
Robotics Lab: Homework 4
Control a mobile robot to follow a trajectory

Mario Selvaggio

1



Mario Selvaggio Robotics Lab: Homework 4

This document contains homework 4 of the Robotics Lab class.

Control a mobile robot to follow a trajectory

The goal of this homework is to implement an autonomous navigation software framework to control a mobile

robot. The rl_fra2mo_description package must be used as a starting point for the simulation. The

student is requested to address the following points and provide a detailed report of the methods employed.

In addition, a personal GitHub repo with all the developed code must be shared with the instructor. The

report is due in one week from the homework release.

1. Construct a gazebo world and spawn the mobile robot in a given pose

(a) Launch the Gazebo simulation /launch/gazebo_fra2mo.launch.py and spawn the mobile robot

in the world leonardo_race_field in the pose

x = −3 m, y = 5 m, Y = −90 deg,

with respect to the map frame. The argument for the yaw in the call of spawn_model is Y.

(b) Modify the world file of leonardo_race_field.sdf moving the obstacle 9 in position:

x = −3 m, y = −3.3 m, z = 0.1 m, Y = 90deg .

(c) Place the ArUco marker number 1151 on obstacle 9 in an appropriate position, such that it is

visible by the mobile robot’s camera (you have to add it to the robot) when it comes in the

proximity of the object.

2. Using the Nav2 Simple Commander API enable an autonomous navigation task

(a) Define 4 goals in a dedicated .yaml file. They must have the following poses with respect to the

map frame:

• Goal 1: x = 0 m, y = 3 m, Y = 0deg;

• Goal 2: x = 6 m, y = 4 m, Y = 30deg;

• Goal 3: x = 7.0 m, y = −1.4 m, Y = 180 deg;

• Goal 4: x = −1.6 m, y = −2.5 m, Y = 75deg.

(b) Modify follow_waypoint.py or reach_goal.py to send the defined goals to the mobile platform

in a given order. Go to the next one once the robot has arrived at the current goal. The order of

the explored goals must be Goal 3 → Goal 4 → Goal 2 → Goal 1.

(c) Record a bagfile of the executed robot trajectory and plot it in the XY plane.

3. Map the environment tuning the navigation stack’s parameters

(a) Modify, add, remove, or change pose, the previous goals to get a complete map of the environment,

and save it (put in the report the .png of the map).

(b) Change the parameters of the navigation config (try at least 4 different configurations). The

suggested parameters that you can change are:

• In file slam.yaml: tune parameters minimum_travel_distance, minimum_travel_heading2,

resolution and transform_publish_period.

1Generate it here.
2For these first two parameters observe what happens launching fra2mo_slam.launch.py

2

https://chev.me/arucogen/


Mario Selvaggio Robotics Lab: Homework 4

• In file explore.yaml: change the inflation_radius and cost_scaling_factor for global

and local costmaps.

(c) Comment on the results you get in terms of robot trajectories, execution timings, map accuracy,

etc.

4. Vision-based navigation of the mobile platform

(a) Create a launch file running both the navigation and the aruco_ros node using the robot camera

you previously added to the robot model.

(b) Implement a 2D navigation task following this logic

• Send the robot in the proximity of obstacle 9.

• Make the robot look for the ArUco marker. Once detected, retrieve its pose with respect to

the map frame.

• Return the robot to the initial position.

(c) Publish the Aruco pose as TF following the example at this link.

NOTE: to make correction easier, modify, when necessary, the launchfiles such that Rviz automatically

opens with the proper configuration (all configuration files are in the rviz_conf).

3

https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Writing-A-Tf2-Static-Broadcaster-Cpp.html

	Control a mobile robot to follow a trajectory

