Robotics Lab
Master’s Course in Automation Engineering and Robotics

Academic Year 2024/2025

Prof. Mario Selvaggio
E-mail: mario.selvaggio@unina.it
Website: http://wpage.unina.it/mario.selvaggio/index.html


mailto:mario.selvaggio@unina.it
http://wpage.unina.it/mario.selvaggio/index.html

Syllabus

Course setup Manipulation
Course description Kinematic and dynamic control
Setup your PC Robot vision

ROS Essentials Vision sensors
ROS 2 - Basics Computer vision
ROS 2 - Workspace Autonomous navigation
ROS 2 - Tools Autonomous navigation and path
ROS 2 - Simulation planning

ROS 2 - Sensors & controllers






Course description

Aim of the course: introduce students to a variety of tools and concepts useful to
robotic engineers. Use the Robot Operating System (ROS 2) to complete a robotics
project

Prerequisites: there are no formal prerequisites. Basic knowledge of the following
tools can make the life a bit easier

e Linux operating system (Ubuntu)

e Software versioning (Git)

e Programming languages (C/C++)
Robot Operating System (ROS 2)

Docker containers




Course description

Student learning outcomes

e Understand the ROS 2 architecture and tools
e Create ROS 2 C+4+ programs using libraries

e Develop applications for a robotic system

Job opportunities for robotics engineers

e Check out this video



https://youtu.be/4exT9R0lKLE?si=7K4koNT-JdVbx-4w&t=337

Course description

Partecipation

e Hand-on classes in which you learn by doing are scheduled during the course. You
have to be physically present to hand them in. Homeworks will be assigned on

those days
Collaboration policy

e Collaboration on assignments is encouraged to share ideas and solve problems, but
you must write your own code

e Students are expected to abide by the Honor Code. Honest and ethical behavior is
expected at all times

e The work may be carried out individually or in a group of maximum 3-4 people. In
the latter case, the work carried out by each group member must be clearly

evidenced



Course description

Evaluation
e Four homeworks will be released throughout the course, they must be sent in the
form of a report one week after release date. Each homework will count for 25%
e The final project also must be sent in the form of a report and discussed on the
day of the exam
e Video of some previous years projects (2020, 2021, 2022, 2023)

Grading

e Homeworks: 50%
e Project: 25%
e Oral: 25%


https://www.youtube.com/watch?v=db1AFCl3g_o
https://www.youtube.com/watch?v=YBMJIPK96lY
https://www.linkedin.com/posts/jocacace_what-a-fantastic-year-for-my-course-robotics-activity-7086999450019147776-6I25/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/mario-selvaggio-ab7b9198_robotics-lab-automation-activity-7144372540784705536-QVly?utm_source=share&utm_medium=member_desktop

Setup your PC

This course requires you to set up your PC. You'll find instructions on how to install
and get familiar with the following computer software tools in a separate document
(link). Here the main tools you must get familiar with

e Linux
To develop ROS applications, you need to preferably work in a Ubuntu
environment. Install Ubuntu 22.04 LTS from https://ubuntu.com/

¢ ROS 2
Set of libraries and tools used to building robotics applications. You need to
install ROS 2 and follow the preliminary tutorials on https://www.ros.org/


https://ubuntu.com/
https://www.ros.org/

Setup your PC

e Version control software (VCS)
Git is a VCS used to share code and keep track of it. Create an account on
https://github.com/ to host your Git repositories

e Docker
Tool for creating and managing containers to run your applications anywhere.
Visit https://www.docker.com/ for more information

e Computer programming
It is *highly recommended* to refresh your C++ skills using any C++ tutorial,
e.g. https://www.learncpp.com/


https://github.com/
https://www.docker.com/
https://www.learncpp.com/

10



ROS - Introduction

History of ROS (Robot Operating System)
e Originally started in 2007 at the Willow Garage and Stanford Artificial Intelligence
Laboratory under GPL license

e The goal was to establish a standard way to program robots while offering
off-the-shelf software components easily integrable in custom robotic applications

e Since 2013 managed by Open-Source Robotics Foundation, now Open Robotics®
e De facto standard for robot programming in many university, companies etc.

e The goal of the ROS 2 project is to adapt to recent changes, leveraging what is
great about ROS 1 and improving what isn't

"https://www.openrobotics.org/

11


https://www.openrobotics.org/

ROS - Introduction

ROS main features

e Code sharing and reuse (do not reinvent the wheel)

e Distributed, modular design (nodes grouped in packages, scalable)

e Language independent (C++, Python, Java, ...)

e Individual programs communicate over defined APl (ROS messages, services, etc.)
e Easy testing (ready-to-use)

e Vibrant community & collaborative environment

e Many robots are using ROS: https://robots.ros.org/

12


https://robots.ros.org/

ROS - Introduction

What is ROS?
e ROS is not an operating system rather a set of open source software libraries and
tools that help you build robot applications

e From drivers to state-of-the-art algorithms, to user interfaces, ROS provides
powerful developer tools that allow you to focus on the development of your robot

application

#ROS = of' + 1Rk + # + SR

plumbing tools capabilities community

13



ROS - Introduction

Plumbing (the computation graph)

e At its core, ROS provides a message-passing system, often called “middleware” or
“plumbing”, that handles communication

e ROS processes are represented as nodes in a graph structure connected by edges

by which they communicate via the ROS’s built-in and well-tested messaging
system

eleop_turtle

rqt_gui_py_node_2483

14



ROS - Introduction

Plumbing (Cont’d)

e Nodes can publish or subscribe to named topics, can act as client or server for
other nodes, or set or retrieve shared data from a communal database called the
parameter server

e One node usually is a complex combination of publishers, subscribers, service
servers, service clients, action servers, and action clients, all at the same time

Message

(Topics, Services, Actions, Parameters)
Node 1 Node 2

[ N Topic 3

Service Request

L

| seceaen
‘ Service Response
( Action Goal

DR L.

Action Feedback

Action Result

Parameters | | Parameters

Write Read 15



ROS - Introduction

Plumbing (Cont’d)

For

AT UEBOT 3]

instance, for the turtlebot

a node retrieves laser data

a node performs localization &
mapping

a node controls wheel motors

a node gives velocity commands to
the wheels

16



ROS - Introduction

Tools

e Building robot applications is challenging. You have all the difficulties of any
software development effort combined with the need to interact asynchronously

with the physical world, through sensors and actuators

e ROS provides an extensive set of tools to configure, manage, debug, visualize,

data log, and test your application

rat_graph_RosGraph - rqt

O ighlight & Fit | (<)

/turﬂe1/cmd ve
@
[rosoul
rqt_gui_py_node_2483

17



ROS - Introduction

Capabilities
e ROS provides a broad collection of robot-agnostic libraries organized in packages
that implement useful robot functionalities such as
e the device driver for your GPS sensor
e a walking and balance controller for your quadruped robot

e a localization and mapping system for your mobile robot

e The goal of the ROS project is to continually raise the bar on what is taken for
granted, and thus to lower the barrier to entry to building robot applications

18



ROS - Introduction

Community

e ROS is supported and constantly improved by a large community of engineers and
hobbyists from around the globe with a shared interest in robotics and
open-source software

e Some useful links:

e Tutorials - docs.ros.org

e Demos - github.com/ros2/demos/

e Examples - github.com/ros2/examples

e Q & A site - answers.ros.org, robotics.stackexchange.com

e Discussion - discourse.ros.org


https://docs.ros.org/en/humble/Tutorials.html
https://github.com/ros2/demos/tree/humble
https://github.com/ros2/examples/tree/humble
https://answers.ros.org
https://robotics.stackexchange.com/
https://discourse.ros.org

ROS - Introduction

ROS philosophy
e Peer to peer: individual programs communicate over defined APl (ROS messages,
services, etc.)

e Distributed: programs can be run on multiple computers and communicate over
the network

e Multi-language: ROS modules can be written in any language for which a client
library exists (C++, Python, MATLAB, Java, etc.)

e Light-weight: stand-alone libraries are wrapped around with a thin ROS layer

e Free and open-source: most ROS software is open-source and free to use

20



ROS 2 - Hand-on class

CLI tools:
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools.html

21


https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools.html

ROS 2 - Nodes

Nodes

Nodes are the processes that perform computation (executables)

ROS nodes are written using ROS client libraries (available in different languages)
implementing ROS functionalities such as communication between nodes

Allow building multiple simple processes rather than a large process with all the

functionality (modularity)

A robot control system will usually comprise many nodes

22



ROS 2 - Nodes

ROS 1 vs ROS 2

In ROS 1 there is a ROS Master, that takes care of connections and
communication among nodes (TCP protocol)

ROS 2 use the DDS, which mediates the peer-to-peer communication
(decentralized) and guarantees more security and reliability

ROS 1 nodes are single-process (nodelets are nodes running on the same process,
useful when they share a lot of memory)

ROS2 nodes can run on the same process and their lifecycle could be managed
(state machine)

ROS 2 client libraries (rclcpp and rclpy) share a common underlaying
implementation (rcl). See here for more information.

