
Robotics Lab

Master’s Course in Automation Engineering and Robotics

Academic Year 2024/2025

Prof. Mario Selvaggio

E-mail: mario.selvaggio@unina.it

Website: http://wpage.unina.it/mario.selvaggio/index.html

1

mailto:mario.selvaggio@unina.it
http://wpage.unina.it/mario.selvaggio/index.html

Syllabus

Course setup

Course description

Setup your PC

ROS Essentials

ROS 2 - Basics

ROS 2 - Workspace

ROS 2 - Tools

ROS 2 - Simulation

ROS 2 - Sensors & controllers

Manipulation

Kinematic and dynamic control

Robot vision

Vision sensors

Computer vision

Autonomous navigation

Autonomous navigation and path

planning

2

Course setup

3

Course description

Aim of the course: introduce students to a variety of tools and concepts useful to

robotic engineers. Use the Robot Operating System (ROS 2) to complete a robotics

project

Prerequisites: there are no formal prerequisites. Basic knowledge of the following

tools can make the life a bit easier

• Linux operating system (Ubuntu)

• Software versioning (Git)

• Programming languages (C/C++)

• Robot Operating System (ROS 2)

• Docker containers

4

Course description

Student learning outcomes

• Understand the ROS 2 architecture and tools

• Create ROS 2 C++ programs using libraries

• Develop applications for a robotic system

Job opportunities for robotics engineers

• Check out this video

5

https://youtu.be/4exT9R0lKLE?si=7K4koNT-JdVbx-4w&t=337

Course description

Partecipation

• Hand-on classes in which you learn by doing are scheduled during the course. You

have to be physically present to hand them in. Homeworks will be assigned on

those days

Collaboration policy

• Collaboration on assignments is encouraged to share ideas and solve problems, but

you must write your own code

• Students are expected to abide by the Honor Code. Honest and ethical behavior is

expected at all times

• The work may be carried out individually or in a group of maximum 3-4 people. In

the latter case, the work carried out by each group member must be clearly

evidenced
6

Course description

Evaluation

• Four homeworks will be released throughout the course, they must be sent in the

form of a report one week after release date. Each homework will count for 25%

• The final project also must be sent in the form of a report and discussed on the

day of the exam

• Video of some previous years projects (2020, 2021, 2022, 2023)

Grading

• Homeworks: 50%

• Project: 25%

• Oral: 25%

7

https://www.youtube.com/watch?v=db1AFCl3g_o
https://www.youtube.com/watch?v=YBMJIPK96lY
https://www.linkedin.com/posts/jocacace_what-a-fantastic-year-for-my-course-robotics-activity-7086999450019147776-6I25/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/mario-selvaggio-ab7b9198_robotics-lab-automation-activity-7144372540784705536-QVly?utm_source=share&utm_medium=member_desktop

Setup your PC

This course requires you to set up your PC. You’ll find instructions on how to install

and get familiar with the following computer software tools in a separate document

(link). Here the main tools you must get familiar with

• Linux

To develop ROS applications, you need to preferably work in a Ubuntu

environment. Install Ubuntu 22.04 LTS from https://ubuntu.com/

• ROS 2

Set of libraries and tools used to building robotics applications. You need to

install ROS 2 and follow the preliminary tutorials on https://www.ros.org/

8

https://ubuntu.com/
https://www.ros.org/

Setup your PC

• Version control software (VCS)

Git is a VCS used to share code and keep track of it. Create an account on

https://github.com/ to host your Git repositories

• Docker

Tool for creating and managing containers to run your applications anywhere.

Visit https://www.docker.com/ for more information

• Computer programming

It is *highly recommended* to refresh your C++ skills using any C++ tutorial,

e.g. https://www.learncpp.com/

9

https://github.com/
https://www.docker.com/
https://www.learncpp.com/

ROS Essentials

10

ROS - Introduction

History of ROS (Robot Operating System)

• Originally started in 2007 at the Willow Garage and Stanford Artificial Intelligence

Laboratory under GPL license

• The goal was to establish a standard way to program robots while offering

off-the-shelf software components easily integrable in custom robotic applications

• Since 2013 managed by Open-Source Robotics Foundation, now Open Robotics1

• De facto standard for robot programming in many university, companies etc.

