

instead of catkin_make command)

To build a packagee

$ catkin build package name

Whenever you build a new package, update your environment

$ source devel/setup.bash

ROS - Programming

Launch

launch is a tool for lauching multiple nodes (and setting parameters)

launch files are written in XML and have .launch extension

launch automatically starts a roscore if there is not yet one running

To start a launch file from a folder

$ roslauch file name.launch

To start a launch file from a package

$ roslauch package name file name.launch

Example:

$ roslaunch roscpp_tutorials talker_listener.launch

ROS - Programming

Launch files

talker listener.launch

<launch>

<node name="listener" pkg="roscpp_tutorials" type="listener" output="screen"/>

<node name="talker" pkg="roscpp_tutorials" type="talker" output="screen"/>

</launch>

launch: root element

node: specifies ad node to be launched

name: name of the node (free to be chosen)

pkg: package containing the node

type: node type (there must be an executable with the same name)

output: specifies where to output log messages (screen, log)

https://github.com/ros/ros_tutorials/blob/noetic-devel/roscpp_tutorials/launch/talker_listener.launch

ROS - Programming

Launch arguments

Create re-usable launch files with <arg>

tag, which works like a parameter

<arg name="arg_name" default="

default_value"/>

Use arguments in launch file

$(arg arg_name)

When launching, arguments can be set

$ roslaunch launch_file.launch arg_name:=

value

range world.launch (simplified)

<launch>

<arg name="use_sim_time" default="true"/>

<arg name="world" default="gazebo_ros_range"/>

<arg name="debug" default="false"/>

<arg name="physics" default="ode"/>

<include file="$(find gazebo_ros)/launch/

empty_world.launch">

<arg name="world_name" value="$(find
gazebo_plugins)/test/test_worlds/$(arg
world).world"/>

<arg name="use_sim_time" value="$(arg
use_sim_time)"/>

<arg name="debug" value="$(arg debug)"/>

<arg name="physics" value="$(arg physics)"/>

</include>

</launch>

ROS - Programming

Including other launch files

Include other launch files with <include>

tag to organize large projects

<include file="package_name"/>

Find the system path to other packages

$(find package_name)

Pass arguments to the included file

<arg name="arg_name" value="value"/>

range world.launch (simplified)

<launch>

<arg name="use_sim_time" default="true"/>

<arg name="world" default="gazebo_ros_range"/>

<arg name="debug" default="false"/>

<arg name="physics" default="ode"/>

<include file="$(find gazebo_ros)/launch/

empty_world.launch">

<arg name="world_name" value="$(find
gazebo_plugins)/test/test_worlds/$(arg
world).world"/>

<arg name="use_sim_time" value="$(arg
use_sim_time)"/>

<arg name="debug" value="$(arg debug)"/>

<arg name="physics" value="$(arg physics)"/>

</include>

</launch>

ROS - Programming

ROS packages

ROS software is organized into
packages, which can contain source
code, launch files, configuration files,
message definitions, data, and
documentation

A package that builds up on/requires
other packages (e.g. message
definitions), declares these as
dependencies

To create a new package

catkin_create_pkg package name dependencies

ROS - Programming

ROS packages - package.xml

The package.xml file defines
the properties of the package

Package name
Version number
Authors
Dependencies

package.xml

<?xml version="1.0"?>

<package format="2">

<name>ros_package_template</name>

<version>0.1.0</version>

<description>A template for ROS packages.</description>

<maintainer email="name@email.com">Name</maintainer>

<license>BSD</license>

<url type="website">https://website</url>

<author email="name@email.com">Name</author>

<!-- buildtool_depend: dependencies of the build process -->

<buildtool_depend>catkin</buildtool_depend>

<!-- build_depend: dependencies only used in source files -->

<build_depend>boost</build_depend>

<!-- depend: build, export, and execution dependency -->

<depend>roscpp</depend>

</package>

ROS - Programming

ROS packages - CMakeLists.txt
The CMakeLists.txt is input to the CMake build system

1. Required CMake Version (cmake minimum required)

2. Package Name (project())

3. Configure C++ standard and compile features

4. Find other CMake/Catkin packages needed for build (find package())

5. Message/Service/Action Generators (add message files(),
add service files(), add action files())

6. Invoke message/service/action generation (generate messages())

7. Specify package build info export (catkin package())

8. Libraries/Executables to build
(add library()/add executable()/target link libraries())

9. Tests to build (catkin add gtest())

10. Install rules (install())

CMakeLists.txt

cmake_minimum_required (VERSION

3.10.2)

project(ros_package_template)

Use C++14, or 11

set(CMAKE_CXX_STANDARD 14)

set(CMAKE_CXX_STANDARD_REQUIRED

TRUE)

Find catkin macros and

libraries

find_package (catkin REQUIRED

COMPONENTS

roscpp

sensor_msgs

)

...

ROS - Programming

ROS packages - CMakeLists.txt (cont’d)
Use the same name as in the package.xml

Use C++11 by default (or 14)

List the required packages

Specify build export information

INCLUDE DIRS: Directories with header
files
LIBRARIES: Libraries created in this
project
CATKIN DEPENDS: Packages
dependent projects also need
DEPENDS: System dependencies
dependent projects also need

Specify locations of header files

Declare an executable, the node, with two
src files

Specify libraries to link the executable
against

CMakeLists.txt example
cmake_minimum_required(VERSION 3.10.2)

project(highlevel_controller)

set(CMAKE_CXX_STANDARD 11)

set(CMAKE_CXX_STANDARD_REQUIRED TRUE)

find_package(catkin REQUIRED

COMPONENTS roscpp sensor_msgs

)

catkin_package(

INCLUDE_DIRS include

LIBRARIES

CATKIN_DEPENDS roscpp sensor_msgs

DEPENDS

)

include_directories(include ${catkin_INCLUDE_DIRS})

add_executable(${PROJECT_NAME}
src/${PROJECT_NAME}_node.cpp
src/HighlevelController.cpp)

target_link_libraries(${PROJECT_NAME} ${catkin_LIBRARIES})

ROS - Programming

ROS C++ client library (Roscpp)

Essential components of the client library

Initialization and spinning

Node handle

Logging

Subscriber/publisher

Parameters

...

ROS - Programming

Roscpp
Inizialization and spinning

hello world.cpp

#include <ros/ros.h>

int main(int argc, char* argv[])

{

ros::init(argc, argv, "hello_world");

ros::NodeHandle nodeHandle;

ros::Rate loopRate(10);

unsigned int count = 0;

while (ros::ok()) {

ROS_INFO_STREAM("Hello World " << count);

ros::spinOnce();

loopRate.sleep();

count++;

}

return 0;

}

ROS main header file include

ros::init(. . .) has to be called before other ROS
functions

The node handle is the access point for communications
with the ROS system (topics, services, parameters)

ros::Rate is a helper class to run loops at a desired
frequency

ros::ok() checks if a node should continue running

Returns false if SIGINT is received (Ctrl + C) or
ros::shutdown() has been called

ROS INFO() logs messages to the filesystem

ros::spinOnce() processes incoming messages via
callbacks

ROS - Programming

Roscpp - Subscriber

listener.cpp

#include <ros/ros.h>

#include <std_msgs/String.h>

void chatterCallback(const std_msgs::String& msg)

{

ROS_INFO("I heard: [%s]", msg.data.c_str());

}

int main(int argc, char* argv[])

{

ros::init(argc, argv, "listener");

ros::NodeHandle nodeHandle;

ros::Subscriber subscriber = nodeHandle.subscribe("

chatter",10,chatterCallback);

ros::spin();

return 0;

}

When a message is received, callback
function is called with the contents of the
message as argument

Start listening to a topic by calling the
method subscribe() of the node handle

Hold on to the subscriber object until you
want to unsubscribe

ros::spin() processes callbacks and will not
return until the node has been shutdown

ROS - Programming

Roscpp - Publisher

talker.cpp

#include <ros/ros.h>

#include <std_msgs/String.h>

int main(int argc, char* argv[]) {

ros::init(argc, argv, "talker");

ros::NodeHandle nh;

ros::Publisher chatterPublisher = nh.advertise<std_msgs::String>("

chatter", 1);

ros::Rate loopRate(10);

unsigned int count = 0;

while (ros::ok()) {

std_msgs::String message;

message.data = "hello world " + std::to_string(count);

ROS_INFO_STREAM(message.data);

chatterPublisher.publish(message);

ros::spinOnce();

loopRate.sleep();

count++;

}

return 0;

}

Create a publisher with help
of the node handle

Create the message contents

Publish the contents

ROS - Programming

Roscpp - Object Oriented Programming

my package node.cpp

#include <ros/ros.h>

#include "my_package/MyPackage.hpp"

int main(int argc, char* argv[])

{

ros::init(argc, argv, "my_package");

ros::NodeHandle nodeHandle("~");

my_package::MyPackage myPackage(nodeHandle);

ros::spin();

return 0;

}

Class MyPackage

Main node class pro-
viding ROS interface
(subscribers, parameters,
timers etc.)

