
Robotics Lab: Homework 1
Building your robot manipulator

Mario Selvaggio

1



Mario Selvaggio Robotics Lab: Homework 1

This document contains the homwework 1 of the Robotics Lab class.

Building your robot manipulator

The goal of this homework is to build ROS packages to simulate a 4-degrees-of-freedom robotic manipulator

arm into the Gazebo environment. The student is requested to address the following points and provide a

detailed report of the employed methods. In addition, a personal github repo with all the developed code

must be shared with the instuctor. The report is due in one week from the homewerk release.

1. Create the description of your robot and visualize it in Rviz

(a) Download the arm_description package from the repo https://github.com/RoboticsLab2024/

arm_description.git into your ros2_ws using git commands

(b) Within the package create a launch folder containing a launch file named display.launch that

loads the URDF as a robot_description ROS param and starts the robot_state_publisher

node, the joint_state_publisher node, and the rviz2 node. Launch the file using ros2 launch.

Note: To visualize your robot in rviz you have to changhe the Fixed Frame in the lateral bar

and add the RobotModel plugin interface. Optional: save a .rviz configuration file, thad auto-

matically loads the RobotModel plugin by default, and give it as an argument to your node in the

display.launch file

(c) Substitute the collision meshes of your URDF with primitive shapes. Use <box> geometries of

reasonabe size approximating the links. Hint: Enable collision visualization in rviz (go to the

lateral bar > Robot model > Collision Enabled) to adjust the collision meshes size

2. Add sensors and controllers to your robot and spawn it in Gazebo

(a) Create a package named arm_gazebo

(b) Within this package create a launch folder containing a arm_world.launch file

(c) Fill this launch file with commands that load the URDF into the /robot_description topic and

spawn your robot using the create node in the ros_gz_sim package.

Hint: follow the iiwa.launch.py example from the package iiwa_ros2: https://github.com/

ICube-Robotics/iiwa_ros2/tree/main. Launch the arm_world.launch file to visualize the

robot in Gazebo.

(d) Add a PositionJointInterface as a hardware interface to your robot using ros2_control.

Create an arm_hardware_interface.xacro file in the arm_description/urdf folder, contain-

ing a macro that defines the hardware interface for the joint, and include it in your main

arm.urdf.xacro file using xacro:include. Specifically, define the joint using ros2_control

and specify the hardware interface as PositionJointInterface.

Hint: remember to rename your URDF file to arm.urdf.xacro, add the string

xmlns:xacro="http://www.ros.org/wiki/xacro" within the <robot> tag, and load the URDF

in your launch file using the xacro routine

(e) Add inside the arm.urdf.xacro the commands to load the joint controller configurations from

the .yaml file and spawn the controllers using the controller_manager package. Then, launch

the robot simulation in Gazebo and demonstrate how the hardware interface is correctly loaded

and connected.

(f) Add joint position controllers to your robot: create a arm_control package with a

arm_control.launch file inside its launch folder and a arm_control.yaml file within its config

folder.

2

https://github.com/RoboticsLab2024/arm_description.git
https://github.com/RoboticsLab2024/arm_description.git
https://github.com/ICube-Robotics/iiwa_ros2/tree/main
https://github.com/ICube-Robotics/iiwa_ros2/tree/main


Mario Selvaggio Robotics Lab: Homework 1

(g) Fill the arm arm_control.yaml adding a joint_state_bradcaster and a

JointPositionController to all the joints

(h) Create an arm_gazebo.launch file into the launch folder of the arm_gazebo package loading the

Gazebo world with arm_world.launch and spawning the controllers within arm_control.launch.

Launch the simulation and check if your controllers are correctly loaded.

3. Add a camera sensor to your robot

(a) Go into your arm.urdf.xacro file and add a camera_link and a fixed camera_joint with

base_link as a parent link. Size and position the camera link opportunely

(b) Create an arm_camera.xacro file in the arm_gazebo/urdf folder, add the gazebo sensor reference

tags and the gz-sim-sensors-system plugin to your xacro.

Hint: define a xacro:macro inside your arm_camera.xacro file containing the <gazebo> tag and

import it in arm.urdf.xacro using xacro:include.

(c) Launch the Gazebo simulation with using arm_gazebo.launch, and check if the image topic is

correctly published using rqt_image_view.

Hint: remember to add the ros_ign_bridge.

(d) Optionally: You can create a camera.xacro file and add it to your robot URDF using

<xacro:include>

4. Create a ROS publisher node that reads the joint state and sends joint position commands to your

robot

(a) Inside the arm_controller package vreate a ROS C++ node named arm_controller_node. The

dependencies are rclcpp, sensor_msgs and std_msgs. Modify opportunely the CMakeLists.txt

file to compile your node. Hint: use add_executable and ament_target_dependencies com-

mands

(b) Create a subscriber to the topic joint_states and a callback function that prints the current

joint positions. Note: the topic contains a sensor_msgs/JointState

(c) Create publishers that write commands onto the /position_controller /command topics. Note:

the command is a std_msgs/msg/Float64MultiArray

3


	Building your robot manipulator