• The goal of the ROS 2 project is to adapt to recent changes, leveraging what is

great about ROS 1 and improving what isn’t
1https://www.openrobotics.org/

11

https://www.openrobotics.org/

ROS - Introduction

ROS main features

• Code sharing and reuse (do not reinvent the wheel)

• Distributed, modular design (nodes grouped in packages, scalable)

• Language independent (C++, Python, Java, ...)

• Individual programs communicate over defined API (ROS messages, services, etc.)

• Easy testing (ready-to-use)

• Vibrant community & collaborative environment

• Many robots are using ROS: https://robots.ros.org/

12

https://robots.ros.org/

ROS - Introduction

What is ROS?

• ROS is not an operating system rather a set of open source software libraries and

tools that help you build robot applications

• From drivers to state-of-the-art algorithms, to user interfaces, ROS provides

powerful developer tools that allow you to focus on the development of your robot

application

13

ROS - Introduction

Plumbing (the computation graph)

• At its core, ROS provides a message-passing system, often called “middleware” or

“plumbing”, that handles communication

• ROS processes are represented as nodes in a graph structure connected by edges

by which they communicate via the ROS’s built-in and well-tested messaging

system

14

ROS - Introduction

Plumbing (Cont’d)

• Nodes can publish or subscribe to named topics, can act as client or server for

other nodes, or set or retrieve shared data from a communal database called the

parameter server

• One node usually is a complex combination of publishers, subscribers, service

servers, service clients, action servers, and action clients, all at the same time

15

ROS - Introduction

Plumbing (Cont’d)

For instance, for the turtlebot

• a node retrieves laser data

• a node performs localization &

mapping

• a node controls wheel motors

• a node gives velocity commands to

the wheels

• ...

16

ROS - Introduction

Tools

• Building robot applications is challenging. You have all the difficulties of any

software development effort combined with the need to interact asynchronously

with the physical world, through sensors and actuators

• ROS provides an extensive set of tools to configure, manage, debug, visualize,

data log, and test your application

17

ROS - Introduction

Capabilities

• ROS provides a broad collection of robot-agnostic libraries organized in packages
that implement useful robot functionalities such as

• the device driver for your GPS sensor

• a walking and balance controller for your quadruped robot

• a localization and mapping system for your mobile robot

• The goal of the ROS project is to continually raise the bar on what is taken for

granted, and thus to lower the barrier to entry to building robot applications

18

ROS - Introduction

Community

• ROS is supported and constantly improved by a large community of engineers and

hobbyists from around the globe with a shared interest in robotics and

open-source software

• Some useful links:

• Tutorials - docs.ros.org

• Demos - github.com/ros2/demos/

• Examples - github.com/ros2/examples

• Q & A site - answers.ros.org, robotics.stackexchange.com

• Discussion - discourse.ros.org

19

https://docs.ros.org/en/humble/Tutorials.html
https://github.com/ros2/demos/tree/humble
https://github.com/ros2/examples/tree/humble
https://answers.ros.org
https://robotics.stackexchange.com/
https://discourse.ros.org

ROS - Introduction

ROS philosophy

• Peer to peer: individual programs communicate over defined API (ROS messages,

services, etc.)

• Distributed: programs can be run on multiple computers and communicate over

the network

• Multi-language: ROS modules can be written in any language for which a client

library exists (C++, Python, MATLAB, Java, etc.)