Class Algorithm

Class implementing the
algorithmic part of the
node - could be separated
in a library

NOTE: Specify a function handler to a method from within the class as

subscriber_ = nodeHandle_.subscribe(topic, queue_size, &ClassName::methodName, this);

https://github.com/leggedrobotics/ros_best_practices/blob/main/ros_package_template/src/ros_package_template_node.cpp

ROS - Programming

ROS Parameter server
Nodes use the parameter server to store and
retrieve parameters at runtime

Best used for static data such as configuration
parameters

Parameters can be defined in launch files or
separate YAML files

List all parameters

rosparam list

Get the value of a parameter

rosparam get parameter_name

Set the value of a parameter

rosparam set parameter_name value

config.yaml

camera:

left:

name: left_camera

exposure: 1

right:

name: right_camera

exposure: 1.1

package.launch

<launch>

<node name="name" pkg="package" type="

node_type">

<rosparam command="load" file="$(find package)

/config/config.yaml" />

</node>

</launch>

ROS - Programming

Roscpp - Parameters

Get a parameter in C++

List all parameters

nodeHandle.getParam(parameter_name, variable)

Method returns true if parameter was
found, false otherwise

Example code

ros::NodeHandle nodeHandle("~");

std::string topic;

if (!nodeHandle.getParam("topic", topic))

{

ROS_ERROR("Could not find topic

parameter!");

}

ROS_INFO_STREAM("Read topic: " << topic);

Global and relative parameter access

Global parameters

nodeHandle.getParam("/package/camera/left/exposure", variable)

Relative parameter

nodeHandle.getParam("camera/left/exposure", variable)

ROS - Tools

rqt

Qt-based software framework
for GUI development for ROS

Various GUI tools in the form
of plugins

One can run all the existing
GUI tools as dockable
windows within rqt

Users can create their own
plugins for rqt

Run RQT

$ rosrun rqt_gui rqt_gui

ROS - Tools

rqt - plugins

rqt image view: provides a GUI plugin for displaying images using image_transport

rqt plot: provides a GUI plugin visualizing numeric values in a 2D plot using different
plotting backends

rqt graph: provides a GUI plugin for visualizing the ROS computation graph

rqt console: provides a GUI plugin for displaying and filtering ROS messages

rqt logger level: provides a GUI plugin for configuring the logger level of ROS nodes

ROS - Tools

Rviz

3D visualization tool for ROS

Subscribes to topics and visualizes the
message contents

Different camera views (orthographic,
top-down, etc.)

Interactive tools to publish user
information

Save and load setup as RViz configuration

Extensible with plugins

Run Rviz

$ rosrun rviz rviz

ROS - Tools

Rviz - Tf

tf is a package that lets the user keep
track of multiple coordinate frames over
time

tf maintains the relationship between
coordinate frames in a tree structure
buffered in time

tf lets the user transform points, vectors,
etc between any two coordinate frames at
any desired point in time

ROS - Tools

Tf

The robot_state_publisher package allows you to publish the state of a robot

The package takes the joint angles of the robot as input and publishes the 3D
poses of the robot links, using a kinematic tree model of the robot

It uses the URDF specified by the parameter robot_description and the joint
positions from the topic joint_states to calculate the forward kinematics of the
robot and publish the results via tf

Implemented as publisher/subscriber model on the topics /tf and /tf_static

ROS - Tools

Tf

TF listeners use a buffer to listen to all broadcasted transforms

Query for specific transforms from the transform tree

ROS - Tools

Tf

Command line View frames Rviz

Print info current transform tree

$ rosrun tf tf_monitor

Print info transform between two
frames

$ rosrun tf tf_echo

source frame target frame

Creates a visual graph (PDF)

$ rosrun tf2_tools

view_frames.py

ROS - Tools

ROS - Time

Normally, ROS uses the PC’s system clock as time source (wall time)

For simulations or playback of logged data, it is convenient to work with a
simulated time (pause, slow-down etc.)

To work with a simulated clock:

Set the /use_sim_time parameter to true

Publish the time on the topic /clock from

Gazebo (enabled by default)

ROS bag (use option –clock)

Set use sim parameter

$ rosparam set use_sim_time true

ROS - Tools

ROS - Time

To take advantage of the simulated time, you should always use the ROS Time
APIs. roslib contains the definition of the ros::Time and ros::Duration objects
used in roscpp and other ROS C++ libraries:

ros::Time

ros::Time begin = ros::Time::now();

double secs = begin.toSec();

ros::Duration

ros::Duration duration(0.5); // 0.5s

ros::Duration passed = ros::Time()::now() - begin;

ros::Rate

ros::Rate rate(10); // 10Hz

ROS - Tools

ROS - Bags

The rosbag package provides a command-line tool for working with bags as well as
code APIs for reading/writing bags in C++ and Python.

A bag is a format for storing message data

Binary format with file extension *.bag

Suited for logging and recording datasets for later visualization and analysis

Record all topics in a bag

$ rosbag record --all

Record given topics

$ rosbag record topic_1 topic_2 topic_3

ROS - Tools

ROS - Bags

Show information about a bag

$ rosbag info bag_name.bag

Read a bag and publish its contents

$ rosbag play bag_name.bag

Playback options can be defined e.g.

$ rosbag play --rate=0.5 bag_name.bag

ROS - Simulation

Gazebo

Simulate 3D rigid-body dynamics

Simulate a variety of sensors including
noise

3D visualization and user interaction

Includes a database of many robots
(as Gazebo worlds)

Provides a ROS interface

Extensible with plugins

$ rosrun gazebo_ros gazebo
https://gazebosim.org/

https://gazebosim.org/

ROS - Simulation

Unified Robot Description Format - URDF

Defines an XML format for
representing a robot model

Kinematic and dynamic
description
Visual representation
Collision model

URDF generation can be scripted
with XACRO macro

Visual meshes Primitives for collision

ROS - Simulation

Unified Robot Description Format - URDF (cont’d)

Description consists of a set of link
elements and a set of joint elements

Joints connect the links together

ROS - Simulation

The <robot> element

<robot name="robot_name">

<!-- robot links and joints and more -->

<link> ... </link>

<link> ... </link>

<joint> </joint>

<joint> </joint>

</robot>

The <joint> element

<joint name="my_joint" type="floating">

<origin xyz="0 0 1" rpy="0 0 3.1416"/>

<parent link="link1"/>

<child link="link2"/>

<calibration rising="0.0"/>

<dynamics damping="0.0" friction="0.0"/>

<limit effort="30" velocity="1.0" lower="-2.2" upper="

0.7" />

<safety_controller k_velocity="10" k_position="15"

soft_lower_limit="-2.0" soft_upper_limit="0.5" />

</joint>

The <link> element

<link name="my_link">

<inertial>

<origin xyz="0 0 0.5" rpy="0 0 0"/>

<mass value="1"/>

<inertia ixx="100" ixy="0" ixz="0" iyy="100" iyz="0"

izz="100" />

</inertial>

<visual>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<box size="1 1 1" />

</geometry>

<material name="Cyan">

<color rgba="0 1.0 1.0 1.0"/>

</material>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<cylinder radius="1" length="0.5"/>

</geometry>

</collision>

</link>

ROS - Simulation

Unified Robot Description Format - URDF (cont’d)

The robot description (URDF) is
stored on the parameter server under
/robot_description param

