Robotics Lab: Setup your PC

Week 1

Mario Selvaggio

Mario Selvaggio Robotics Lab: Setup your PC

This is a description of how to set up and move your first steps in a native Linux Ubuntu and ROS installation.
Additionally, instructions on how to install and get started with Git version control systems and Docker
containers are provided.

Linux

Linux is family of open-source Unix-like operating systems based on the Linux kernel (first release 1991).
Ubuntu is one of the most popular Linux distributions, it is released every six months, with Long-Term
Support (LTS) releases every two years. New releases make the system compatible with new hardware. The
last LTS release at writing time is 24.04 LTS. To get maximum support it generally good to choose the
second-most recent LTS distribution.

Why do we use Linux? It is safe, it can be easily configured and customized for your needs, it is fast.

Installation

Download and install the desktop image which is appropriate for your machine. For this course it is rec-
ommended to install Ubuntu 22.04 LTS (Jammy Jellyfish). You will need at least 15 GB of space in your
root Ubuntu partition to install and work with ROS (recommended 40-50 GB). Comprehensive installation
instructions can be found here. After installation, open a terminal and update your installation to the newest
version with

$ sudo apt update
$ sudo apt upgrade

If you are not familiar with how to use the Linux command line, have a look at this tutorial. Some basic
Linux commands are given in the following section.

Basic Linux commands

In the following, fundamental commands you will be using along the course are explained. To test a command
it must be typed into a terminal as indicated. We recommend you to use terminator, that allows you to
have multiple terminals in one window. It can be installed with

$ sudo apt update
$ sudo apt install terminator

man: is used to display the user manual of any command that we can run on the terminal It provides a
detailed view of the command which includes name, synopsis, description, options, and other information.
Example use

$ man 1s

pwd: print working directory. When you first open the terminal, you are in the home directory of your user.
Use this command to know which directory you are currently in. It gives us the absolute path, which means
the path that starts from the root

$ pwd
1s: lists the files of the current directory. You can see hidden files using the option -a, e.g.
$ 1s -a

cd: changes the directory. It takes as argument the destination folder path. When you are in the home
folder, and you want to go to the Downloads folder, you can use

$ cd Downloads

http://www.releases.ubuntu.com/22.04/
https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop
https://tutorials.ubuntu.com/tutorial/command-line-for-beginners

Mario Selvaggio Robotics Lab: Setup your PC

To navigate to the upper-level directory
$ cd ..
To navigate to the home directory
$ cd
mkdir & rmdir: used to create or remove a folder

$ mkdir newFolder
$ rmdir newFolder

touch: used to create a file. For instance
$ touch newFile.txt
rm: used to delete a file. Using the option -r deletes recursively all the elements inside a directory
$ rm -r
cp: used to copy files. It takes two arguments as follows
$ cp src_file dest_file
mv: used to move (rename) files. It takes two arguments as follows
$ mv text new
locate: used to find a file in a Linux system
$ locate file
Remember to to locate newly created files
$ sudo updatedb
echo: used to add data to a text file
$ echo "hello, my name is Mario" > newFile.txt
cat: displays the content of a file
$ cat /home/$USER/.bashrc
sudo: command with administrative or root privileges
$ sudo nano /etc/hosts
chmod: used to make a file executable and to change the permissions
$ chmod +x numbers.py
when your application needs to access to USB devices
$ chmod 777 /det/ttyUSBO
ping: to check your connection to a server
$ ping www.google.it
grep: print lines matching a pattern. If you want to search the occurrence of a word into a text file
$ grep -i "string" file

the recursive option -R to search the occurrence in multiple file
|: (pipe) redirects the output of a command (left side) to another command

$ cmdl | cmd2
$ 1s | grep "string"

Mario Selvaggio Robotics Lab: Setup your PC

Robot Operating System (ROS 2)

Installation

Akin to Linux distributions (e.g. Ubuntu), a ROS distribution is a versioned set of ROS packages. For the
this course, we recommend installing ROS 2 Humble.
You have 2 options:

1. Installing it on the native Ubuntu installation following these instructions
2. Use the ROS2 Docker container (see later) which is provided to you by the instructor.