• Light-weight: stand-alone libraries are wrapped around with a thin ROS layer

• Free and open-source: most ROS software is open-source and free to use

20

ROS 2 - Hand-on class

CLI tools:

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools.html

21

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools.html

ROS 2 - Nodes

Nodes

• Nodes are the processes that perform computation (executables)

• ROS nodes are written using ROS client libraries (available in different languages)

implementing ROS functionalities such as communication between nodes

• Allow building multiple simple processes rather than a large process with all the

functionality (modularity)

• A robot control system will usually comprise many nodes

22

ROS 2 - Nodes

ROS 1 vs ROS 2

• In ROS 1 there is a ROS Master, that takes care of connections and

communication among nodes (TCP protocol)

• ROS 2 use the DDS, which mediates the peer-to-peer communication

(decentralized) and guarantees more security and reliability

• ROS 1 nodes are single-process (nodelets are nodes running on the same process,

useful when they share a lot of memory)

• ROS2 nodes can run on the same process and their lifecycle could be managed

(state machine)

• ROS 2 client libraries (rclcpp and rclpy) share a common underlaying

implementation (rcl). See here for more information.

• ROS 1 limits itself to Ubuntu or Debian. ROS 2 runs on macOS, Windows,

real-time operating system, and other operating systems (microcontrollers) 23

https://roscon.ros.org/2016/presentations/ROSCon%202016%20-%20ROS%202%20Update.pdf

ROS 2 - Nodes

Discovery

• Discovery of nodes happens automatically through the underlying middleware of
ROS 2 following the procedure:

1. When a node is started, it advertises its presence to other nodes on the network with

the same ROS domain (set with the ROS_DOMAIN_ID environment variable)

2. Nodes periodically advertise their presence even after the initial discovery period

3. Nodes advertise to other nodes when they go offline

• Nodes will only establish connections with other nodes if they have compatible

Quality of Service settings

24

ROS 2 - Nodes

Inter-nodes communication

ROS nodes represent independent processes in the ROS stack, and they can

communicate with each other using 3 primary modes:

• ROS Topics (publisher/subscriber)

• ROS Services (request/response)

• ROS Actions (action/feedback/result)

25

ROS 2 - Nodes

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/

Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

26

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

ROS 2 - Interfaces

Interfaces

• Interfaces are a generic name for Topics, Services, and Actions

• Topics have an associated Message Type that determines the layout of the message

published to the topic

• Services have an associated Service Type that determines the layout of the

associated request and response

• Actions have an associated Action Type that determines the layout of the request,

result, and feedback

• ROS Interface Types are specified using the Interface Definition Language (IDL)

27

ROS 2 - Interfaces

Topics are labeled channels for communication between nodes and are an

implementation of a Publish/Subscribe communication pattern

• A node can provide information by publishing a message to a topic

• A node can receive information by subscribing to a topic

• When a node publishes a message to a topic all nodes that have subscribed to

that topic receive the message

• Topics are a many-to-many communication channel: any number of nodes may

publish or subscribe to a given topic

• The message definition consists in a typical data structure composed by two main

types: fields and constants

• Defined in *.msg files in the msg/ directory of a ROS package

<pkg>/msg/<MessageType>.msg

28

ROS 2 - Interfaces

ROS 2 message - example

• geometry_msgs::PoseStamped is used to share the timed pose of an object

29

ROS 2 - Interfaces

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/

Understanding-ROS2-Topics/Understanding-ROS2-Topics.html

30

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html

ROS 2 - Interfaces

Services

• Realize a Request/Response mechanism for inter-node communication

• A node provides a service by creating a service server and/or calls a service by

creating a service client

• A service client sends a request to a service server and the service server replies by

sending a response to the service client (one server - multiple clients)

• A service description file consists of a request and a response msg type, separated

by - - - . Any two .msg files concatenated with a - - - are a legal service description

• Similar in structure to messages, services are defined in *.srv files in the srv/

directory of a ROS package <pkg>/srv/<ServiceType>.srv files

31

ROS 2 - Interfaces

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/

Understanding-ROS2-Services/Understanding-ROS2-Services.html

32

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html

ROS 2 - Interfaces

Actions

• Actions are a long-running (many seconds or minutes) task and receive periodic

feedback and can be interrupted

• The action server receives a request from an action client (much like a service)

and periodically sends feedback (over a topic) until the action is complete,

whereupon it sends a result (like a service response)