You can visualize the robot model in
rviz with the RobotModel plugin

<?xml version="1.0"?>

<launch>

<!-- This lauch file just loads the URDF with the given

hardware interface and robot name into the ROS

Parameter Server -->

<arg name="hardware_interface" default="

PositionJointInterface"/>

<arg name="robot_name" default="iiwa"/>

<arg name="origin_xyz" default="’0 0 0’"/> <!-- Note the

syntax to pass a vector -->

<arg name="origin_rpy" default="’0 0 0’"/>

<param name="robot_description" command="$(find xacro)/

xacro --inorder ’$(find iiwa_description)/urdf/iiwa7.

urdf.xacro’ hardware_interface:=$(arg
hardware_interface) robot_name:=$(arg robot_name)

origin_xyz:=$(arg origin_xyz) origin_rpy:=$(arg
origin_rpy)"/>

</launch>

ROS - Simulation

Simulation Description Format - SDF

Defines an XML format to describe

Environments (lighting, gravity etc.)
Objects (static and dynamic)
Sensors
Robots

SDF is the standard format for
Gazebo

Gazebo automatically converts a
URDF to SDF

ROS - Simulation

Xacro

Xacro is an XML macro language

Used to construct shorter and more
readable XML files by using macros

It is heavily used in packages such as
the urdf

Example Xacro

<xacro:macro name="pr2_arm" params="suffix parent reflect">

<pr2_upperarm suffix="${suffix}" reflect="${reflect}"
parent="${parent}" />

<pr2_forearm suffix="${suffix}" reflect="${reflect}"
parent="elbow_flex_${suffix}" />

</xacro:macro>

<xacro:pr2_arm suffix="left" reflect="1" parent="torso" />

<xacro:pr2_arm suffix="right" reflect="-1" parent="torso"

/>

ROS - Simulation

Xacro (cont’d)

Properties are named values or
named blocks that can be inserted
anywhere into the XML document

Properties can be manually declared
or loaded from YAML files

Xacro properties

<xacro:property name="front_left_origin">

<origin xyz="0.3 0 0" rpy="0 0 0" />

</xacro:property>

<pr2_wheel name="front_left_wheel">

<xacro:insert_block name="front_left_origin" />

</pr2_wheel>

Macros may contain other macros

You can include other xacro files
using the xacro:include tag

Xacro include

<xacro:include filename="$(find package)/other_file.xacro"

/>

<xacro:include filename="other_file.xacro" />

<xacro:include filename="$(cwd)/other_file.xacro" />

ROS - Simulation

Xacro (cont’d)

Convert xacro to urdf from command line

$ rosrun xacro xacro robot_name.xacro > robot_name.urdf

... or inside a launch file

<param name="robot_description" command=" $(find xacro)/xacro $ (find

robot_description_pkg)/urdf/robot_name.xacro" />

ROS - Simulation

Gazebo

Robot simulator integrated in ROS via

gazebo_ros_pkgs: wrappers, tools and additional API’s for using ROS with the
Gazebo simulator
gazebo-msgs: Message and service data structures for interacting with Gazebo from
ROS
gazebo-plugins: provide functionality for the simulation of sensors and actuators
gazebo-ros-control: simulated controllers to actuate the joints of your robot

Check gazebo installation

$ rosrun gazebo_ros gazebo

Retrieve model information

$ rostopic echo /gazebo/model_states

Kuka iiwa example

$ roslaunch iiwa_gazebo iiwa_gazebo.

launch trajectory:=false

ROS - Simulation

Gazebo plugins

Give your URDF models greater functionality

Shared libraries that have direct access to all the functionalities of Gazebo

There are currently 6 types of plugins:

World: to control world properties

Model: to control the joints and the state

Sensor: to acquire sensor information and control sensor properties

System: specified at the command line to give the user control over the startup
process

Visual: to access the visual rendering functions

GUI: loaded on startup to control the GUI

ROS - Sensors & controllers

ROS - Sensors

ROS sensor plugins have been implemented to wrap the Gazebo sensor plugins

The available ROS sensor plugins are available in the gazebo_plugins of
gazebo_ros_pkgs, like those related to

Camera

Depth

Lidar

IMU

ROS - Sensors & controllers

The camera ROS plugin

The camera ROS plugin provides the
ROS interface for simulating cameras

It publishes the
sensor_msgs::CameraInfo and
sensor_msgs::Image ROS messages

The ROS camera plugin is
libgazebo_ros_camera.so

camera plugin

<plugin name="camera_controller" filename="

libgazebo_ros_camera.so">

<alwaysOn>true</alwaysOn>

<updateRate>0.0</updateRate>

<cameraName>camera</cameraName>

<imageTopicName>image_raw</imageTopicName>

<cameraInfoTopicName>camera_info</cameraInfoTopicName>

<frameName>camera_link_optical</frameName>

<hackBaseline>0.0</hackBaseline>

<distortionK1>0.0</distortionK1>

<distortionK2>0.0</distortionK2>

<distortionK3>0.0</distortionK3>

<distortionT1>0.0</distortionT1>

<distortionT2>0.0</distortionT2>

<CxPrime>0</CxPrime>

<Cx>0.0</Cx>

<Cy>0.0</Cy>

<focalLength>0.0</focalLength>

</plugin>

ROS - Sensors & controllers

The camera ROS plugin

To enable a camera, first add a
camera_link to your urdf

Then, include the <sensor> element
and the load the plugin within the
associated <gazebo> tag

camera gazebo

<gazebo reference="camera_link">

<sensor type="camera" name="camera1">

<update_rate>30.0</update_rate>

<camera name="head">

<horizontal_fov>1.3962634</horizontal_fov>



<clip>

<near>0.02</near> <far>300</far>

</clip>

<noise>

<type>gaussian</type> <mean>0.0</mean> <stddev>0.007

</stddev>

</noise>

</camera>

<plugin name="camera_controller" filename="

libgazebo_ros_camera.so"> ... </plugin>

</sensor>

</gazebo>

ROS - Sensors & controllers

The ros_control framework provides the capability to implement and manage robot
controllers

ROS - Sensors & controllers

ROS - Sensors & controllers

Available controllers

joint_state_controller defined to publish joint states

joint_position_controller position commands are used to control joint positions

joint_velocity_controller velocity commands are used to control joint positions
or velocities

joint_effort_controller efforts commands are used to control joint positions,
velocities or efforts

joint_trajectory_controllers used to control the execution of joint-space
trajectories on a group of joints

ROS - Sensors & controllers

Controller management The controller_manager provides
the infrastructure to interact with controllers, i.e. load, un-
load, start and stop controllers

Command line

$ rosrun controller_manager controller_manager <command> <controller_name> or
$ rosrun controller_manager spawner [--stopped] name1 name2 name3

Launch file

<node name="controller_spawner" pkg="controller_manager" type="spawner" respawn="

false" output="screen" args="$(arg controllers)" />

Using rqt

$ rosrun rqt_controller_manager rqt_controller_manager

ROS - Sensors & controllers

Configuring and launching controllers

Controllers are usually defined with yaml files

The example shows

the joint state controller to
publish the joint states of the
arm (with a publishing rate set
to 50 Hz)

two joint position controllers to
move each of the two joints
upon receiving a goal position

rrbot control.yaml

rrbot:

Publish all joint states -----------------------------------

joint_state_controller:

type: joint_state_controller/JointStateController

publish_rate: 50

Position Controllers ---------------------------------------

joint1_position_controller:

type: effort_controllers/JointPositionController

joint: joint1

pid: {p: 100.0, i: 0.01, d: 10.0}

joint2_position_controller:

type: effort_controllers/JointPositionController

joint: joint2

pid: {p: 100.0, i: 0.01, d: 10.0}

ROS - Sensors & controllers

Configuring and launching controllers

The yaml configuration file
can be loaded in a launch
file, prior to the spawning of
the controller

To simulate the robot in
Gazebo, the corresponding
plugin must be added to the
URDF model

rrbot control.launch

<launch>

<!-- Load joint controller configurations from YAML file to parameter

server -->

<rosparam file="$(find rrbot_control)/config/rrbot_control.yaml"

command="load"/>

<!-- load the controllers -->

<node name="controller_spawner" pkg="controller_manager" type="spawner"

respawn="false"

output="screen" ns="/rrbot" args="joint_state_controller

joint1_position_controller joint2_position_controller"/>

<!-- convert joint states to TF transforms for rviz, etc -->

<node name="robot_state_publisher" pkg="robot_state_publisher" type="

robot_state_publisher"

respawn="false" output="screen">

<remap from="/joint_states" to="/rrbot/joint_states" />

</node>

</launch>

ROS - Sensors & controllers

Hardware abstraction layer

ros control interfaces

The connection of the controllers with the hardware interface (that encapsulate the
hardware) is done through the ros control interfaces

Common interfaces ros_control interfaces are

Joint State Interfaces: to retrieve the joint states from the actuators encoder.