ROS 1 limits itself to Ubuntu or Debian. ROS 2 runs on macOS, Windows,
real-time operating system, and other operating systems (microcontrollers) 23


https://roscon.ros.org/2016/presentations/ROSCon%202016%20-%20ROS%202%20Update.pdf

ROS 2 - Nodes

Discovery

e Discovery of nodes happens automatically through the underlying middleware of
ROS 2 following the procedure:

1. When a node is started, it advertises its presence to other nodes on the network with
the same ROS domain (set with the ROS_DOMAIN_ID environment variable)

2. Nodes periodically advertise their presence even after the initial discovery period

3. Nodes advertise to other nodes when they go offline

e Nodes will only establish connections with other nodes if they have compatible
Quality of Service settings

24



ROS 2 - Nodes

Inter-nodes communication
ROS nodes represent independent processes in the ROS stack, and they can

communicate with each other using 3 primary modes:

Message

(Topics, Services, Actions, Parameters)
Node 1

Service Request

e ROS Topics (publisher/subscriber) e [ — )
e - B

Action Feedback

Node 2

e ROS Services (request/response)

e ROS Actions (action/feedback/result)

Action Result

Parameters Parameters

pu P

P

Write Read



ROS 2 - Nodes

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-R0S2-Nodes/Understanding-R0S2-Nodes.html

26


https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

ROS 2 - Interfaces

Interfaces

e Interfaces are a generic name for Topics, Services, and Actions

e Topics have an associated Message Type that determines the layout of the message
published to the topic

e Services have an associated Service Type that determines the layout of the
associated request and response

e Actions have an associated Action Type that determines the layout of the request,
result, and feedback

e ROS Interface Types are specified using the Interface Definition Language (IDL)

27



ROS 2 - Interfaces

Topics are labeled channels for communication between nodes and are an

implementation of a Publish/Subscribe communication pattern

A node can provide information by publishing a message to a topic

A node can receive information by subscribing to a topic

When a node publishes a message to a topic all nodes that have subscribed to
that topic receive the message

Topics are a many-to-many communication channel: any number of nodes may
publish or subscribe to a given topic

The message definition consists in a typical data structure composed by two main
types: fields and constants

Defined in *.msg files in the msg/ directory of a ROS package
<pkg>/msg/<MessageType>.msg

28



ROS 2 - Interfaces

ROS 2 message - example

e geometry_msgs: :PoseStamped is used to share the timed pose of an object

geometry _msgs/Point.msgq geomefry msgs/PoseStamped.msg
float64 x std_msgs/Header header
floaté4 y uint32 se
floate4 z s 9
time stamp
sensor_msgs/image.msq string frame_id
geometry_msgs/Pose pose
std_msgs/Header header L—— geometry_msgs/Point position

uint32 seq

time stamp ;%oa:gi s
string frame_id float64 y
uint32 height od z X . a
uint32 width geometry_msgs/Quaternion orientation
string encoding ;ioazgi X
uint8 is_bigendian float64 Y
uint32 step oa z
floatésd w

uint8[] data

29



ROS 2 - Interfaces

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-R0S2-Topics/Understanding-R0OS2-Topics.html

30


https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html

ROS 2 - Interfaces

Services

Realize a Request/Response mechanism for inter-node communication

A node provides a service by creating a service server and/or calls a service by

creating a service client

A service client sends a request to a service server and the service server replies by
sending a response to the service client (one server - multiple clients)

A service description file consists of a request and a response msg type, separated
by - - - . Any two .msg files concatenated with a - - - are a legal service description

Similar in structure to messages, services are defined in *.srv files in the srv/
directory of a ROS package <pkg>/srv/<ServiceType>.srv files

31



ROS 2 - Interfaces

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-R0S2-Services/Understanding-R0S2-Services.html

32


https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html

ROS 2 - Interfaces

Actions
e Actions are a long-running (many seconds or minutes) task and receive periodic
feedback and can be interrupted

e The action server receives a request from an action client (much like a service)
and periodically sends feedback (over a topic) until the action is complete,
whereupon it sends a result (like a service response)

o Like services, the request fields are before and the response fields are after the
first triple-dash (- - -), respectively. There is also a third set of fields after the

second triple-dash, which is the fields to be sent when sending feedback

e Action Types are stored in <pkg>/action/<ActionType>.action files

83



ROS 2 - Interfaces

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-R0S2-Actions/Understanding-R0OS2-Actions.html

34


https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

ROS 2 - Interfaces

Parameters
e ROS parameters allows you to store and manipulate data on the ROS Parameter
Server (that can be accessed by all ROS nodes)
e The Parameter Server can store integers, floats, boolean, dates, times, lists

e Oftentimes, parameters are set in Launchfiles, to provide each node you are

starting with the proper configuration information

e Typically, nodes read parameters when they start, however, in ROS 2, a callback
can respond to parameter changes

e Parameters are specified using the YAML format, YAML files can be stored on
disk and loaded by rosparam CLI or a launchfile into the parameter server

85



ROS 2 - Interfaces

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-R0OS2-Parameters/Understanding-R0OS2-Parameters.html

36


https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html

ROS 2 - Launch

Launchfiles enable multiple nodes to be started with a single command

e In ROS 2 there are 3 formats for a launch file

e Python: python scripts that use the ROS 2 launch API to configure and run nodes.
The most flexible and powerful but also most complicated
e XML: The format as in ROS 1. Directly declares what nodes are running but can

perform minimal logic
e YAML: Another format for writing what is essentially the same as an XML launchfile

(do you like tags or indentation?)
e ros2 launch lets you run and interact with launchfiles

e Strive to have one launchfile completely start your project

37



ROS 2 - Launch

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Launching-Multiple-Nodes/Launching-Multiple-Nodes.html

38


https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Launching-Multiple-Nodes/Launching-Multiple-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Launching-Multiple-Nodes/Launching-Multiple-Nodes.html

ROS 2 - Recording data

Bags enable you to capture data from ROS topics to a file and play them back in real

time

e Use ros2 bag to interact with and record bags
e Running robotics experiments is often frustrating and difficult. Capturing the data
from a run and testing different algorithms and parameters on it is extremely

useful

e rqt_bag is a plugin that enables interaction with bagfiles

39



ROS 2 - Recording data

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html

40


https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html

ROS 2 - Logging
rqt_console is a GUI tool used to introspect log messages in ROS 2 in real time

e Nodes can log information at different logger levels, indicating the severity of the

message

e There are five verbosity levels: DEBUG, INFO, WARN, ERROR, FATAL

e When running a node passing -—-ros-args --log-level LEVEL sets the logger

level

41



ROS 2 - Logging

Example: https://docs.ros.org/en/iron/Tutorials/Beginner-CLI-Tools/
Using-Rqt-Console/Using-Rqt-Console.html