• Like services, the request fields are before and the response fields are after the

first triple-dash (- - -), respectively. There is also a third set of fields after the

second triple-dash, which is the fields to be sent when sending feedback

• Action Types are stored in <pkg>/action/<ActionType>.action files

33

ROS 2 - Interfaces

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/

Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

34

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

ROS 2 - Interfaces

Parameters

• ROS parameters allows you to store and manipulate data on the ROS Parameter

Server (that can be accessed by all ROS nodes)

• The Parameter Server can store integers, floats, boolean, dates, times, lists

• Oftentimes, parameters are set in Launchfiles, to provide each node you are

starting with the proper configuration information

• Typically, nodes read parameters when they start, however, in ROS 2, a callback

can respond to parameter changes

• Parameters are specified using the YAML format, YAML files can be stored on

disk and loaded by rosparam CLI or a launchfile into the parameter server

35

ROS 2 - Interfaces

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/

Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html

36

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html

ROS 2 - Launch

Launchfiles enable multiple nodes to be started with a single command

• In ROS 2 there are 3 formats for a launch file

• Python: python scripts that use the ROS 2 launch API to configure and run nodes.

The most flexible and powerful but also most complicated

• XML: The format as in ROS 1. Directly declares what nodes are running but can

perform minimal logic

• YAML: Another format for writing what is essentially the same as an XML launchfile

(do you like tags or indentation?)

• ros2 launch lets you run and interact with launchfiles

• Strive to have one launchfile completely start your project

37

ROS 2 - Launch

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/

Launching-Multiple-Nodes/Launching-Multiple-Nodes.html

38

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Launching-Multiple-Nodes/Launching-Multiple-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Launching-Multiple-Nodes/Launching-Multiple-Nodes.html

ROS 2 - Recording data

Bags enable you to capture data from ROS topics to a file and play them back in real

time

• Use ros2 bag to interact with and record bags

• Running robotics experiments is often frustrating and difficult. Capturing the data

from a run and testing different algorithms and parameters on it is extremely

useful

• rqt_bag is a plugin that enables interaction with bagfiles

39

ROS 2 - Recording data

Example: https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/

Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html

40

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Recording-And-Playing-Back-Data/Recording-And-Playing-Back-Data.html

ROS 2 - Logging

rqt_console is a GUI tool used to introspect log messages in ROS 2 in real time

• Nodes can log information at different logger levels, indicating the severity of the

message

• There are five verbosity levels: DEBUG, INFO, WARN, ERROR, FATAL

• When running a node passing --ros-args --log-level LEVEL sets the logger

level

41

ROS 2 - Logging

Example: https://docs.ros.org/en/iron/Tutorials/Beginner-CLI-Tools/

Using-Rqt-Console/Using-Rqt-Console.html

42

https://docs.ros.org/en/iron/Tutorials/Beginner-CLI-Tools/Using-Rqt-Console/Using-Rqt-Console.html
https://docs.ros.org/en/iron/Tutorials/Beginner-CLI-Tools/Using-Rqt-Console/Using-Rqt-Console.html

ROS 2 - Workspace

A ROS 2 Workspace is a directory containing a collection of ROS 2 packages

• Commonly, it contains the following folders:

• src: the source code to ROS packages

• build: a directory where intermediate files are stored

• log files generated from building the packages

• install: a directory where the packages are installed

• It’s necessary to source install/setup.bash in your ROS 2 workspace. This

makes ROS 2’s packages available for you to use in that terminal

• You also have the option of sourcing an “overlay” - a secondary workspace where

you can add new packages without interfering with the existing ROS 2 workspace

that you’re extending

43

ROS 2 - Workspace

The ROS 2 Workspace - building

• Workspaces must be built before they can be used

• Run colcon build --symlink-install from the main workspace directory to

build all the packages in the src directory

44

ROS 2 - Workspace

Colcon

• colcon is the ROS 2 build-tool, which is used to build the workspace

• It is written in python and implemented as a series of extensions, which anyone

can make to customize the build process

• As a build tool, colcon is capable of building projects that use many build

systems: ament python, ament cmake, CMake (for C++), Catkin (for ROS1),

setuptools (for python)

• colcon manages dependencies between multiple ROS packages written in different

computer languages with different build systems

45

ROS 2 - Workspace

Colcon

• By default colcon builds packages in parallel

• The dependencies specified in package.xml are used by colcon to build packages in

the right order

• If <package A> has a build_depend on <package B> then colcon always builds

<package B> before <package A>

• Your code may still compile by pure luck even if dependencies are specified indirectly.