Joint Command Interfaces

EffortJointInterface: to send the effort command
VelocityJointInterface: to send the velocity command
PositionJointInterface: to send the position command

ROS - Sensors & controllers

Hardware abstraction layer

Joint Limits

The joint_limits_interface package
contains data structures for
representing joint limits, methods to
populate them through URDF or
yaml files, and methods to enforce
these limits

Joint limits can be specified in
URDF and in YAML format

joint limits URDF

<joint name="${robot_name}_joint_1" type="revolute">

...

<!-- Joint limits -->

<limit lower="${-120 * PI / 180}" upper="${120 * PI /

180}"

effort="${max_effort}" velocity="${max_velocity}"
/>

<!-- Soft limits -->

<safety_controller soft_lower_limit="${-118 * PI / 180}"

soft_upper_limit="${118 * PI / 180}" k_position="${
safety_controller_k_pos}" k_velocity="${
safety_controller_k_vel}"/>

</joint>

ROS - Sensors & controllers

Hardware abstraction layer
Transmissions

interfaces to implement mechanical transmissions, like a me-
chanical reducer with a given ratio n, thus mapping in-
put/output effort/flow variables while preserving power

transmission.xacro

<transmission name="${robot_name}_tran_1">
<robotNamespace>/${robot_name}</robotNamespace>
<type>transmission_interface/SimpleTransmission</type>

<joint name="${robot_name}_joint_1">
<hardwareInterface>hardware_interface/${hardware_interface}</hardwareInterface>

</joint>

<actuator name="${robot_name}_motor_1">
<hardwareInterface>hardware_interface/${hardware_interface}</hardwareInterface>
<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

ROS - Sensors & controllers

Gazebo ros controllers

To use ros control within Gazebo, the URDF model of the robot has to include two
additional elements: transmissions and the plugin

gazebo ros control plugin

<!-- Load Gazebo lib and set the robot namespace -->

<gazebo>

<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">

<robotNamespace>/${robot_name}</robotNamespace>
</plugin>

</gazebo>

ROS - Motion planning

MoveIt

Most widely used software for manipulation

Motion planning

Manipulation

Inverse kinematics

Control

3D perception

Collision checking
Launch the iiwa moveit

roslaunch iiwa_moveit demo.launch

ROS - Motion planning

MoveIt

ROS - Motion planning

How to create the MoveIt config package

Launch Setup Assistant tool

$ roslaunch moveit_setup_assistant setup_assistant.launch

ROS - Motion planning

The MoveIt planning scene

Query start state (orange)

Query goal state (green)

Interactive markers

Joints tab - nullspace

Motion planning

Plan visualization

Activate Use Cartesian Path checkbox

The robot will attempt to move the end effector linearly in cartesian space

Motion control of robotic manipulators

ROS - Kinematics and dynamic control

Kinematics and dynamics library - KDL

Robotic vision

ROS - Vision sensors

Introduction

Computer Vision is an essential part of
robotics

It helps the robot extract information from
camera data to understand its environment

Applications include

extracting an object and its position
inspecting manufactured parts for
production errors
detecting pedestrians in autonomous driving
applications
make a robot arm perform a somewhat
intelligent pick and place task

ROS - Vision sensors

Interface the sensor

To program camera sensors we need to interface them to the onboard computer
of the robot

This can be made mainly in two ways

Using operating system driver
Vendor driver

Standard USB camera (like webcams) are directly accessible using low level
routine provided by the operating system

In Ubuntu/Linux, after plugging in the camera, check whether a /dev/videoX
device file has been created

Check camera device file

$ ls /dev/ grep video

ROS - Vision sensors

The usb cam package

We can install a ROS webcam driver called usb_cam using the following command

$ sudo apt-get install ros-noetic-usb-cam

Launch this node using the launch file provided with the package

$ roslaunch usb_cam usb_cam-test.launch

Show the image using image_view package

$ rqt_image_view

ROS - Vision sensors

The usb cam package

<launch>

<!-- start video device with settings -->

<node name="usb_cam" pkg="usb_cam" type="usb_cam_node"

output="screen" >

<param name="video_device" value="/dev/video0" />

<param name="image_width" value="640" />

<param name="image_height" value="480" />

<param name="pixel_format" value="yuyv" />

<param name="color_format" value="yuv422p" />

<param name="camera_frame_id" value="usb_cam" />

<param name="io_method" value="mmap"/>

</node>

<!-- display the content of the camera images -->

<node name="image_view" pkg="image_view" type="image_view

" respawn="false" output="screen">

<remap from="image" to="/usb_cam/image_raw"/>

<param name="autosize" value="true" />

</node>

</launch>

Generated topics

/usb_cam/camera_info

/usb_cam/image_raw

/usb_cam/image_raw/compressed

/usb_cam/image_raw/compressed/parameter_descriptions

/usb_cam/image_raw/compressed/parameter_updates

/usb_cam/image_raw/compressedDepth

/usb_cam/image_raw/compressedDepth/parameter_descriptio

/usb_cam/image_raw/compressedDepth/parameter_updates

/usb_cam/image_raw/theora

/usb_cam/image_raw/theora/parameter_descriptions

/usb_cam/image_raw/theora/parameter_updates

ROS - Vision sensors

The image transport package

The compressed format is useful to send images to other ROS nodes over the
network or store video data into bagfiles

These topics are published by the image_transport package that provides
transparent support for transporting images in low-bandwidth compressed formats

Its internal mechanism is very similar to using ROS Publishers and Subscribers

// Use the image_transport classes instead.

#include <ros/ros.h>

#include <image_transport/image_transport.h>

void imageCallback(const sensor_msgs::ImageConstPtr& msg)

{ ... }

ros::NodeHandle nh;

image_transport::ImageTransport it(nh);

image_transport::Subscriber sub = it.subscribe("in_image_base_topic", 1, imageCallback);

image_transport::Publisher pub = it.advertise("out_image_base_topic", 1);

ROS - Vision sensors

The image transport package

To use the compressed image we need to republish it in an uncompressed format,
using the republish node of the image transport package

Suppose we have recorded the compressed video stream

rosbag record /usb_cam/image_raw/compressed

To republish it uncompressed

$ rosrun image_transport republish compressed in:=usb_cam/image_raw/compressed raw

out:=usb_cam/image_raw

ROS - Vision sensors

Camera calibration

Cameras need calibration to correcting the distortions in the camera images due
to the camera’s internal parameters

The next figure shows two common types of radial distortion

ROS - Vision sensors

Camera calibration

We assume to have a standard pinhole camera

ROS - Vision sensors

Camera calibration

We assume to have a standard pinhole camera

ROS - Vision sensors

Camera calibration

The camera_calibration package allows easy calibration of monocular or stereo
cameras using a checkerboard calibration target

To run the cameracalibrator.py node for a monocular camera using an 8x6
chessboard with 108mm squares

$ rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108 image:=/

usb_cam/image_raw /image camera:=/usb_cam

ROS - Vision sensors

Camera calibration

image_proc package removes camera distortion from the raw image stream

It is meant to sit between the camera driver and vision processing nodes

To run image proc

$ ROS_NAMESPACE=usb_cam rosrun image_proc image_proc

ROS - Computer vision

OpenCV - Open Computer Vision Library

OpenCV - open-source library that provides real-time optimized Computer Vision
algorithms, tools, and hardware. It also supports model execution for Machine
Learning (ML)

vision_opencv - stack for interfacing ROS with OpenCV via cv_bridge package

Using OpenCV in your ROS code

In your CMakeLists.txt

find_package(OpenCV)

include_directories (${OpenCV_INCLUDE_DIRS})
target_link_libraries(my_awesome_library ${OpenCV_LIBRARIES})

ROS - Computer vision

OpenCV - CvBridge

The CvBridge library acts as a bridge
for converting the ROS messages to
OpenCV images and vice versa

ROS passes around images in its own
sensor_msgs/Image message format

Use CvBridge to convert ROS images
into OpenCV cv::Mat format

ROS - Computer vision

OpenCV - CvBridge example code

Create a new package with

$ catkin_create_pkg opencv_example cv_bridge image_transport roscpp roslib

In your CMakeLists.txt uncomment

add_executable($ {PROJECT_NAME}_node src/opencv_example_node.cpp)

...
target_link_libraries($ {PROJECT_NAME}_node ...