42


https://docs.ros.org/en/iron/Tutorials/Beginner-CLI-Tools/Using-Rqt-Console/Using-Rqt-Console.html
https://docs.ros.org/en/iron/Tutorials/Beginner-CLI-Tools/Using-Rqt-Console/Using-Rqt-Console.html

ROS 2 - Workspace

A ROS 2 Workspace is a directory containing a collection of ROS 2 packages

e Commonly, it contains the following folders:

e src: the source code to ROS packages
e build: a directory where intermediate files are stored

log files generated from building the packages
e install: a directory where the packages are installed

e It's necessary to source install/setup.bash in your ROS 2 workspace. This
makes ROS 2's packages available for you to use in that terminal

e You also have the option of sourcing an “overlay” - a secondary workspace where
you can add new packages without interfering with the existing ROS 2 workspace

that you're extending

43



ROS 2 - Workspace

The ROS 2 Workspace - building

e Workspaces must be built before they can be used

e Run colcon build --symlink-install from the main workspace directory to
build all the packages in the src directory

44



ROS 2 - Workspace

Colcon
e colcon is the ROS 2 build-tool, which is used to build the workspace

e |t is written in python and implemented as a series of extensions, which anyone

can make to customize the build process

e As a build tool, colcon is capable of building projects that use many build
systems: ament_python, ament_cmake, CMake (for C++), Catkin (for ROS1),
setuptools (for python)

e colcon manages dependencies between multiple ROS packages written in different

computer languages with different build systems

45



ROS 2 - Workspace

Colcon
e By default colcon builds packages in parallel

e The dependencies specified in package.xml are used by colcon to build packages in
the right order

o If <package A> has a build_depend on <package B> then colcon always builds
<package B> before <package A>

e Your code may still compile by pure luck even if dependencies are specified indirectly.

If <package B> finishes before the <package A> process needs it the build will
succeed

46



ROS 2 - Workspace

colcon_cd

e colcon_cd allows you to quickly switch between the workspace directory and that
of a package

Install with sudo apt install python3-colcon-cd

Then, add source /usr/share/colcon_cd/function/colcon_cd.sh

From your workspace directory run colcon_cd package to go to that package

You can then run colcon_cd to return to the workspace directory

47



ROS 2 - Workspace

colcon_clean

e colcon_clean allows you to easily remove the build results from a workspace

Install with sudo apt install python3-colcon-clean

Then, add source /usr/share/colcon_cd/function/colcon_cd.sh
e colcon clean workspace will clean all generated files

e colcon clean packages allows you to select individual packages to clean

48



ROS 2 - Workspace

ROS environment

e ROS relies on environment variables to control settings and find nodes and libraries
e ROS environment variables are set when underlay is sourced

e To source the underlay run source /opt/ros/<DISTRO>/setup.bash

e When you installed ROS you added the above command to the .bashrc so that it
runs automatically whenever bash is opened

e The underlay must be sourced to have access to the ROS command-line tools and
system-installed packages

49



ROS 2 - Workspace

ROS environment (cont’d)

e Other ROS workspaces can be added by sourcing an overlay, which provides
access to the packages installed in that overlay

e When you source install/setup.bash after building the workspace you are
adding the overlay, providing access to the packages you just built

e Technically, you should not have the overlay sourced when using colcon build, which
means you need a separate window for building and running ROS commands

e Multiple ROS workspaces can be overlayed on top of each other allowing you to use
packages from multiple workspaces or even override specific packages

50



ROS 2 - Workspace

Creating a workspace
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/
Creating-A-Workspace/Creating-A-Workspace.html

51


https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-A-Workspace/Creating-A-Workspace.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-A-Workspace/Creating-A-Workspace.html

ROS 2 - Packages

A ROS package is the organizational unit for your ROS 2 source code. It contains
launch files, configuration files, message definitions, data, and documentation

e Binary versions of ROS packages are distributed on ROS’s package server and can

be downloaded via apt
e The naming convention when using apt is ros-humble-<package-name>

e With packages, you can release your ROS 2 work and allow others to build and

use it easily (using Git for example)

e Package creation in ROS 2 uses ament as its build system and colcon as its build

tool

e To create ROS code you need to create a package

52



ROS 2 - Packages

Package structure

e ROS 2 Python and CMake packages each have their own minimum required
contents:

e CMakeLists.txt file that describes how to build the code within the package
e include/<package_name> directory containing the public headers for the package
e package.xml file containing meta information about the package

e src directory containing the source code for the package

e A single workspace can contain as many packages as you want of different build
types (CMake, Python, etc.)

e Best practice is to create your packages in the src folder within your workspace

53



ROS 2 - Packages

Example: https://docs.ros.org/en/iron/Tutorials/
Beginner-Client-Libraries/Creating-Your-First-R0S2-Package.html

54


https://docs.ros.org/en/iron/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html
https://docs.ros.org/en/iron/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html

ROS 2 - Packages

The package.xml file

e All ROS packages have a base directory containing a manifest file called
package.xml
e This file is an XML document
e The full specification for package.xml is in ROS Rep 149
e The XML Schema for package.xml provides a machine-readable method for
automatically validating the package.xml
e An important element of package.xml is the <export><build_type>, which
determines the type of package
e ament python is used for pure python packages
e ament_cmake is used for C++ packages and packages that define custom Messages,
Services, or Actions (i.e., Interfaces)
e ament_cmake_python is for packages with mixed python/C++ code

55



ROS 2 - Packages

The package.xml file

Required elements

<name> The package name

<version> The version number
<description> A description of the package
<maintainer> Authors

<license> Ways the package may be distributed

Dependencies

<exec_depend> Packages needed at runtime
<build_depend> Packages needed at build time
<depend> = <exec_depend> + <build_depend>

56



ROS 2 - Packages

Ament CMake Packages

e ament_cmake is the build system for CMake based packages in ROS 2

e Ament Cmake packages are primarily used for C++ ROS projects

e Packages can be created using
ros2 pkg create --build-type ament_cmake <package_name>

57



ROS 2 - Packages

Custom Interfaces - definition

e Custom interfaces are created in their own ament_cmake type packages
e To create a custom interface file, first write an interface file using the ROS IDL

e The structure of an interface package looks like this

pkg _name/

|— package.xml # The manifest file

— CMakelLists.txt # Build instructions, uses ament * functions
|— msg/ # Directory for custom message types

| L— MessageType.msg # A ROS IDL file defining a message

|— srv/ # Directory for custom service types

| L— ServiceType.srv  # A ROS IDL file defining a service

L— action # Directory for custom action types

L ActionType.action # A ROS IDL file defining an action

58



ROS 2 - Packages

Custom Interfaces - definition (cont’d)

e Edit package.xml
e Add a <buildtool_depend> on rosidl_default_generators
e Add an <exec_depend> on rosidl_default_runtime

e You should also <exec_depend> and <build_depend> on any packages that use
types defined by your custom interface

59



ROS 2 - Packages

Custom Interfaces - usage

e To import in your package use

#include "<interface_package_name>/<msg|srv|action>/TypeName.hpp"

e In python use
from <interface_package_name>.<msg|srv|action> import TypeName

60



ROS 2 - Launch

Launch files allow you to start up and configure a number of executables containing
ROS 2 nodes simultaneously

e ROS programs consist of many nodes communicating over topics and services,
manually running them becomes tedious and hard to reproduce

e In ROS 2 (unlike ROS 1) there are multiple types of launchfiles:

e Python launchfiles: python scripts that use the ROS 2 Launch API to declare what
actions should be taken

e XML (or YAML) launchfiles: they simply declare the nodes that should be running

61



ROS 2 - Launch

XML Launch files

Example talker_listener_launch.xml

<launch>
<node pkg="demo_nodes_cpp" exec="talker" output="screen" />
<node pkg="demo_nodes_cpp" exec="listener" output="screen" />
</launch>

e launch: root element

e node: specifies ad node to be launched

e name: name of the node (free to be chosen)

e pkg: package containing the node

e exec: node type (there must be an executable with the same name)

e output: specifies where to output log messages (screen, log)
62


https://github.com/ros2/demos/blob/rolling/demo_nodes_cpp/launch/topics/talker_listener_launch.xml