If <package B> finishes before the <package A> process needs it the build will

succeed

46

ROS 2 - Workspace

colcon cd

• colcon_cd allows you to quickly switch between the workspace directory and that

of a package

• Install with sudo apt install python3-colcon-cd

• Then, add source /usr/share/colcon_cd/function/colcon_cd.sh

• From your workspace directory run colcon_cd package to go to that package

• You can then run colcon_cd to return to the workspace directory

47

ROS 2 - Workspace

colcon clean

• colcon_clean allows you to easily remove the build results from a workspace

• Install with sudo apt install python3-colcon-clean

• Then, add source /usr/share/colcon_cd/function/colcon_cd.sh

• colcon clean workspace will clean all generated files

• colcon clean packages allows you to select individual packages to clean

48

ROS 2 - Workspace

ROS environment

• ROS relies on environment variables to control settings and find nodes and libraries

• ROS environment variables are set when underlay is sourced

• To source the underlay run source /opt/ros/<DISTRO>/setup.bash

• When you installed ROS you added the above command to the .bashrc so that it

runs automatically whenever bash is opened

• The underlay must be sourced to have access to the ROS command-line tools and

system-installed packages

49

ROS 2 - Workspace

ROS environment (cont’d)

• Other ROS workspaces can be added by sourcing an overlay, which provides
access to the packages installed in that overlay

• When you source install/setup.bash after building the workspace you are

adding the overlay, providing access to the packages you just built

• Technically, you should not have the overlay sourced when using colcon build, which

means you need a separate window for building and running ROS commands

• Multiple ROS workspaces can be overlayed on top of each other allowing you to use

packages from multiple workspaces or even override specific packages

50

ROS 2 - Workspace

Creating a workspace

https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/

Creating-A-Workspace/Creating-A-Workspace.html

51

https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-A-Workspace/Creating-A-Workspace.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-A-Workspace/Creating-A-Workspace.html

ROS 2 - Packages

A ROS package is the organizational unit for your ROS 2 source code. It contains

launch files, configuration files, message definitions, data, and documentation

• Binary versions of ROS packages are distributed on ROS’s package server and can

be downloaded via apt

• The naming convention when using apt is ros-humble-<package-name>

• With packages, you can release your ROS 2 work and allow others to build and

use it easily (using Git for example)

• Package creation in ROS 2 uses ament as its build system and colcon as its build

tool

• To create ROS code you need to create a package

52

ROS 2 - Packages

Package structure

• ROS 2 Python and CMake packages each have their own minimum required
contents:

• CMakeLists.txt file that describes how to build the code within the package

• include/<package_name> directory containing the public headers for the package

• package.xml file containing meta information about the package

• src directory containing the source code for the package

• A single workspace can contain as many packages as you want of different build

types (CMake, Python, etc.)

• Best practice is to create your packages in the src folder within your workspace

53

ROS 2 - Packages

Example: https://docs.ros.org/en/iron/Tutorials/

Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html

54

https://docs.ros.org/en/iron/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html
https://docs.ros.org/en/iron/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html

ROS 2 - Packages

The package.xml file

• All ROS packages have a base directory containing a manifest file called
package.xml

• This file is an XML document

• The full specification for package.xml is in ROS Rep 149

• The XML Schema for package.xml provides a machine-readable method for

automatically validating the package.xml

• An important element of package.xml is the <export><build_type>, which
determines the type of package

• ament python is used for pure python packages

• ament_cmake is used for C++ packages and packages that define custom Messages,

Services, or Actions (i.e., Interfaces)