Create and put your code inside the file src/opencv_example_node.cppa

a
http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages

http://wiki.ros.org/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages

ROS - Computer vision

Fiducial Markers

Efficient algorithms to perform object recognition and pose estimation working in
real world environments are difficult to implement

In many cases one camera is not enough to retrieve the three-dimensional pose of
an object

Markers are typically represented by a synthetic square image composed by a wide
black border and an inner binary matrix which determines its unique identifier

ROS - Computer vision

Fiducial Markers

When the intrinsic parameters of the camera and the size of the fiducial are
known, the pose of the fiducial relative to the camera can be estimated

The pose estimation code solves a set of linear equations to determine the world
(X, Y, Z) coordinate of each of the vertices

From this, we obtain the transform of the fiducial’s coordinate system to the
camera’s coordinate system

A robot can determine its position and orientation by looking at a number of
fiducial markers

ROS - Computer vision

Fiducial Markers

To install the fiducial software from binary packages

$ sudo apt-get install ros-kinetic-fiducialsa

ahttp://wiki.ros.org/fiducials

Two nodes should be run, aruco_detect, which handles the detection of the
fiducials, and fiducial_slam, which combines the fiducial pose estimates and
builds the map and makes an estimate of the robot’s position.

$ roslaunch aruco_detect aruco_detect.launch

$ roslaunch fiducial_slam fiducial_slam.launch

http://wiki.ros.org/fiducials

ROS - Computer vision

Fiducial Markers - aruco ros

To use the aruco ros fiducial packages, clone it from the repo4

Checkout the correct branch

$ cd catkin_ws/src/aruco_ros

$ git checkout noetic-devel

Compile and run to check if it works correctly

$ catkin build

$ roslaunch aruco_ros single.launch

4https://github.com/pal-robotics/aruco_ros.git

https://github.com/pal-robotics/aruco_ros.git

ROS - Computer vision

Fiducial Markers - aruco ros

You should then
subscribe to your
camera topic

Create a launch file
as the one shown
here

<launch>

<arg name="markerId" default="201"/>

<arg name="markerSize" default="0.1"/> <!-- in m -->

<arg name="camera" default="usb_cam"/>

<arg name="marker_frame" default="aruco_marker_frame"/>

<arg name="ref_frame" default=""/>

<arg name="corner_refinement" default="LINES" />

<node pkg="aruco_ros" type="single" name="aruco_single">

<remap from="/camera_info" to="/$(arg camera)/camera_info" />

<remap from="/image" to="/$(arg camera)/image_raw" />

<param name="image_is_rectified" value="True"/>

<param name="marker_size" value="$(arg markerSize)"/>

<param name="marker_id" value="$(arg markerId)"/>

<param name="reference_frame" value="$(arg ref_frame)"/>

<param name="camera_frame" value="stereo_gazebo_$(arg camera)

_camera_optical_frame"/>

<param name="marker_frame" value="$(arg marker_frame)" />

<param name="corner_refinement" value="$(arg corner_refinement)" />

</node>

</launch>

ROS - Computer vision

Fiducial Markers

We can also test and use marker detectors in simulations using Gazebo ROS

ROS - Computer vision

Fiducial Markers

To use marker detectors in simulations using Gazebo ROS

Generate Aruco marker https://chev.me/arucogen/

Create a Gazebo model, add it to the Gazebo model path

<env name="GAZEBO_MODEL_PATH" value="$ (find package)/models:$ (optenv
GAZEBO_MODEL_PATH)"/>

Start the simulation, import the aruco model into your world, and save the world
with name

Relaunch the simulation loading the new world

<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find package)/worlds/aruco.world"/>

https://chev.me/arucogen/

ROS - Computer vision

Point clouds

A point cloud is a set of data points in space Point clouds are generally produced
by 3D scanners or depth sensors, which measure many points on the external
surfaces of objects around them

As the output of 3D scanning processes, point clouds are used for many purposes,
including to create 3D CAD models for manufactured parts and quality
inspection, and for a multitude of visualization, animation, rendering and mass
customization applications

ROS - Computer vision

Point clouds

Point cloud data can be defined as a group of data points in some coordinate
system. In 3D, it has x, y, and z coordinates

One of the most famous framework used to access and elaborate clouds is the
Point Cloud Library (PCL) library

This is an open-source project for handling 2D/3D images and point cloud
processing. It consists of standard algorithms for filtering, segmentation, feature
estimation, and so on

PCL is integrated into ROS for handling point cloud data from various sensors

ROS - Computer vision

Point clouds - useful packages

pcl_conversions: package providing APIs to convert PCL data types to ROS
messages and vice versa

pcl_msgs: contains the definition of PCL-related messages in ROS

pcl_ros: PCL bridge of ROS. This package contains tools and nodes to bridge
ROS messages to PCL data types and vice versa

pointcloud_to_laserscan: useful to convert the 3D point cloud into a 2D laser
scan, used for ground mobile robot navigation

ROS - Computer vision

Point clouds - devices

Most used sensors in robotics are

Microsoft kinect

Intel realsense

Both such device require to install proper libraries to be interfaced with your (or
robot) computer

OpenNI (Open source Natural Interaction) - microsoft kinect

$ sudo apt-get install ros-noetic-openni2-camera ros-noetic-openni2-
launch

Real sense ROS wrapper for intel real sense

$ sudo apt-get install ros-noetic-realsense2-camera

ROS - Computer vision

Point clouds - messages

The current data structures in ROS that represent point clouds is
sensor_msgs::PointCloud

Contains several fields

x - the X Cartesian coordinate of a point (float32)

y - the Y Cartesian coordinate of a point (float32)

z - the Z Cartesian coordinate of a point (float32)

rgb - the RGB (24-bit packed) color at a point (uint32)

rgba - the A-RGB (32-bit packed) color at a point (uint32)

normal x - the first component of the normal direction vector at a point (float32)

normal y - the second component of the normal direction vector at a point (float32)

normal z - the third component of the normal direction vector at a point (float32)

curvature - the surface curvature change estimate at a point (float32)

...

ROS - Computer vision

Point clouds - Publishing and subscribing to point cloud messages

Publisher node

// assume you get a point cloud message somewhere

sensor_msgs::PointCloud cloud_msg;

// advertise

ros::Publisher pub = nh.advertise<sensor_msgs::PointCloud>(topic, queue_size);

// and publish

pub.publish(cloud_msg);

Subscriber node

// callback signature:

void callback(const sensor_msgs::PointCloudConstPtr&);

// create subscriber:

ros::Subscriber sub = nh.subscribe(topic, queue_size, callback);

ROS - Computer vision

Point clouds - real sense

<launch>

<arg name="serial_no" default=""/>

<arg name="usb_port_id" default=""/>

<arg name="device_type" default=""/>

<arg name="json_file_path" default=""/>

<arg name="camera" default="camera"/>

<arg name="tf_prefix" default="$(arg camera)"/>

...

<arg name="gyro_fps" default="-1"/>

<arg name="accel_fps" default="-1"/>

<arg name="enable_gyro" default="false"/>

<arg name="enable_accel" default="false"/>

...

<arg name="enable_pointcloud" default="false"/>

<arg name="publish_tf" default="true"/>

<arg name="tf_publish_rate" default="0"/>

...

<group ns="$(arg camera)">

<include file="$(find realsense2_camera)/launch/

includes/nodelet.launch.xml">

...