ROS 2 - Launch

Launch arguments & parameters
e Create re-usable launch files with <arg> tag, which works like a parameter, e.g.
<arg name="arg_name" default="default_value'"/>
e Use arguments in launch file
$(arg arg_name)
e When launching, arguments can be set
$ ros2 launch launch_file.xml arg_name:=value

e The <param> tag allows for setting ROS parameters of a ROS node

Example
<node pkg="ros_demos" exec="publisher"> <param name="publish_frequency"

value="10"/> <remap from="generic_topic_name" to="my_topic"/> </node>

63



ROS 2 - Launch

Including other launch files
e Include other launch files with <include> tag to organize large projects

<include file="package_name"/>

e Find the system path to other packages
$ (find-pkg-share package_name)

e Pass arguments to the included file

<arg name="arg_name" value="value"/>

Example
<include file="/opt/my_launch_file.py"/>
<include file="$(find-pkg-share my_pkg)/launch/some_launch_file.xml"/>

64



ROS 2 - Hands-on class

Work in a workspace

Customize the simple publisher/subscriber

Create a package

Creating custom interfaces
e Using parameters in a class

Customize launch file

65



ROS 2 - Tools

rqt
o Qt-based GUI framework for
ROS
e Various GUI tools in the form
of plugins
e One can run all the existing

GUI tools as dockable
windows within rqt

e Users can create their own
plugins for rqt

ROS.org

Documentation

66



ROS 2 - Tools

rqt - plugins
rqt_image_view: plugin for displaying images using image_transport

rqt_plot: plugin visualizing numeric values in a 2D plot using different plotting
backends

rqt_graph: plugin for visualizing the ROS computation graph
rqt_console: plugin for displaying and filtering ROS messages

rqt_logger_level: plugin for configuring the logger level of ROS nodes

67



ROS 2 - Tools

Rviz2

e 3D visualization tool for ROS

e Subscribes to topics and visualizes the
message contents

e Different camera views (orthographic,
top-down, etc.)

e Interactive tools to publish user
information

e Save and load setup as RViz configuration

e Extensible with plugins

68



ROS 2 - Tools

Rviz2 User guide: https://docs.ros.org/en/humble/Tutorials/
Intermediate/RViz/RViz-User-Guide/RViz-User-Guide.html

69


https://docs.ros.org/en/humble/Tutorials/Intermediate/RViz/RViz-User-Guide/RViz-User-Guide.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/RViz/RViz-User-Guide/RViz-User-Guide.html

ROS 2 - Tools

Tf2

e tf2 is a package that lets the user keep
track of multiple coordinate frames over
time

e tf2 maintains the relationship between
coordinate frames in a tree structure
buffered in time

e tf2 lets the user transform points, vectors,
etc. between any two coordinate frames at
any desired point in time

70



ROS 2 - Tools

Example: https://docs.ros.org/en/humble/Tutorials/Intermediate/T£2/
Introduction-To-Tf2.html

71


https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Introduction-To-Tf2.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Introduction-To-Tf2.html

ROS 2 - Tools

Tf2 for your robot

e The robot_state_publisher package allows you to publish the state of a robot

e The package takes the joint angles of the robot as input and publishes the 3D
poses of the robot links, using a kinematic tree model of the robot

e It uses the URDF specified by the parameter robot_description and the joint
positions from the topic joint_states to calculate the forward kinematics of the
robot and publish the results via tf

e Implemented as publisher/subscriber model on the topics /tf and /tf_static

72



ROS 2 - Tools

Tf2 - Transform

e TF use a tf2_ros: :Buffer to listen to all broadcasted transforms via
tf2_ros: :TransformBroadcaster: :sendTransform

e Query for specific transforms between two coordinate frames in the transform tree
via lookupTransform()

e The transform message is structured as follows

geometry_msgs/TransformStamped[] transforms
std_msgs/Header header
uint32 seqtime stamp
string frame_id
string child_frame_id
geometry_msgs/Transform transform
geometry_msgs/Vector3 translation
geometry_msgs/Quaternion rotation

73



ROS 2 - Tools

Tf2 - Command line

Print info current transform tree

$ ros2 run tf2_ros tf2_monitor <framel> <frame2>

Print info transform between two frames

$ ros2 run tf2_ros tf2_echo <framel> <frame2>

Create a visual graph (PDF) $ ros2 run tf2_tools view_frames

e Run rviz2 with tf enabled and begin viewing frames to see transforms

74



ROS 2 - Tools

Example: https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/
Writing-A-Tf2-Static-Broadcaster-Cpp.html

75


https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Writing-A-Tf2-Static-Broadcaster-Cpp.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Writing-A-Tf2-Static-Broadcaster-Cpp.html

ROS 2 - Simulation

Gazebo

e Simulates 3D rigid-body dynamics
e Generates sensors’ data including noise

e Realistic 3D visualization and user
interaction

e Includes many robot models
e Provides a ROS interface
e Extensible with plugins

e Extensive command line tools

https://gazebosim.org/

76


https://gazebosim.org/

ROS 2 - Simulation

Unified Robot Description Format - URDF

e Defines an XML format for
representing a robot model
e Kinematic and dynamic
description
e Visual representation
e Collision model

e URDF generation can be scripted Visual meshes

with XACRO macro

Primitives for collision

7



ROS 2 - Simulation

Unified Robot Description Format - URDF (cont’d)

e Description consists of a set of link
elements and a set of joint elements

e Joints connect the links together

78



ROS 2 - Simulation

The <robot> element

<robot name="robot_name">

<!-- robot links and joints and more -->
<link> ... </link>
<link> ... </link>
<joint> .... </joint>
<joint> .... </joint>
</robot>

The <joint> element

<joint name="my_joint" type="floating">
<origin xyz="0 0 1" rpy="0 0 3.1416"/>
<parent link="link1"/>
<child link="1ink2"/>

<calibration rising="0.0"/>
<dynamics damping="0.0" friction="0.0"/>
<limit effort="30" velocity="1.0" lower="-2.2" upper="
0.7" />
<safety_controller k_velocity="10" k_position="15"
soft_lower_limit="-2.0" soft_upper_limit="0.5" />
</joint>

The <link> element

<link name="my_link">
<inertial>
<origin xyz="0 0 0.5" rpy="0 0 0"/>
<mass value="1"/>
<inertia ixx="100" ixy="0" ixz="O0" iyy="100" iyz="0"
izz="100" />
</inertial>

<visual>
<origin xyz="0 0 0" rpy="0 0 0" />
<geometry>
<box size="1 1 1" />
</geometry>
<material name="Cyan">
<color rgba="0 1.0 1.0 1.0"/>
</material>
</visual>

<collision>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<cylinder radius="1" length="0.5"/>
</geometry>
</collision> 79
</1link>



ROS 2 - Simulation

Unified Robot Description Format - URDF (cont’d)

e The robot description (URDF) is
stored on the parameter server under
/robot_description param

e You can visualize the robot model in
rviz with the RobotModel plugin

robot_description = {"robot_description":
robot_description_content}

joint_state_publisher_node = Node(
package="joint_state_publisher_gui",
executable="joint_state_publisher_gui",

)

robot_state_publisher_node = Node(
package="robot_state_publisher",
executable="robot_state_publisher",
output="both",
parameters=[robot_description],

)

rviz_node = Node(
package="rviz2",
executable="rviz2",
name="rviz2",
output="1log",
arguments=["-d", rviz_config_file],

80



ROS 2 - Simulation

Xacro

Xacro is an XML macro language

Include its namespace
xmlns:xacro="http://www.ros.
org/wiki/xacro" within the robot
tag

Used to construct shorter and more
readable XML files by using macros

It is heavily used in packages such as
the urdf

Example Xacro

<xacro:macro name='"cylinder_inertial" params='"radius length
mass *origin">
<inertial>
<mass value="${mass}" />
<xacro:insert_block name="origin" />
<inertia ixx="${0.0833333 * mass * (3 * radius *
radius + length * length)}" ixy="0.0" ixz="0.0"
iyy="${0.0833333 * mass * (3 * radius * radius +
length * length)}" iyz="0.0"
izz="${0.5 * mass * radius * radius}" />
</inertial>
</xacro:macro>