• ament_cmake_python is for packages with mixed python/C++ code

55

ROS 2 - Packages

The package.xml file

Required elements

• <name> The package name

• <version> The version number

• <description> A description of the package

• <maintainer> Authors

• <license> Ways the package may be distributed

Dependencies

• <exec_depend> Packages needed at runtime

• <build_depend> Packages needed at build time

• <depend> = <exec_depend> + <build_depend>

56

ROS 2 - Packages

Ament CMake Packages

• ament_cmake is the build system for CMake based packages in ROS 2

• Ament Cmake packages are primarily used for C++ ROS projects

• Packages can be created using

ros2 pkg create --build-type ament_cmake <package_name>

57

ROS 2 - Packages

Custom Interfaces - definition

• Custom interfaces are created in their own ament_cmake type packages

• To create a custom interface file, first write an interface file using the ROS IDL

• The structure of an interface package looks like this

58

ROS 2 - Packages

Custom Interfaces - definition (cont’d)

• Edit package.xml

• Add a <buildtool_depend> on rosidl_default_generators

• Add an <exec_depend> on rosidl_default_runtime

• You should also <exec_depend> and <build_depend> on any packages that use

types defined by your custom interface

59

ROS 2 - Packages

Custom Interfaces - usage

• To import in your package use

#include "<interface_package_name>/<msg|srv|action>/TypeName.hpp"

• In python use

from <interface_package_name>.<msg|srv|action> import TypeName

60

ROS 2 - Launch

Launch files allow you to start up and configure a number of executables containing

ROS 2 nodes simultaneously

• ROS programs consist of many nodes communicating over topics and services,

manually running them becomes tedious and hard to reproduce

• In ROS 2 (unlike ROS 1) there are multiple types of launchfiles:

• Python launchfiles: python scripts that use the ROS 2 Launch API to declare what

actions should be taken

• XML (or YAML) launchfiles: they simply declare the nodes that should be running

61

ROS 2 - Launch

XML Launch files

Example talker listener launch.xml

<launch>

<node pkg="demo_nodes_cpp" exec="talker" output="screen" />

<node pkg="demo_nodes_cpp" exec="listener" output="screen" />

</launch>

• launch: root element

• node: specifies ad node to be launched

• name: name of the node (free to be chosen)

• pkg: package containing the node

• exec: node type (there must be an executable with the same name)

• output: specifies where to output log messages (screen, log)
62

https://github.com/ros2/demos/blob/rolling/demo_nodes_cpp/launch/topics/talker_listener_launch.xml

ROS 2 - Launch

Launch arguments & parameters

• Create re-usable launch files with <arg> tag, which works like a parameter, e.g.

<arg name="arg_name" default="default_value"/>

• Use arguments in launch file

$(arg arg_name)

• When launching, arguments can be set

$ ros2 launch launch_file.xml arg_name:=value

• The <param> tag allows for setting ROS parameters of a ROS node

Example

<node pkg="ros_demos" exec="publisher"> <param name="publish_frequency"

value="10"/> <remap from="generic_topic_name" to="my_topic"/> </node>

63

ROS 2 - Launch

Including other launch files

• Include other launch files with <include> tag to organize large projects

<include file="package_name"/>

• Find the system path to other packages

$(find-pkg-share package_name)

• Pass arguments to the included file

<arg name="arg_name" value="value"/>

Example

<include file="/opt/my_launch_file.py"/>

<include file="$(find-pkg-share my_pkg)/launch/some_launch_file.xml"/>

64

ROS 2 - Hands-on class

Work in a workspace

• Customize the simple publisher/subscriber

• Create a package

• Creating custom interfaces

• Using parameters in a class

• Customize launch file

65

ROS 2 - Tools

rqt

• Qt-based GUI framework for

ROS

• Various GUI tools in the form

of plugins

• One can run all the existing

GUI tools as dockable

windows within rqt

• Users can create their own

plugins for rqt

66

ROS 2 - Tools

rqt - plugins

rqt image view: plugin for displaying images using image_transport

rqt plot: plugin visualizing numeric values in a 2D plot using different plotting

backends

rqt graph: plugin for visualizing the ROS computation graph

rqt console: plugin for displaying and filtering ROS messages

rqt logger level: plugin for configuring the logger level of ROS nodes

67

ROS 2 - Tools

Rviz2

• 3D visualization tool for ROS

• Subscribes to topics and visualizes the

message contents

• Different camera views (orthographic,

top-down, etc.)