Important: For the installation of ROS you have to configure your Ubuntu repositories to allow “restricted,”
“universe,” and “multiverse”. Please follow the Ubuntu guide for instructions on how to do this. Log out,
then log in again.

Check your installation
Open a Terminal window and run the following commands

$ source /opt/ros/foxy/setup.bash
$ ros2 run demo_nodes_cpp talker

In another terminal, run a turtlesim node

$ source /opt/ros/foxy/setup.bash
$ ros2 run demo_nodes_py listener

You should see the talker publishing messages and the listener saying it is hearing those messages. This
verifies both the C++ and Python APIs are working properly.

Setup your workspace

Once you have a working ROS installation. Open a terminal and source the environment with
$ source /opt/ros/humble/setup.bash

If you do not want to do this for every terminal you open, run the following command
$ echo "source /opt/ros/humble/setup.bash" >> ~/.bashrc

this adds the source command to your . bashrec file, that is sourced every time you open a new shell (terminal).
Create a workspace wit the following command

$ mkdir -p “/ros2_ws/src
$ cd “/ros2_us

Build the workspace
$ colcon build
Source your workspace with

$ source install/local_setup.bash

https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/Installation.html
https://help.ubuntu.com/community/Repositories/Ubuntu

Mario Selvaggio Robotics Lab: Setup your PC

Git - Version Control System (VCS)

A VCS is used to track modifications to a source code repository. It tracks a running history of changes to a
code base and helps resolve conflicts when merging updates from multiple contributors. A detailed historical
record of the projects life allows to instantly revert the codebase back to a previous point in time. By far, the
most widely used modern version control system in the world today is Git. To install Git on your machine
follow the following instructions

$ sudo apt update
$ sudo apt install git

Check your installation
$ git --version
Configure your Git username and email

$ git config --global user.name "Emma Paris"
$ git config --global user.email "eparis@atlassian.com"

Working with Git

A repository is a git-tracked folder, commits are used to create snapshots of your folder content. Branches
are history of commits that can be merged at some point. To setup a local repository

$ cd /path/to/your/existing/code
$ git init

If a project has already been set up in a remote repository
$ git clone <repo url> <folder name>

If you use git clone to set up your local repository, it is already configured for remote collaboration. If you
used gitinit to make a fresh repo, you’ll have no remote repo to push changes to. You can configure it by

$ git remote add origin <remote_repo_url>
Once you have linked the remote repo you can push local branches to it
$ git push -u origin <local_branch_name>

The git add command adds a change in the working directory to the staging area, while the git commit
command captures a snapshot of the project’s currently staged changes

$ git add <files>
$ git commit -m "commit message"

Example

$ cd /path/to/project

$ echo "test content for git tutorial" >> CommitTest.txt
$ git add CommitTest.txt

$ git commit -m "added CommitTest.txt to the repo"

The git status command displays the state of the working directory and the staging area
$ git status
The git 1og command displays committed snapshots

$ git log

https://www.atlassian.com/git/tutorials/what-is-git

Mario Selvaggio Robotics Lab: Setup your PC

When you have found a commit reference to the point in history you want to visit, you can utilize the git
checkout. Checking out a specific commit will put the repo in a “detached HEAD” state. This means you
are no longer working on any branch. From the detached HEAD state, we can execute

$ git checkout -b new_branch_without_crazy_commit

This will create a new branch and switch to that. At this point, can continue work on this new branch.
git revert is the best tool for undoing shared public changes, git reset is best used for undoing local
private changes

$ git revert HEAD
will create a new commit with the inverse of the last commit
$ git reset --hard ale8fb5

In this way, commits no longer exist in the commit history but if we have a shared remote repository git will
assume that the branch being pushed is not up to date.