<xacro:cylinder_inertial radius="${base_inertia_radius}"
length="¢{base_inertia_length}" mass="${base_mass}">
<origin xyz="0 0 0" rpy="0 0 0" />
</xacro:cylinder_inertia1>

81



ROS 2 - Simulation

Xacro (cont’d)

e Properties are named values or
named blocks that can be inserted
anywhere into the XML document

e Properties can be manually declared
or loaded from YAML files

e Macros may contain other macros

e You can include other xacro files

using the xacro:include tag

Xacro properties from yaml

<xacro:arg name="initial_pos" default="$(find
arm_description)/config/initial_pos.yaml"/>

<xacro:property name="config_joint_limit_parameters" value=
"${xacro.load_yaml(initial_pos)}"/>

Xacro include

<xacro:include filename="$(find package)/other_file.xacro"
/>

<xacro:include filename="other_file.xacro" />

<xacro:include filename="$(cwd)/other_file.xacro" />

82



ROS 2 - Simulation

Xacro (cont’d)

e Convert xacro to urdf from command line

$ ros2 run xacro robot_name.xacro -o robot_name.urdf
e ... or inside a launch file
Command([’xacro ’, os.path.join(os.path.join(

get_package_share_directory(’your_package’)), "urdf", "robot.urdf.

xacro")])

83



ROS 2 - Simulation

Simulation Description Format - SDF

e Defines an XML format to describe

e Environments (lighting, gravity etc.)
Objects (static and dynamic)

e Sensors
e Robots

e SDF is the standard format for
Gazebo

e Gazebo automatically converts a
URDF to SDF

84



ROS 2 - Simulation

Gazebo

‘Gazebo Classic 11
Last Gazebo Classic
release

Gazebo Classic
end of life

Gazebo Classic begins at ?egelop];lent moves
University of Southern Californi © Open Source Gazebo Classi
Robotics Foundatiop sie P o
Ignition—

_ Gazebe—» )

Willow Garage supports
Gazebo Classic's development

Dec| Ignition Citadel

FE Ignition Acropolis
First release of Ignition
Ma% Ignition Blueprint

Ignition renamed

Apr to Gazebo

Sep|Gazebo Garden

85



ROS 2 - Simulation

Gazebo-simulators

e Gazebo can be launched by command line if you use fortress: ign gazebo
e Or if you use Harmonic: gz sim
e The vanilla command will launch the simulator as an empty world.

e Entities can be added to the scene by defining them using an XML-based file
format called SDF (Simulation Description Format).
ign gazebo /path/to/sdf_file

e Gazebo will parse the SDF file, reading it and converting the XML description of
the entity into actual objects, models, and structures in the simulated world.

86



ROS 2 - Simulation

Sdf
Example Sdf

<?xml version="1.0" 7>

e Syntax of sdf is very similar the one used for

U rdf' <world name="box_world">
: <model name="box_model">

<sdf version="1.6">

<link name="box_link">

e Within the <world> tag we specify the <visual name="box visual>
. . < try>
models and plugin for the simulator By
.. . <size>1 1 1</size>
e Models are the entities composing the scene. </box>
. 0 </geometry>
Robots described in URDF are examples of </visual>
o </link>
models for a SDF file. </model>
</world>
</sdf>

Rename the example as box.sdf, save it into your home directory and launch it by:

ign gazebo box.sdf



ROS 2 - Simulation

Gazebo-Ros integration

e ROS prescribes a
specific way to
launch all the pieces
needed in your
system. There are
dedicated launch file
and packages which
support the
integration of gazebo
within the ros
framework

launch Gazebo

gazebo_ignition_simulator = IncludeLaunchDescription(
PythonLaunchDescriptionSource(
[PathJoinSubstitution([FindPackageShare(’ros_gz_sim’),
’launch’,
’gz_sim.launch.py’1)1), #ign_gazebo.launch.py
launch_arguments={’gz_args’: LaunchConfiguration(’gz_args’)}.items()

Spawn Urdf

gz_spawn_entity = Node(
package=’ros_gz_sim’,
executable=’create’,
output=’screen’,
arguments=[’—topic’, ’robot_description’,
’-name’, ’robot_name’,
’-allow_renaming’, ’true’,

88



ROS 2 - Simulation

Gazebo-Ros integration

e Once the model has been
spawned with the create
node, it exists in the Gazebo
environment but meshes
could not be visualizable.

e Gazebo must be informed
about the location of
meshes through the
environment variable
GZ_SIM_RESOURCE_PATH.

Include these lines within the
package.xml

<export>

<build_type>ament_cmake</build_type>

<gazebo_ros gazebo_model_path="${prefix}/.." />
</export>

e The values in the attributes

gazebo_model_path are appended to
GZ_SIM_RESOURCE_PATH

o ${prefix} refers to the path in the
install directory, which also contains
the meshes if specified in the CMake
file. 89



ROS 2 - Sensors & controllers

Controliers
—~ —~ ~
~» ( Controller A Controler B Controller C

loads

grant interfaces 1o

|

request interfaces from

Controller Manager

claim interfaces from

Resource Manager

manages manages

State Interface Gommand Interface

only>

exports exports

loads ‘ Transmissions

sn | [ sem | [ e ]

‘ $%

L

access access

90



ROS 2 - Sensors & controllers

Controllers and hardware interfaces are "managed"
ROS2 nodes that expose services to change or
publish their internal state: initialize, configure,
activate, etc,

relepp_lifecycle:inode_interfaces:: |.
LifecycleNodelnterface
Fal
hardware_interface::

LoanedCommandinterface

hardware_interface::
Commandinterface

controller_interface::
ControllerinterfaceBase
Tl

hardware_interface:: I
Actuatorinterface
[hardware_interface:: |
Sensorinterface

hardware_| face::
Loanedstatelnterface

*

controller

impl impl impl

hardware_interface::
Sensor

controller_interface:; controller_interface:: controller_manager::
Controllerinterface | |ChainableControllerinterface ControllerSpec "WM;;J::"M Wﬁvz:;:‘:gr!nm-l
controller_name: string
ros2_controllers | controller_type: string Sensors
joint_trajectary_controller:: * ardware_interface::
T 5 T systems | o interf actuators.
ointTrajectoryController controllers list ResourceStorage
joint_state_broadcaste
jointStateBroadcaster controller manager:: hardware_interface::
forward_command_controller:: Controlle: ResourceManag
ForwardControllersBase
A configurations
forward_command_controller:: wyamls -
ForwardCommandController controller
A
position_controllers::

hardware_interface::
Hardwarelnfo

Usually, but not

I ! necessarily, parsed
In:n?;r:;:'g:f' r;;g:?."w:f’ Lt i ﬁ from the given URDF.

ointGroupPositionController

velocity_controllers::
ointGroupVelocityController

effort_controllers::
ointGroupEffortController




ROS 2 - Sensors & controllers

Available controllers

joint_state_broadcaster defined to publish joint states
joint_position_controller position commands are used to control joint
positions

joint_velocity_controller velocity commands are used to control joint
positions or velocities

joint_effort_controller efforts commands are used to control joint positions,
velocities or efforts

joint_trajectory_controllers used to control the execution of joint-space

trajectories on a group of joints

All the available controllers can be found in this repository: https://github.com/

ros—controls/ros2_controllers

92


https://github.com/ros-controls/ros2_controllers
https://github.com/ros-controls/ros2_controllers

ROS 2 - Sensors & controllers

Configuring and launching controllers

Controllers are usually defined with YAML files. These files contain a list of controllers

that the controller manager will load

Controllers are defined by a name and

controllers.yaml
type controller_manager:
e The name is the identifier r°i;;§i§?’ﬁ§§§fsioo # He
needed by the controller Joint_state_broadcaster:

type: joint_state_broadcaster/JointStateBroadcaster

manager associated to the

joint_trajectory_controller:
type: joint_trajectory_controller/JointTrajectoryController

controller.

