
Robotics Lab: Homework 3
Implement a vision-based task

Mario Selvaggio

1

Mario Selvaggio Robotics Lab: Homework 3

This document contains the homwework 3 of the Robotics Lab class.

Implement a vision-based task

The goal of this homework is to implement a vision-based controller for a 7-degrees-of-freedom robotic ma-

nipulator arm into the Gazebo environment. The ros2_kdl_package package (link here) and the ros2_iiwa

package (link here) must be used as starting point. The student is requested to address the following points

and provide a detailed report of the employed methods. In addition, a personal github repo with all the

developed code must be shared with the instructor. The report is due in one week from the homework

release.

1. Construct a gazebo world inserting a blue colored circular object and detect it via the vision_opencv

package (link here). A template for the implementation is provided here.

(a) Go into the iiwa_description package of the ros2_iiwa stack. There you will find a folder

gazebo/models containing the aruco marker model for gazebo. Taking inspiration from this, cre-

ate a new model named spherical_object that represents a 15 cm radius blue colored spherical

object and import it into a new Gazebo world as a static object in x = 1, y = −0.5, z = 0.6. Save

the new world into the /gazebo/worlds/ folder.

(b) Equip the robot with a camera at the end-effector that loads optionally setting arguments from the

iiwa.launch.py file (it is recommended to use <xacro:if value="${use_vision}">. Modify

the launch file to load the robot with the camera into the new world specifying the argument

use_vision:=true. make sure the robot sees the imported object with the camera, otherwise

modify its initial configuration (Hint: check it with rqt_image_view).

(c) Once the object is visible in the camera image, use the ros2_opencv package (and specifically

the ros2_opencv_node.cpp) to subscribe to the simulated image, detect the spherical object in

it using openCV functions1, and republish the processed image.

2. Implement a look-at-point vision-based controller

(a) Spawn the robot with the velocity command interface into a world containing an aruco tag. In

the ros2_kdl_package package create a ros2_kdl_vision_control.cpp node that implements

a vision-based controller for the simulated iiwa robot. The controller should be able to perform

the following two tasks (it is recommended to switch between the two on the basis of a task:=

positioning|look-at-point argument passed to the node)

i. aligns the camera to the aruco marker with a desired position and orientation offsets

ii. performs a look-at-point task using the following control law

q̇ = k(LJc)
†sd +Nq̇0, (1)

where sd = [0, 0, 1] is a desired value for

s =
cPo

||cPo||
∈ S2, (2)

that is a unit-norm axis connecting the origin of the camera frame and the position of the

object cPo. The matrix Jc is the camera Jacobian (to be computed), while L(s) maps lin-

ear/angular velocities of the camera to changes in s

L(s) =

[
− 1

||cPo||
(
I − ssT

)
S(s)

]
R ∈ R3×6 with R =

[
Rc 0

0 Rc

]
, (3)

1https://learnopencv.com/blob-detection-using-opencv-python-c/

2

https://github.com/RoboticsLab2024/ros2_kdl_package
https://github.com/RoboticsLab2024/ros2_iiwa
https://github.com/RoboticsLab2024/ros2_vision/tree/main
https://github.com/RoboticsLab2024/ros2_vision/tree/main/ros2_opencv
https://learnopencv.com/blob-detection-using-opencv-python-c/

Mario Selvaggio Robotics Lab: Homework 3

where S(·) is the skew-simmetric operator, Rc the current camera rotation matrix. Finally,

N =
(
I − (LJ)†LJ

)
is the matrix spanning the null space of the LJ matrix.

Show the tracking capability by manually moving the aruco marker around via the gazebo user

interface and reporting the velocity commands sent to the robot.

(b) Develop a dynamic version of the vision-based contoller. Track the reference velocities generated

by the look-at-point vision-based control law with the joint space and the Cartesian space inverse

dynamics controllers developed in the previous homework.

Merge the two controllers and enable the joint tracking of a linear position trajectory and the

look-at-point vision-based task. Hint: Replace the orientation error eo with respect to a fixed

reference (used in the previous homework), with the one generated by the look-at-point vision-

based controller. Plot the results in terms of commanded joint torques and Cartesian error norm

along the performed trajectory.

3

	Implement a vision-based task