The git pull command is used to fetch and download content from a remote repository and immediately
update the local repository to match that content

$ git pull <remote>
You might find useful working with a GUI

$ sudo apt-get install git-gui

Git and ROS

Github

You can use www.github.com to setup your remote repo or cloning an existing one. After you sign up, you
have to generate a personal access token (password) in Settings — Developer Settings — Personal access
token (classic) and click on generate new (classic) token.

www.github.com

Mario Selvaggio Robotics Lab: Setup your PC

Docker

Docker is tool for managing virtualization entities in the OS. Using docker is useful when you want to optimize
the development, testing, and deployment of your robotic application. Your software will be coming with
its dependencies and libraries in an entity called container. A container are the live, running instances
of docker images that contain executable application source code as well as all the tools, libraries, and
dependencies that the application code needs. Using docker allows spending less time installing the correct
versions of libraries and software or understanding what is wrong with the installed libraries. Docker is less
resource-intensive than virtual machines that emulate hardware and hosts a whole operating system. You
can find more information about docker here.

Install Docker

To install docker on your Linux Ubuntu you need to run the following commands:

$ sudo apt update

$ sudo apt install apt-transport-https curl gnupg-agent ca-certificates software-
properties-common -y

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

$ sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
focal stable"

$ sudo apt install docker-ce

Working with Docker

Now you can use docker commands, let’s try installing a simple image
$ sudo docker run hello-world

Note that the hello world image does not exist locally, and is pulled from docker hub. Note: Superuser
permissions are requested. If you want to avoid invoking sudo you can add the currently logged-in user to
the docker group

$ sudo usermod -aG docker $USER
$ newgrp docker

Check the images in your stack with
$ docker images
To remove images from your stack
$ docker image rmi <image_id> -f
You can create and start a container from a given image. For instance, the following code

$ docker create -it --name ubul ubuntu /bin/bash
$ docker start -i ubul

creates the container ubul out of the ubuntu image.
You can use docker run to simultaneously create and start a new container. The syntax is the following

$ docker run -it --name <container_name> <image_name> /bin/bash
To check what are the containers running, in a terminal you can type

$ docker ps

https://docs.docker.com/get-started/overview/
https://hub.docker.com/

Mario Selvaggio Robotics Lab: Setup your PC

Use the option -a if you want to list all the containers, regardless of their state.
Restart, stop or removing a container is done by

$ docker restart <container_name>
$ docker stop <container_name>
$ docker rm <container_name>

To save an image to a file

$ sudo docker save img_name -o <saved_img_name>
To load an image from a file

$ sudo docker load -i <img_file_name>

If you work with a versioned image, you might want to do this after you have modified and committed the
container with

$ docker commit c3f279d17e0a svendowideit/testimage:version3

Note: Files created into containers belong to the container user, cannot be modified from outside, and are
lost if you remove the container. It is good practice to create and share a folder in your computer as a
volume. To do this, you can add -v option to docker run command, for example

docker run -v </local_folder>:<container_folder>:rw ... —--name=<container_name> <
image> bash

To let the container share the host network you can use the —-network option. You have options to share
video, and so on. As you add options, typing the command into a terminal can be difficult. In ubuntu you
can create .sh script files containing a sequence of commands.

An example is provided below

#!/bin/bash
xhost +

docker run -it --privileged -v /dev/bus/usb:/dev/bus/usb \
--env=LOCAL_USER_ID="$(id -u)" \

-v "/dev:home/dev/:rw \

-v /tmp/.X11l-unix:tmp/.X11l-unix:ro \

-e DYSPLAY=:0 \

--network host \

--workdir="/home/dev/" \

--name=rosl-noetic osfr/ros:noetic-desktop bash

You can find all the docker scripts useful for this course at this link https://github.com/RoboticsLab2024/
ros2_docker_scripts.

https://github.com/RoboticsLab2024/ros2_docker_scripts
https://github.com/RoboticsLab2024/ros2_docker_scripts

Mario Selvaggio Robotics Lab: Setup your PC

C++ Programming

ROS2 is language agnostic: you can use either C++ or Python to develop your robotic application. C++
is fast and versatile, it can be used both for high-level reasoning and for low-level control, especially if you
are chasing performance. Python is a high-level programming language, very useful for sensor elaboration,
learning and similar. It can be used if you don’t need performance.