° The type represent the I|brary position_controller:
. type: position_controllers/JointGroupPositionController
that will be loaded

93



ROS 2 - Sensors & controllers

Configuring and launching controllers

ROS2 controllers whose type is specified within the YAML file, requires additional

configurations

e Firstly, we need to specify the
names of the joints on which

those controllers will act

e Additional parameters can be
configured depending on the type
of controller

position controller.yaml

joint_trajectory_controller:
ros__parameters:
joints:
- joint_0
- joint_1
- joint_2
- joint_3

command_interfaces:
- position

state_publish_rate: 100.0

action_monitor_rate: 20.0 # Defaults to 20
allow_partial_joints_goal: true #

open_loop_control: true
allow_integration_in_goal_trajectories: true 94



ROS 2 - Sensors & controllers

Configuring and launching controllers

The YAML configuration file will be loaded using either a launch file or the URDF file.

e Use the URDF to load controllers if you are working in simulation; use the launch
file otherwise

e We can both launch the Controller manager and the configurations including
gz_ros2_control plugin

e If you are working with Ignition, the plugin is named ign_ros2_control plugin

95



ROS 2 - Sensors & controllers

Configuring and launching controllers

<gazebo>
<plugin filename="ign_ros2_control-system" name="ign_ros2_control::IgnitionR0OS2ControlPlugin">

<parameters>$(find arm_description)/config/pos_controller.yaml</parameters>
<controller_manager_prefix_node_name>controller_manager</controller_manager_prefix_node_name>

</plugin>
</gazebo>

e <gazebo> tag specify that we are are working within the Gazebo framework
e <parameters>: take as input a YAML file with the configuration of the controller
e <controller_manager_name>: Set controller manager name (default:

controller_manager

If you launched the robot-state-publisher passing the urdf with the
ign_ros2_control plugin, you should see the /controller_manager node to

appear.

96



ROS 2 - Sensors & controllers

Controller management
Once the controller_manager node is active, we can load
the ros2-controllers defined in the YAML file

Command line
$ ros2 run controller_manager spawner controller_name

Launch file

load_controller = Node( package="controller_manager", executable="
spawner", arguments=["name_controller", "--controller-manager", "/
controller_manager"], )

Using rqt

$ sudo apt-get install ros-<distro>-rqt-controller-manager

$ ros2 run crqt_controller_manager rqt_controller_manager

97



ROS 2 - Sensors & controllers

Controller management: Some useful commands:

e $ ros2 control list_controller_types: will print all the type of the
available controllers that we could add inside the configuration YAML file

e $ ros2 control load_controller --set-state active name_controller

: Load a new controller (you can load only active controllers)

e $ ros2 control set_controller_state name_controller {inactive,

activel}: Change the state of a controller

e ros2 control unload_controller name_controller

Hint
Use the launch.action.RegisterEventHandler () method to start the controllers

after the model is spawned in Gazebo

98



ROS 2 - Sensors & controllers

Hardware Components

The hardware components realize communication to physical hardware and represent
its abstraction in the ros2_control framework. There are three types of hardware

e system
® sensor
e actuator

which represent the hardware component. The ros2_control framework uses the
<ros2_control>-tag in the robot's URDF file to describe its components:
Components can be described through the ros2-controller interfaces:

e State Interfaces: to retrieve the states from the joints, actuators, or sensors
e Joint Command Interfaces: to send command to the actuators (sensors type
haven't the command interface)

99



ROS 2 - Sensors & controllers

Hardware components: type sensors and actuators

The command and state interface can include position, velocity, and/or effort.

e Actuators type are very similar to the system type, but are related to only one
joint. This type still provides both command and state interface for the single
joint

e A sensor component is related to a joint (e.g., encoder) or a link (e.g.,
force-torque sensor). This component type has only reading capabilities

100



ROS 2 - Sensors & controllers

Hardware components: type system

W|th ”S Stem” t e hardWare com- <ros2_control name="Name_of_the_hardware" type="system'">
Y yp ype="sy
o o <hardware>
ponents, we can SpeCIfy mUIt|-DOF <plugin>library_name/ClassName</plugin>
. . . <param name="example_param">value</param>
robotic hardware, such as industrial </hardware>
o o <joint name="name_of_the_component">
rObOts- Wlthln the <rOS2_C0ntr01>- <command_interface name="interface_name">
.. . <1-- All of them are optional. ‘data_type‘ and
tag. the <J Olnt>‘tag grOUPS the Inter— size‘ are used for GPIOs. Size is length of an
. . . . .-
faces associated with the joints of phys- “aren name="min'>-1</paran>
. <param name='"max'">1</param>
ical robots and actuators. These can <param name=*initizl. value">0,0</paran>

be command and state interfaces to set joparan nane”ata typel</paran
command_interface>
<state_interface name="position"/>
</joint>
</ros2_control>

the goal values for hardware and read
its current state.

101



ROS 2 - Sensors & controllers

Hardware plugin

e Regardless of the type of hardware,
we need to add a specific plugin to
enable the hardware interface. For
simulator environment, this plugin
<hardware>
can be the gazebo—ros—control <plugin>ign_ros2_control/IgnitionSystem</plugin>
0 </hardware>
(for Gazebo classic),
gz-ros2-control (for Gazebo
harmonic), ign-ros2-control (for

Gazebo fortress)

102



ROS 2 - Sensors & controllers

Gazebo plugins

e A plugin is a chunk of code that is compiled as a shared library and inserted into
the simulation

e Gazebo relies on plugins for rendering, physics simulation, sensor data generation,
and many of the capabilities. Plugins make us control many aspects of the
simulation like world, models, etc.

e This gives users great control and makes sure only what's crucial for a given

simulation is loaded

103



ROS 2 - Sensors & controllers

Sensor plugins

e Gazebo Sensors provides a set of sensors
models that can be configured at run time to
mimic specific real-world sensors

e The use of a sensor requires adding the
appropriate library to the project. We'll try
now to add a camera sensor

<gazebo>

<plugin
filename="gz-sim-sensors-system"
name="gz: :sim: :systems: :Sensors">
<render_engine>ogr92</render_engine>

</plugin>

</gazebo>

104



ROS 2 - Sensors & controllers

camera sensor

Essential tags:

e <name> is the name of the entity that will appear
in gazebo, and is specified by the user

e <type> specifies which kind of sensor we are using

e The tag <topic> represents the name of the
Gazebo topic on which data will be published

<sensor name="camera" type='"camera'">
<camera>
<horizontal_fov>1.047</
horizontal_fov>

<clip>
<near>0.1</near>
<far>100</far>
</clip>
</camera>
<always_on>1</always_on>
<update_rate>30</update_rate>
<visualize>true</visualize>
<topic>camera</topic>
</sensor>

105



ROS 2

- Sensors & controllers

camera sensor

The
[ )

sensor is usually added to one of the links of our model
In sdf it's enough to place this code within the <1ink> tag

In urdf sensor should be added in another location of the file within the tag

<gazebo reference = "link_name">

Once the sensor has been added, a new topic will appear among the Gazebo
topics. You can check all the available topic with: ign topic -1

Check if the /camera topic appears (that's the name we defined in the <topic>

tag)
You can print the content of the topic with ign topic -e -t /camera

With ign topic -e -t /camera | less you can print the header information

106



ROS 2 - Sensors & controllers

Ros-Gz-Sim

The information from the sensor exists only within the Gazebo world

We should make these informations available to ros nodes as well
ros_ign_bridge provides a network bridge which enables the exchange of
messages between ROS 2 and Gazebo. lts support is limited to only certain
message types

We can initialize a bidirectional bridge so we can have ROS as the publisher and
Gazebo as the subscriber or vice versa. The syntax is /TOPIC@ROS_MSG@GZ_MSG,
where TOPIC is the Gazebo internal topic, ROS_MSG is the ROS message type for
this topic, and GZ_MSG is the Gazebo message type