• Interactive tools to publish user

information

• Save and load setup as RViz configuration

• Extensible with plugins

68

ROS 2 - Tools

Rviz2 User guide: https://docs.ros.org/en/humble/Tutorials/

Intermediate/RViz/RViz-User-Guide/RViz-User-Guide.html

69

https://docs.ros.org/en/humble/Tutorials/Intermediate/RViz/RViz-User-Guide/RViz-User-Guide.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/RViz/RViz-User-Guide/RViz-User-Guide.html

ROS 2 - Tools

Tf2

• tf2 is a package that lets the user keep

track of multiple coordinate frames over

time

• tf2 maintains the relationship between

coordinate frames in a tree structure

buffered in time

• tf2 lets the user transform points, vectors,

etc. between any two coordinate frames at

any desired point in time

70

ROS 2 - Tools

Example: https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/

Introduction-To-Tf2.html

71

https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Introduction-To-Tf2.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Introduction-To-Tf2.html

ROS 2 - Tools

Tf2 for your robot

• The robot_state_publisher package allows you to publish the state of a robot

• The package takes the joint angles of the robot as input and publishes the 3D

poses of the robot links, using a kinematic tree model of the robot

• It uses the URDF specified by the parameter robot_description and the joint

positions from the topic joint_states to calculate the forward kinematics of the

robot and publish the results via tf

• Implemented as publisher/subscriber model on the topics /tf and /tf_static

72

ROS 2 - Tools

Tf2 - Transform

• TF use a tf2_ros::Buffer to listen to all broadcasted transforms via

tf2_ros::TransformBroadcaster::sendTransform

• Query for specific transforms between two coordinate frames in the transform tree

via lookupTransform()

• The transform message is structured as follows

73

ROS 2 - Tools

Tf2 - Command line

• Print info current transform tree

$ ros2 run tf2_ros tf2_monitor <frame1> <frame2>

• Print info transform between two frames

$ ros2 run tf2_ros tf2_echo <frame1> <frame2>

• Create a visual graph (PDF) $ ros2 run tf2_tools view_frames

• Run rviz2 with tf enabled and begin viewing frames to see transforms

74

ROS 2 - Tools

Example: https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/

Writing-A-Tf2-Static-Broadcaster-Cpp.html

75

https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Writing-A-Tf2-Static-Broadcaster-Cpp.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Writing-A-Tf2-Static-Broadcaster-Cpp.html

ROS 2 - Simulation

Gazebo

• Simulates 3D rigid-body dynamics

• Generates sensors’ data including noise

• Realistic 3D visualization and user

interaction

• Includes many robot models

• Provides a ROS interface

• Extensible with plugins

• Extensive command line tools
https://gazebosim.org/

76

https://gazebosim.org/

ROS 2 - Simulation

Unified Robot Description Format - URDF

• Defines an XML format for
representing a robot model

• Kinematic and dynamic

description

• Visual representation

• Collision model

• URDF generation can be scripted

with XACRO macro

Visual meshes Primitives for collision

77

ROS 2 - Simulation

Unified Robot Description Format - URDF (cont’d)

• Description consists of a set of link

elements and a set of joint elements

• Joints connect the links together

78

ROS 2 - Simulation

The <robot> element

<robot name="robot_name">

<!-- robot links and joints and more -->

<link> ... </link>

<link> ... </link>

<joint> </joint>

<joint> </joint>

</robot>

The <joint> element

<joint name="my_joint" type="floating">

<origin xyz="0 0 1" rpy="0 0 3.1416"/>

<parent link="link1"/>

<child link="link2"/>

<calibration rising="0.0"/>

<dynamics damping="0.0" friction="0.0"/>

<limit effort="30" velocity="1.0" lower="-2.2" upper="

0.7" />

<safety_controller k_velocity="10" k_position="15"

soft_lower_limit="-2.0" soft_upper_limit="0.5" />

</joint>

The <link> element

<link name="my_link">

<inertial>

<origin xyz="0 0 0.5" rpy="0 0 0"/>

<mass value="1"/>

<inertia ixx="100" ixy="0" ixz="0" iyy="100" iyz="0"

izz="100" />

</inertial>

<visual>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<box size="1 1 1" />