</include>

</group>

</launch>

Generated topics

/camera/color/camera_info

/camera/color/image_raw

/camera/color/metadata

/camera/depth/camera_info

/camera/depth/image_rect_raw

/camera/depth/metadata

/camera/extrinsics/depth_to_color

/camera/extrinsics/depth_to_infra1

/camera/extrinsics/depth_to_infra2

/camera/infra1/camera_info

/camera/infra1/image_rect_raw

/camera/infra2/camera_info

/camera/infra2/image_rect_raw

/camera/gyro/imu_info

/camera/gyro/metadata

/camera/gyro/sample

/camera/accel/imu_info

/camera/accel/metadata

/camera/accel/sample

/diagnostics

ROS - Computer vision

Point clouds - real sense

Start the camera node and make it publish the point cloud using

$ roslaunch realsense2_camera rs_camera.launch filters:=pointcloud

Open rviz to watch the pointcloud

ROS - Visual Servoing

Visual Servoing

The objective of visual servoing is to ensure that the end-effector, on the basis of
visual measurements elaborated in real time, reaches and keeps a (constant or
time-varying) desired pose with respect to the observed object

ROS - Visual Servoing

Visual Servoing

Depending in which space measurements are taken

Position-based visual servoing:

information extracted from images (features) is used to reconstruct the current 3D
pose (pose/orientation) of an object

combined with the knowledge of a desired 3D pose, we generate a Cartesian pose
error signal that drives the robot to the goal

Image-based visual servoing

error is computed directly on the values of the features extracted on the 2D image
plane, without going through a 3D reconstruction

he robot should move so as to bring the current image features (what it “sees” with
the camera) to their desired values

Control of mobile robots

Control of mobile robots

Introduction

Mobile robots have become very important in
advanced applications thanks to their
potential for autonomous intervention

Nowadays a lot of mobile robots are
commercial and able to work in collaboration
with humans

Applications include

autonomous exploration
search and rescue operations
human-robot collaboration

Control of mobile robots

Tassonomy of mobile robots

Wheeled ground robots

Underwater robots

Aerial robots

Legged robots

Control of mobile robots

Wheeled ground robots

There are different kind of configurations, in
view of the type and number of wheels

fixed wheel
steerable wheel
caster wheel

One of the most common configuration is the
differential drive robot

one caster wheel + two fixed actuated
wheels
two independent motor in the fixed wheels
rotation axis in common

Control of mobile robots

Differential drive robot
Starting from the unicycle

The inputs of this system are:

v the heading velocity
ω the steering velocity

A balance problem is evident: differential
drive robot is kinematically equivalent

(x,y) of the unicycle corresponds to the
midpoint of the segment that joins the two
fixed wheels of the differential drive

ωL and ωR are the left and right wheel
velocity, ρw is the wheel radius

v =
ωR + ωL

2
ρw ω =

ωR + ωL

d
ρw

Control of mobile robots

Differential drive robot - Gazebo plugin

The behavior of the differential drive
robot is obtained in simulation using
the differential drive controller

Its main task is to take as input a
velocity command and it computes
the wheels’ velocities using
differential formulas

Additionally it publishes an
odometry topic that contains values
computed from the feedback of the
wheel encoder

differential drive controller plugin

<gazebo>

<plugin name="differential_drive_controller" filename="

libgazebo_ros_diff_drive.so">

<legacyMode>true</legacyMode>

<rosDebugLevel>Debug</rosDebugLevel>

<publishWheelTF>false</publishWheelTF>

<robotNamespace>/</robotNamespace>

<publishTf>1</publishTf>

<publishWheelJointState>true</publishWheelJointState>

<alwaysOn>true</alwaysOn>

<updateRate>100.0</updateRate>

<leftJoint>left_wheel_joint</leftJoint>

<rightJoint>right_wheel_joint</rightJoint>

<wheelSeparation>${wheel_axle}</wheelSeparation>
<wheelDiameter>${2*wheel_radius}</wheelDiameter>
<broadcastTF>0</broadcastTF>

<wheelTorque>30</wheelTorque>

<wheelAcceleration>1.8</wheelAcceleration>

<commandTopic>cmd_vel</commandTopic>

<odometryFrame>odom</odometryFrame>

<odometryTopic>odom</odometryTopic>

<robotBaseFrame>base_footprint</robotBaseFrame>

</plugin>

</gazebo>

Control of mobile robots

Velocity command

The input of a wheeled ground robot is a
velocity command

It contains two geometry msgs/Vector3, one
for the linear velocities and the other for the
angular velocities

Which are the fields that we can fill with
values of this message for the differential
drive robot?

$ rosmsg info geometry_msgs/
Twist

geometry_msgs/Vector3 linear
float64 x
float64 y
float64 z
geometry_msgs/Vector3
angular float64 x
float64 y
float64 z

Control of mobile robots

Odometry message

The message has three components:

A header message where the time stamp the
frame id is showed while the child frame id
is not part of the header
A geometry msgs/PoseWithCovariance that
presents a position, and orientation
represented as a unit quaternion and a
vector of 36 covariances elements
A geometry msgs/TwistWithCovariance that
presents a linear velocity, angular velocity,
and a vector of 36 covariances elements

$ rosmsg info nav_msgs/
Odometry

std_msgs/Header header

uint32 seq

time stamp

string frame_id

string child_frame_id

Control of mobile robots

Odometry message

geometry_msgs/PoseWithCovariance

pose

geometry_msgs/Pose pose

geometry_msgs/Point position

float64 x

float64 y

float64 z

geometry_msgs/Quaternion

orientation

float64 x

float64 y

float64 z

float64 w

float64[36] covariance

geometry_msgs/TwistWithCovariance

twist

geometry_msgs/Twist twist

geometry_msgs/Vector3 linear

float64 x

float64 y

float64 z

geometry_msgs/Vector3 angular

float64 x

float64 y

float64 z

float64[36] covariance

Control of mobile robots

Laser range finder - Gazebo plugin
The most used sensors for mobile
robots are lidars

There are different types: 2D, 3D,
360° TOF, ecc. . .
It produces a sensor msgs/LaserScan
that contains distances from the
obstacles

<plugin name="gazebo_ros_head_hokuyo_controller" filename="

libgazebo_ros_laser.so">

<topicName>/laser/scan</topicName>

<frameName>laser_frame</frameName>

</plugin>

Control of mobile robots

Laser range finder - sensor msgs/LaserScan

The laser scan message is composed
by

an header
a set of parameters
vector of distances
vector of intensities

std_msgs/Header header

uint32 seq

time stamp

string frame_id

float32 angle_min

float32 angle_max

float32 angle_increment

float32 time_increment

float32 scan_time

float32 range_min

float32 range_max

float32[] ranges

float32[] intensities

Control of mobile robots

Simulation of a mobile robot
Clone the package from the course organization $ git clone https://github.

com/RoboticsLab2023/rl_fra2mo_description.git

Two launch files:

One is to visualize the robot in RViz with RobotModel
$ roslaunch rl_fra2mo_description display_fra2mo.launch

The other is to spawn the robot in Gazebo
$ roslaunch rl_fra2mo_description spawn_fra2mo_gazebo.launch

To move the mobile robot you can publish on the topic /cmd vel

$ rostopic pub --once /cmd_vel ...

$ rosrun rqt_robot_steering rqt_robot_steering

Other packages to teleoperate a robot
$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

Hint: to have a better look of the TF tree you can use:
$ rosrun rqt_tf_tree rqt_tf_tree

Autonomous navigation and path planning

General architecture

Any robotic task follows the paradigm ”think
then act”

Also for autonomous navigation it works

We have to define the blocks related to the
perception, localization, and planning

In ROS there is a package that already
implements this logic, it’s called
navigation stack $ sudo apt-get install

ros-<DISTRO>-navigation

Autonomous navigation and path planning

navigation stack - Description

It takes in information from odometry and sensor streams and outputs velocity
commands to send to a mobile base

A pre-requisite to use the navigation stack is to have a tf transform tree

The major component of the navigation stack is move base ROS Node
$ sudo apt-get install ros-<DISTRO>-move-base

The move base node provides a ROS interface for configuring, running, and
interacting with the navigation stack on a robot

Autonomous navigation and path planning

Localization and Mapping

Grid map

Discretize the world into cells

Each cell is assumed to be occupied or
freespace

Large maps require substantial memory
resources

Do not rely on a feature detector

Grid structure is rigid

Localization and Mapping

Grid map

Each cell is a binary random variable that
models the occupancy

occupied cell: p(mi) = 1
not-occupied cell: p(mi) = 0
no knowledge: p(mi) = 0.5

Often the world is assumed static

The cells are independent of each other

The last assumption is fundamental, we can
compute the probability distribution of a map
as the product of the individual cells

p(m) =
∏
i

p(mi)

Localization and Mapping

Grid map - example

p(m) =

4∏
i=1

p(mi)

p(m) = 0.9 ∗ (1− 0.5) ∗ 0.8 ∗ (1− 0.1) = 0.324

Localization and Mapping

Gmapping

OpenSlam’s Gmapping is a laser-based SLAM

It creates a 2-D occupancy map from the
laser and poses data collected by a mobile
robot

The localization output is the transformation
between the frame map and odom

Based on a Rao-Blackwellized particle filer

Developed almost 20 years ago!