The name of the new ROS topic will be the same of the Gazebo topic. It can be
changed by passing the new name as argument to the parameter_bridge node

107



ROS 2 - Sensors & controllers
Ros-lgn-Sim

$ ros2 run ros_ign_bridge parameter_bridge /camera@sensor_msgs/msg/

Image@gz.msgs.Image

e The ros2 run ros_ign_bridge parameter_bridge command simply runs the
parameter_bridge code from the ros_ign_bridge package
e /camera is the name of the topic from which we want copy data
e sensor_msgs/msg/Image is the message type that will be published on the Ros
topic
e gz.msgs.Image is the message type taken from the Gazebo topic
e The @ indicates a bidirectional communications between the ROS and Gazebo.
e Once the command has been launched, the /camera topic will appear also among

the ros2 topic list

108



ROS 2 - Sensors & controllers
Visualize Camera messages in Rviz

e Open Rviz with rviz2 © sl o

~ @ Global Options
Fixed Frame. link_0
. - Background Color M 48; 48; 48
e Add by topic (or by display) e 3o
~ v Global Status: Ok
v Fixed Frame OK
camera/lmage L5 roawodst
» v Status: Ok
Visual Enabled v
Collision Enabled
| Update Interval 0
| Alpha 1
Description Sou... Topic
» Description Topic /robot_description
TF Prefix
» Links

Add

3/ image

109



ROS 2 - Sensors & controllers

Change the name of the ros topic
e The parameter_bridge node
launched in that way will generate a
new ros2 topic in which all the

contents of the Gazebo topic bridge_camera = Node(
package=’ros_ign_bridge’,
declared before the first @ symbol executable=’parameter_bridge’,
arguments=[
are pUblIShed ’/camera@sensor_msgs/msg/Image@gz.msgs . Image’,

’/camera_info@sensor_msgs/msg/CameralnfoQgz.
msgs.CameraInfo’,

e The new ros2 topic will have the

’--ros-args’,

same name of the Gazebo topic | cemermin/ideocmerar,

output=’screen’

e Here is shown how to launch the )
node by launch file and how to
change the name of the ros2 topic

110



111



Kinematic and dynamic control

The OROCOS project

e Orocos (Open Robot Control Software) project aim was to create advanced C++
libraries for robot control

e Over the years, Orocos has become a large project of middleware and tooling for
development of robotics software. The main parts of this project are

e Orocos Real-Time Toolkit (RTT): a component framework that allows us to write
real-time components in C++
e Orocos Component Library (OCL): the necessary components to start an application
and interact with it at run-time
e Orocos framework is well integrated with ROS, a popular software bundle with the
largest community among roboticists to design new applications. Most of the
concepts from both frameworks map well and are largely supported

112



Kinematic and dynamic control

The OROCOS project

e Additional libraries were also developed to complement the bundle for advance
machine and robot control. These libraries include calculation of kinematic chains,
filtering and advance task specification among others

e Kinematics and Dynamics Library (KDL): an application independent framework for
modeling and computation of kinematic chains

e Bayesian Filtering Library (BFL): an application independent framework for inference
in Dynamic Bayesian Networks, i.e., recursive information processing and estimation
algorithms based on Bayes' rule

e Reduced Finite State Machine (rFSM): a small and powerful statechart
implementation in Lua.

e Instantaneous Task Specification using Constraints (iTaSC): is a framework to
generate robot motions by specifying constraints between (parts of) the robots and

their environment.

113



Kinematic and dynamic control

The OROCOS project

Software component
for control

-4 % b

i Bayesian Filtering
Dynamics Library Orocos Toolchain
Library
Kinematic chains, real-time Dynamic Bayesian N k Real-time software
inverse and forward (Extended) Kalman Filters, interactive scripting, state
kinematics, Python bindings Particle Filters (or i i distributed pi
Monte Carlo methods) code generation

114



Kinematic and dynamic control

The Kinematics and Dynamics Library (KDL)

e Orocos project to supply RealTime usable kinematics and dynamics code, it
contains code for rigid body kinematics calculations and representations for
kinematic structures and their inverse and forward kinematic solvers

e Github: https://github.com/orocos/orocos_kinematics_dynamics
e APIl: http://docs.ros.org/en/indigo/api/orocos_kdl/html/index.html
e ROS: https://wiki.ros.org/kdl

115


https://github.com/orocos/orocos_kinematics_dynamics
http://docs.ros.org/en/indigo/api/orocos_kdl/html/index.html
https://wiki.ros.org/kdl

Kinematic and dynamic control

The Kinematics and Dynamics Library (KDL)

e What can | use KDL for?

e 3D frame and vector transformations: KDL includes excellent support to work with
vectors, points, frame transformations, etc. You can calculate a vector product,
transform a point into a different reference frame, or even change the reference point
of a 6d twist

e Kinematics and Dynamics of kinematic chains: You can represent a kinematic chain
by a KDL Chain object, and use KDL solvers to compute anything from forward
position kinematics, to inverse dynamics

e Kinematics of kinematic trees: You can represent a kinematic chain by a KDL Chain
object, and use KDL solvers to compute forward position kinematics. Currently no
other solvers are provided

116



117



Vision sensors
Introduction
Vision is a crucial aspect in robotics. It enables

robots to perceive their environment extracting in-
formation from camera data

Applications include

e extracting an object and its position
e inspecting manufactured parts for production errors
e detecting pedestrians in autonomous driving applications

e make a robot arm perform a somewhat intelligent pick and place task

118



Vision sensors

Interface the sensor

e To develop a program using camera sensors we need to interface them to the
onboard computer of the robot
e This can be made mainly in two ways
e Using operating system drivers

e Vendor drivers

e Standard USB camera (like webcams) are directly accessible using low level
routine provided by the operating system

e In Ubuntu/Linux, after plugging in the camera, check whether a /dev/videoX
device file has been created using $ 1s /dev/ | grep video

119



Vision sensors

Interface the sensor

e If 1s /dev/ | grep video does not list any file, you may have permission
problems when trying to access the device
e We must be sure that our USER group is owner of the device. We can switch

owner from root to user by for example sudo chown root:user /dev/videoO

e If you are in a Docker container, you can use the -—privileged option to the
docker run command. This causes the device owner to be root

e To check if everything works and ROS can actually stream images, try
ros2 run usb_cam usb_cam_node_exe. Note: The package usb_cam must be

installed!

120



Vision sensors

The usb_cam package

e usb_cam provides a configurable ROS Driver for standard V4L USB Cameras

The source code is located at https://github.com/ros-drivers/usb_cam

The package can be installed by

$ sudo apt-get install ros-humble-usb-cam

Launch the node provided with the package

$ ros2 run usb_cam usb_cam_node_exe

Show the image using rqt_image_view package

$ ros2 run rqt_image_view rqt_image_view

121



Vision sensors

The usb_cam package
e usb_cam publishes two important topics:

e /usb_cam/image_raw: Uncompressed frames
e /usb_cam/camera_info: Camera calibration matrices from the specified calibration

YAML file provided by the camera’s vendor, or obtained with tools from
camera_calibration package
e Moreover several Services and Parameters are provided, check the documentation
at http://wiki.ros.org/usb_cam
e The default configuration file is visible at: https:
//github.com/ros-drivers/usb_cam/blob/develop/config/usb_cam.yml
e Params can be changed ar runtime by means of the rqt_reconfigure by

$ ros2 run rqt_reconfigure rqt_reconfigure

122


http://wiki.ros.org/usb_cam
https://github.com/ros-drivers/usb_cam/blob/develop/config/usb_cam.yml
https://github.com/ros-drivers/usb_cam/blob/develop/config/usb_cam.yml

Vision sensors

The image_transport package

e The compressed format is useful to send images to other ROS nodes over the
network or store video data into bagfiles

e These topics are published by the image_transport package that provides
transparent support for transporting images in low-bandwidth compressed formats

e Its internal mechanism is very similar to using ROS Publishers and Subscribers,
but specialized for images

o Check the documentation here: http://wiki.ros.org/image_transport and
tutorials here: https:

//github.com/ros-perception/image_transport_tutorials/tree/humble

123


http://wiki.ros.org/image_transport
https://github.com/ros-perception/image_transport_tutorials/tree/humble
https://github.com/ros-perception/image_transport_tutorials/tree/humble

Vision sensors

The image_transport package

e To use the compressed image we need to republish it in an uncompressed format,
using the republish node of the image_transport package

e Exercise: Find the correct command line to execute this task

124



Vision sensors

The calibration problem

e Cameras need to be calibrated to correct image distortions due to the camera’s
internal features

e We cannot make good use of an image produced by a fisheye-like lens without
knowing just how it distorts the image

: : Positive radial distortion Negative radial distortion
No distortion (Barrel distortion) (Pincushion distortion)

125



Vision sensors

The calibration problem

Assuming a standard pinhole camera

P=(X,Y.2)
X
™m Tz Ttz b Y
T T T b 7z
> T Tn b |y
.
optical E ] +1
T
PRV
: principal
| point !
P (cercy) s
f Simple, isn't it?

126



Vision sensors

The calibration problem

Assuming a standard pinhole camera

P=(X,Y,2)

b
“
¢

optical
axis

'
!
'
! !
1
! '
! '
|
¢ h
! '
'
A :
| principal |
'
'
'
'
'
'
'
'
'

point |

(czrey) 4

v

[u fo 0 o [t m2 T3 by )Y(
s{v| =10 fy ¢ rururljtlz
1 0 0 1 T3 Ty T3 t3 1
X X

[g =R [Y:| +t

z z

x'=x/z

y' =y/z ,

X" = x‘m% + 2pix'y’ + pa(r? + 2x2)
Y =y EEREE T 4 py (2 + 2y") + 2pax'y’

where 12 =x"24+y"”?
u="f +x"+c,
v="~y*xy"+¢y

127



Vision sensors

The calibration problem

e The camera_calibration package allows easy calibration of monocular or stereo
cameras using a checkerboard calibration target?

e To start calibration in one console, use the following command:
$ ros2 run camera_calibration cameracalibrator --size 7x9 --

square 0.015 --ros-args -r image:=/image_raw

e The size option here denotes interior corners (e.g. a standard chessboard is
7 x 7), so for an 8 x 10 checkerboard, we go with 7 x 9

2You can create your own: https://calib.io/pages/camera-calibration-pattern-generator

128


https://calib.io/pages/camera-calibration-pattern-generator

Vision sensors

The calibration problem

e You should now see the calibration window and begin the calibration process.
Next, move the pattern to all screen corners and tilt in every direction. When
enough information is gathered, press the calibrate button

e Now you can see your camera calibration data in the console. You can simply save
it in a file with ini extension or press the save button in the app to save the same
in a tarball with both ini and yaml| format

e For more information follow instructions here: https://docs.ros.org/en/

rolling/p/camera_calibration/doc/tutorial_mono.html

129


https://docs.ros.org/en/rolling/p/camera_calibration/doc/tutorial_mono.html
https://docs.ros.org/en/rolling/p/camera_calibration/doc/tutorial_mono.html

Vision sensors

The calibration problem

e The Camera Calibration Parser helps you to create a yml file, which you can
load with nearly all ros camera driver using the camera_info_url parameter

e The image_proc package removes camera distortion from the raw image stream
e |t is meant to sit between the camera driver and vision processing nodes

e To perform rectification use: $ ros2 run image_proc rectify_node

130



Computer vision

Computer vision is a field of computer science that focuses on enabling computers to
identify and understand objects and people in images and videos

3 contains packages to interface ROS 2 with OpenCV which

e ros2 vision_opencv
is a library designed for computational efficiency and strong focus for real time

computer vision applications
e Interfacing ROS 2 with OpenCV is done via cv_bridge package

e To use OpenCV in your ROS code add this to your CMakeLists.txt:

e find_package (OpenCV)
e include_directories (${0OpenCV_INCLUDE_DIRS})
e target_link_libraries(my_awesome_library ${0penCV_LIBRARIES})

*https://github.com/ros-perception/vision_opencv

131


https://github.com/ros-perception/vision_opencv

Computer vision

OpenCV - CvBridge

e The CvBridge library converts between
ROS 2 image messages and OpenCV im-
age representation for perception appli-
cations

e ROS passes around images in its own
sensor_msgs/Image message format

e Use CvBridge to convert ROS images
into OpenCV cv: :Mat format

OpenCV ‘ OpenCV Iplimage ‘

}

!

‘ CvBridge ‘
ROS }

‘ROS Image Message‘

132



Computer vision

OpenCV - CvBridge example code

e Create a new package with
$ ros2 pkg create ros2_opencv --dependencies rclcpp std_msgs
sensor_msgs cv_bridge image_transport OpenCV

e In your CMakeLists.txt:
add_executable(ros2_opencv_node src/ros2_opencv_node.cpp))

ament_target_dependencies(rosQ_opencv_node rclcpp std_msgs

sensor_msgs cv_bridge image_transport OpenCV)

install (TARGETS ros2_opencv_node DESTINATION 1ib/$ PROJECT_NAME)

133



Computer vision

Fiducial Markers

e Efficient algorithms to perform object recognition and pose estimation working in
real world environments are difficult to implement

e In many cases one camera is not enough to retrieve the three-dimensional pose of
an object

e Markers are typically represented by a synthetic square image composed by a wide
black border and an inner binary matrix which determines its unique identifier

134



Computer vision

Fiducial Markers

e When the intrinsic parameters of the camera and the size of the fiducial are
known, the pose of the fiducial relative to the camera can be estimated

The pose estimation code solves a set of linear equations to determine the world
(X, Y, Z) coordinate of each of the vertices

From this, we obtain the transform of the fiducial's coordinate system to the
camera’s coordinate system

A robot can determine its position and orientation by looking at a number of
fiducial markers —

135



Computer vision

Fiducial Markers

e To install the fiducial marker software packages ... search ROS 2 github code!

136



Computer vision

Fiducial Markers -The aruco_ros package

e To use the aruco_ros fiducial packages, clone it from the repo*

o Checkout the correct branch
$ cd ros2_ws/src/aruco_ros
$ git checkout humble-devel

e Compile and run to check if it works correctly
$ colcon build

$ ros2 launch aruco_ros single.launch.py

“https://github.com/pal-robotics/aruco_ros.git

137


https://github.com/pal-robotics/aruco_ros.git

Computer vision

Fiducial Markers - The aruco_ros package

e You should then subscribe to your camera topic

e Exercise: Create a launch file that starts the camera and connects the streamed

/image_raw topic to the aruco_ros_node

138



Computer vision

Fiducial Markers

Let's test and use marker detectors in simulations using Gazebo ROS

Exercise: Create a launch file that starts the Gazebo simulator with a camera inside

and the aruco_ros_node 139



Computer vision

Fiducial Markers

To use marker detectors in simulations using Gazebo ROS

gazebo_models/

|~ robot/
e Generate the Aruco marker | I meshes/
| | mesh.stl
I model.config
— model.sdf

https://chev.me/arucogen/

e Create a Gazebo model, add it to the
GZ_SIM_RESQURCE_PATH
$ export GZ_SIM_RESOURCE_PATH=<SOME_PATH>/

gazebo_models/

I~ meshes/
|- mesh.stl

— model.config
- model.sdf

|
|
|
|
|~ another_model/
|
|
|
|

140


https://chev.me/arucogen/

Computer vision

Fiducial Markers

e Import the aruco model into your world, and
save the world with name

e Relaunch the simulation loading the new world

<?xml versio 1.0" 2>

<sdf version="1.6">
<world name="robot_world">

<include>
<uri>model://robot</uri>
<pose>0 0 © @ O 0</pose>
</include>

</world>
</sdf>

141