We will be using C++ during the course. It is recommended to refresh your C++ skills using any C++
tutorial, e.g. https://www.learncpp.com/. Basic concepts behind C++ programming are provided in the
following.

Create your first program
In a folder, create a file hello_world.cpp and paste the following code inside
#include <stdio.h>
int main() {
printf("Hello, world!\n");

return 0;

}
In a terminal, navigate to your working folder and execute the following command to compile
$ cc hello_world.cpp -o hello_world
or
$ gcc hello_world.cpp -o hello_world
If it does not work try
$ sudo apt install build-essential
To execute your program, run it with
$./ hello_world

If you see some printed output, you have successfully created your first C++ program.

Classes

A class represents user-defined data types grouping together related pieces of information. Example: Robot
class.

#include <string>
#include <iostream>

using namespace std;

class Robot {
public:
Robot(string _n, int _x, int _y)
{
robot_name = _n;
positionX = _x;

https://www.learncpp.com/

Mario Selvaggio

Robotics Lab: Setup your PC

positionY = _y;
}
string getName(){return robot_name;}
int getPositionX(){return positionX;};
int getPositionY(){return positionY;};
void move (int

x, int _y){positionX = _x; positionY = _y;} ;

private:
string robot_name = "";
int positionX;
int positionY;

};

int main() {

1
int position_y = 2;

int position_x

string name = "my_robot";

Robot r(name, position_x, position_y);

cout << r.getName() << " is created in x = " << r.getPositionX()

<< ", y =" << r.getPositionY() << " position \n";

r.move(3,4);

cout << r.getName() << " is moved in x = " << r.getPositionX()
<< ", y =" << r.getPositionY() << " position \n";
return 0;

}

Pointers

Allow the data manipulation in a flexible way. Manipulating the memory addresses of data can be more
efficient than manipulating the data itself. In C4++ &x evaluates the address of the variable x in memory,
*(&x) takes the address of x and dereferences it. An example program pointers.cpp is provided below

#include <iostream>
using namespace std;
int main() {
int traj_length = 6;
int robot_trajectoryl[traj_length] = {1,2,3,4,5,6};

cout << "The initial trajectory is:" << endl;

for(int i = 0; i < traj_length; i++){cout << robot_trajectory[i] << endl;?}

10

Mario Selvaggio Robotics Lab: Setup your PC

cout << endl;

// declare a pointer to an integer array

int* robot_trajectory_ptr;

// assign

robot_trajectory_ptr = &robot_trajectory[0];
// modify the trajectory acting on its pointer
robot_trajectory_ptr[2] = 10;

cout << "The modified trajectory is:" << endl;
for(int i = 0; i < traj_length; i++){cout << robot_trajectory[i] << endl;}
cout << endl;

return O;

Make & CMake

Make is a building tool that automates building process and is typically used when you have a complex
compilation structure for your program. To compile using make create a makefile in your src folder containing

all: pointers
pointers: pointers.o
g++ -o pointers pointers.cpp
and compile your program running
$./ make
CMake automatizes the generation of the makefile. It acts in two stages
$./ cmake
generates makefile using configuration file CMakeLists.txt. After you can compile using
$./ make
A minimal example file is

CMakeLists files in this project can

refer to the root source directory of the project as ${POINTERS_SOURCE_DIR} and
to the root binary directory of the project as ${POINTERS_BINARY_DIR}.
cmake_minimum_required (VERSION 2.8.11)

project (POINTERS)

include_directories ("${CMAKE_CURRENT_SOURCE_DIR}")
Add executable called "Pointers" that is built from the source files

"pointers.cxx". The extensions are automatically found.

add_executable (Pointers pointers.cpp)

11

	Linux
	Installation
	Basic Linux commands

	Robot Operating System (ROS 2)
	Installation
	Check your installation
	Setup your workspace

	Git - Version Control System (VCS)
	Working with Git
	Git and ROS

	Github

	Docker
	Install Docker
	Working with Docker

	C++ Programming
	Create your first program
	Classes
	Pointers
	Make & CMake