For more details see Gmapping

https://openslam-org.github.io/gmapping.html

Localization and Mapping

Gmapping - bringup

The launch file should be
composed by 4 sections of
parameters:

general parameters
optimizers parameters
odometry parameters
particle filter parameters

<param name="base_frame" value="

base_footprint"/>

<param name="odom_frame" value="odom"/>

<param name="map_frame" value="map"/>

<param name="map_update_interval" value="2.0

"/>

<param name="maxUrange" value="6.0"/>

<param name="maxRange" value="8.0"/>

<param name="xmin" value="-40.0"/>

<param name="ymin" value="-40.0"/>

<param name="xmax" value="40.0"/>

<param name="ymax" value="40.0"/>

<param name="delta" value="0.05"/>

Localization and Mapping

Gmapping - bringup

<!--Optimizer params-->

<param name="sigma" value="0.05"/>

<param name="kernelSize" value="1"/>

<param name="lstep" value="0.05"/>

<param name="astep" value="0.05"/>

<param name="iterations" value="5"/>

<param name="lsigma" value="0.075"/>

<param name="ogain" value="10.0"/>

<param name="lskip" value="0"/>

<param name="minimumScore" value="

140"/>

<!--Particle filter params -->

<param name="resampleThreshold"

value="0.5"/>

<param name="particles" value="80"/>

<!--Likelihood params-->

<param name="llsamplerange" value="

0.01"/>

<param name="llsamplestep" value="

0.01"/>

<param name="lasamplerange" value="

0.005"/>

<param name="lasamplestep" value="

0.005"/>

Localization and Mapping

Gmapping - bringup

<!--Odometry errors-->

<param name="srr" value="0.01"/>

<param name="srt" value="0.02"/>

<param name="str" value="0.01"/>

<param name="stt" value="0.02"/>

<param name="linearUpdate" value="0.5"/> <!--Process a scan each time the

robot translates this far-->

<param name="angularUpdate" value="0.436"/> <!--Process a scan each time

the robot rotates this far-->

<param name="temporalUpdate" value="-1.0"/> <!--Process a scan if the last

scan processed is older than the update time in seconds. A value less

than zero will turn time based updates off-->

Planner

Teb local planner

This package implements an online
optimal local trajectory planner for
navigation and control of mobile
robots as a plugin for the ROS
navigation package

The initial trajectory generated by a
global planner is optimized during
runtime

The current implementation
complies with the kinematics of
differential-drive robots

Planner

Teb local planner - Description

Teb needs as input:

An odometry message from the
mobile robot
An ObstacleArrayMsg (optional if
you will provide it a costmap), for
further information about the
message here

And it provides as output:

<name>/global_plan (nav_msgs

/Path)

<name>/local_plan (nav_msgs/

Path)

<name>/teb_poses (

geometry_msgs/PoseArray)

https://docs.ros.org/en/api/costmap_converter/html/msg/ObstacleArrayMsg.html

Planner

Teb local planner - Parameters

Robot configuration
parameters:

dynamic constraints of
the planner
footprint model

Robot

max_vel_x: 0.6 #0.1

max_vel_x_backwards: 0.3

max_vel_theta: 0.3 #15deg more or

less

acc_lim_x: 0.1 #was 1.0

acc_lim_theta: 0.3 #was 0.3

min_turning_radius: 0.0

footprint_model:

type: "polygon"

vertices: [[0.2, -0.2],

[-0.2, -0.2],

[-0.2, 0.2],

[0.2, 0.2]]

Planner

Teb local planner - Parameters

Frames parameters

Trajectory parameters

odom_topic: odom

map_frame: map

Trajectory

teb_autosize: True

dt_ref: 0.5

dt_hysteresis: 0.2

global_plan_overwrite_orientation:

True

max_global_plan_lookahead_dist: 2.0

feasibility_check_no_poses: 5

publish_feedback: true

Planner

Teb local planner - Parameters

Goal tolerance

Obstacles

GoalTolerance

xy_goal_tolerance: 0.15

yaw_goal_tolerance: 0.15

free_goal_vel: False

Obstacles

min_obstacle_dist: 0.20

include_costmap_obstacles: True

costmap_obstacles_behind_robot_dist: 1.0

obstacle_poses_affected: 20

costmap_converter_plugin: ""

costmap_converter_spin_thread: True

costmap_converter_rate: 5

inflation_dist: 0.2

include_dynamic_obstacles: false

Planner

Teb local planner - Parameters

Optimization

For further
information about
parameters you can
go here

Optimization

no_inner_iterations: 3

no_outer_iterations: 2

optimization_activate: True

optimization_verbose: false

penalty_epsilon: 0.04

weight_max_vel_x: 2

weight_max_vel_theta: 1

weight_acc_lim_x: 1

weight_acc_lim_theta: 1

weight_kinematics_nh: 1000

weight_kinematics_forward_drive: 200.0

weight_kinematics_turning_radius: 1

weight_optimaltime: 1

weight_obstacle: 100

http://wiki.ros.org/teb_local_planner

Move Base

move base

This package will be the connector between the planner and the perception

Its main task is to take a goal position as input and to publish the right velocities
in /cmd vel

The goal is sent using an Action topic:
move_base/goal (move_base_msgs/MoveBaseActionGoal)

In general the commands to move base are sent using actionlib

To set up move base there are different configuration files to create, one for the
generic move base, two both for the local and global costmap and one for the
common parameters.

Move Base

move base - Set up

move base params.yaml

max_planning_retries: 5

planner_patience: 10

number_of_recovery_behaviors: 3

planner_frequency: 5

controller_frequency: 10

allow_unknown: false

controller_patience: 3.0

oscillation_timeout: 10.0

oscillation_distance: 0.2

costmap common params.yaml

publish_voxel_map: false

transform_tolerance: 0.5

meter_scoring: true

obstacle_range: 7.0

raytrace_range: 8.0

footprint: [[0.2, -0.2],

[-0.2, -0.2],

[-0.2, 0.2],

[0.2, 0.2]]

Move Base

move base - Set up

local costmap params.yaml

local_costmap:

global_frame: map

robot_base_frame: base_footprint

update_frequency: 5.0

publish_frequency: 10.0

static_map: false

rolling_window: true

width: 7.0

height: 7.0

resolution: 0.03

global costmap params.yaml

global_costmap:

global_frame: map

robot_base_frame: base_footprint

update_frequency: 5.0

publish_frequency: 2.0

rolling_window: false

resolution: 0.05

width: 30

height: 30

origin_x: -15

origin_y: -15

Move Base

move base - Set up

local costmap plugin.yaml

obstacles_layer:

observation_sources: laser_scan_sensor

laser_scan_sensor: {sensor_frame: laser_frame, data_type: LaserScan,

topic: laser/scan, marking: true, clearing: true, min_obstacle_height:

0.0, max_obstacle_height: 5.0, obstacle_range: 6.0, raytrace_range: 7.0,

inf_is_valid: true}

inflater_layer:

inflation_radius: 0.4

cost_scaling_factor: 10.0

lethal_cost_threshold: 200

plugins:

- {name: obstacles_layer, type: "costmap_2d::VoxelLayer"}

Move Base

move base - Set up

global costmap plugin.yaml

obstacles_layer_g:

observation_sources: laser_scan_sensor

laser_scan_sensor: {sensor_frame: laser_frame, data_type: LaserScan,

topic: laser/scan, marking: true, clearing: true}

inflater_layer_g:

inflation_radius: 0.2

cost_scaling_factor: 10.0

lethal_cost_threshold: 200

plugins:

- {name: static_map, type: "costmap_2d::StaticLayer"}

- {name: inflater_layer_g, type: "costmap_2d::InflationLayer"}

recovery_behaviors:

- name: conservative_reset

type: clear_costmap_recovery/ClearCostmapRecovery

Move Base

move base - actionlib

Once move base is correctly initialized we have to send to it the goal position

The easiest way to give an input to move base is to send the goal through RViz

With this button you can send a 2D pose to move base through the topic
move base simple/goal

The message type is a geometry msgs/PoseStamped

If you want to avoid this use of this button, the recommended way to send goal to
move base is by using the SimpleActionClient

In this way we can be able to track the status of the goal

Actionlib

Actionlib - Client and Server interaction

The client and server then provide a simple API for users to request goals (on the
client side) or to execute goals (on the server side) via function calls and callbacks

Actionlib

Actionlib - Client and Server interaction
In order for the client and server to communicate, we need to define a few messages on
which they communicate:

Goal: to accomplish tasks using actions, a goal can be sent to an ActionServer by
an ActionClient. In the case of moving the base, the goal would be a
PoseStamped message that contains information about where the robot should
move to in the world.

Feedback: feedback provides server implementers a way to tell an ActionClient
about the incremental progress of a goal. For moving the base, this might be the
robot’s current pose along the path.

Result: a result is sent from the ActionServer to the ActionClient upon
completion of the goal. This is different than feedback since it is sent exactly
once. This is extremely useful when the purpose of the action is to provide some
sort of information. For move base, the result isn’t very important, but it might
contain the final pose of the robot.

Move Base

move base - SimpleActionClient

Let’s write a C++ program that sends one goal using the actionlib, these are the
important steps

First we need to include the right libraries:

include <move_base_msgs/MoveBaseAction.h>

include <actionlib/client/simple_action_client.h>

We define a convenience typedef for a SimpleActionClient that will allow us to
communicate with actions that adhere to the MoveBaseAction action interface:

typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBaseClient;

Move Base

move base - SimpleActionClient

Construct an action client that we’ll use to communicate with the action named
”move base” that adheres to the MoveBaseAction interface:

MoveBaseClient ac("move_base", true);

Wait for the action server to report that it has come up and is ready to begin
processing goals.

while(!ac.waitForServer(ros::Duration(5.0))){

ROS_INFO("Waiting for the move_base action server to come up");

}

Move Base

move base - SimpleActionClient

Then create a goal to send to move base using the move_base_msgs::MoveBaseGoal

message type which is included automatically with the MoveBaseAction.h header:

move_base_msgs::MoveBaseGoal goal;

//we’ll send a goal to the robot to move 1 meter forward

goal.target_pose.header.frame_id = "base_link";

goal.target_pose.header.stamp = ros::Time::now();

goal.target_pose.pose.position.x = 1.0;

goal.target_pose.pose.orientation.w = 1.0;

ROS_INFO("Sending goal");

ac.sendGoal(goal);

Move Base

move base - SimpleActionClient

The only thing left to do now is to wait for the goal to finish using the
ac.waitForGoalToFinish call which will block until the move base action is done
processing the goal we sent it

ac.waitForResult();

if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)

ROS_INFO("Hooray, the base moved 1 meter forward");

else

ROS_INFO("The base failed to move forward 1 meter for some reason");

Autonomous Navigation

Localization and Mapping

Grid map

Each cell is a binary random variable that
models the occupancy

occupied cell: p(mi) = 1
not-occupied cell: p(mi) = 0
no knowledge: p(mi) = 0.5

Often the world is assumed static

The cells are independent of each other

The last assumption is fundamental, we can
compute the probability distribution of a map
as the product of the individual cells

p(m) =
∏
i

p(mi)

Localization and Mapping

Grid map - Inverse range sensor model

Figure: from book Probabilistic Robotics, Thurn S., Burgard W., Fox D.

Localization and Mapping

Grid map - Inverse range sensor model

Figure: from book Probabilistic Robotics, Thurn S., Burgard W., Fox D.

TF listener

TF listener - Computing robot pose

In a project of autonomous exploration there is the need to know the pose of the
robot.

So far we manage the odometry message as the current pose of the robot.

In real-world applications this method could be very inaccurate due to unmodeled
effects that affect the computation of the odometry such as wheel slip,
imperfections in the ground, inaccuracy of encoders, and limitation of the
odometry model.

To overcome this problem, we integrated in our navigation stack a SLAM
algorithm (Gmapping) which, building a map of the environment, can
simultaneously refine the robot pose.

TF listener

TF listener - Computing robot pose

The fundamental requirements for move base
and Gmapping is that the robot has the tf
transform tree

Gmapping publishes a periodic update of the
transformation between the frame map and
odom, while the transformation between the
base footprint and odom is published by the
differential drive controller plugin in
simulation

To retrieve the robot pose we have to
compute the transformation between the
frame map (fixed) and the base footprint

TF listener

Tf listener - Code

It is not possible to directly subscribe to the /tf topic

We have to define a TF listener:

The tf package provides an implementation of a TransformListener to help make
the task of receiving transforms easier

#include <tf/transform_listener.h>

We create a TransformListener object. Once the listener is created, it starts
receiving tf transformations over the wire, and buffers them for up to 10 seconds

tf::TransformListener listener;

TF listener

TF listener - Code

We query the listener for a specific transformation:

try {

listener.waitForTransform(destination_frame, original_frame, ros::Time(0), ros::Duration

(10.0));

listener.lookupTransform(destination_frame, original_frame, ros::Time(0), transform);

} catch (tf::TransformException ex) {

ROS_ERROR("%s",ex.what());

}

Let’s take a look at the four arguments:

We want the transform from frame /original frame to /destination frame.
The time at which we want to transform. Providing ros::Time(0) will just get us the
latest available transform.
The object in which we store the resulting transform.

TF listener

TF listener - Code

The waitForTransform() takes four arguments:

Wait for the transform from this frame...
... to this frame,
at this time, and
timeout: don’t wait for longer than this maximum duration.

This function will actually block until the transform between the two frames
becomes available OR until the timeout has been reached.

Remote connection

SSH protocol

Secure SHell (SSH) is a protocol that allows you to securely connect to a remote
computer.

$ sudo apt install openssh-client

The client and server must be connected to the same net

To connect to the remote computer use this command:

$ sudo ssh remote_name@192.168.X.X

To connect we should know the name of the remote computer, the password, and
the IP address

Once the connection is done, a terminal on the remote computer will appear

Remote connection

ROS across multiple machines

To pass files to the remote computer we can use git clone or softwares which
exploit the SSH protocol to exchange files.

With mobile robots is important to have feedback of what is happening on the
robot. ROS is a distributed computing environment, any node may need to
communicate with any other node, at any time.

We want to configure ROS on both the robot and the ground station:

We only need one master. Select one machine to run it on.
All nodes must be configured to use the same master, via ROS MASTER URI
There must be complete, bi-directional connectivity between all pairs of machines,
on all ports

Remote connection

ROS across multiple machines

We have to run these commands on both machines:

export ROS_IP=ip_address

export ROS_MASTER_URI=http://ip_address:11311

These commands can be included in the bashrc file in order to be executed at
every opening of a terminal.

We have to define where the master goes defining the ip_address of the
ROS_MASTER_URI inserting one of the two machines IP.

As ROS_IP we have to put the one of each machine

	Introduction
	Course description
	Setup your PC

	Programming for robotics
	ROS - Introduction
	ROS - Programming
	ROS - Tools
	ROS - Simulation
	ROS - Sensors & controllers
	ROS - Motion planning

	Motion control of robotic manipulators
	ROS - Kinematics and dynamic control

	Robotic vision
	ROS - Vision sensors
	ROS - Computer vision
	ROS - Visual Servoing

	Control of mobile robots
	Autonomous navigation and path planning

	Autonomous Navigation