</geometry>

<material name="Cyan">

<color rgba="0 1.0 1.0 1.0"/>

</material>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>

<geometry>

<cylinder radius="1" length="0.5"/>

</geometry>

</collision>

</link>

79

ROS 2 - Simulation

Unified Robot Description Format - URDF (cont’d)

• The robot description (URDF) is

stored on the parameter server under

/robot_description param

• You can visualize the robot model in

rviz with the RobotModel plugin

robot_description = {"robot_description":

robot_description_content}

joint_state_publisher_node = Node(

package="joint_state_publisher_gui",

executable="joint_state_publisher_gui",

)

robot_state_publisher_node = Node(

package="robot_state_publisher",

executable="robot_state_publisher",

output="both",

parameters=[robot_description],

)

rviz_node = Node(

package="rviz2",

executable="rviz2",

name="rviz2",

output="log",

arguments=["-d", rviz_config_file],

)
80

ROS 2 - Simulation

Xacro

• Xacro is an XML macro language

• Include its namespace

xmlns:xacro="http://www.ros.

org/wiki/xacro" within the robot

tag

• Used to construct shorter and more

readable XML files by using macros

• It is heavily used in packages such as

the urdf

Example Xacro

<xacro:macro name="cylinder_inertial" params="radius length

mass *origin">

<inertial>

<mass value="${mass}" />

<xacro:insert_block name="origin" />

<inertia ixx="${0.0833333 * mass * (3 * radius *

radius + length * length)}" ixy="0.0" ixz="0.0"

iyy="${0.0833333 * mass * (3 * radius * radius +

length * length)}" iyz="0.0"

izz="${0.5 * mass * radius * radius}" />

</inertial>

</xacro:macro>

<xacro:cylinder_inertial radius="${base_inertia_radius}"
length="${base_inertia_length}" mass="${base_mass}">
<origin xyz="0 0 0" rpy="0 0 0" />

</xacro:cylinder_inertial>

81

ROS 2 - Simulation

Xacro (cont’d)

• Properties are named values or

named blocks that can be inserted

anywhere into the XML document

• Properties can be manually declared

or loaded from YAML files

Xacro properties from yaml

<xacro:arg name="initial_pos" default="$(find
arm_description)/config/initial_pos.yaml"/>

<xacro:property name="config_joint_limit_parameters" value=

"${xacro.load_yaml(initial_pos)}"/>

• Macros may contain other macros

• You can include other xacro files

using the xacro:include tag

Xacro include

<xacro:include filename="$(find package)/other_file.xacro"

/>

<xacro:include filename="other_file.xacro" />

<xacro:include filename="$(cwd)/other_file.xacro" />

82

ROS 2 - Simulation

Xacro (cont’d)

• Convert xacro to urdf from command line

$ ros2 run xacro robot_name.xacro -o robot_name.urdf

• ... or inside a launch file

Command([’xacro ’, os.path.join(os.path.join(

get_package_share_directory(’your_package’)), "urdf", "robot.urdf.

xacro")])

83

ROS 2 - Simulation

Simulation Description Format - SDF

• Defines an XML format to describe

• Environments (lighting, gravity etc.)

• Objects (static and dynamic)

• Sensors

• Robots

• SDF is the standard format for

Gazebo

• Gazebo automatically converts a

URDF to SDF

84

ROS 2 - Simulation

Gazebo

85

ROS 2 - Simulation

Gazebo-simulators

• Gazebo can be launched by command line if you use fortress: ign gazebo

• Or if you use Harmonic: gz sim

• The vanilla command will launch the simulator as an empty world.

• Entities can be added to the scene by defining them using an XML-based file

format called SDF (Simulation Description Format).

ign gazebo /path/to/sdf_file

• Gazebo will parse the SDF file, reading it and converting the XML description of

the entity into actual objects, models, and structures in the simulated world.

86

ROS 2 - Simulation

Sdf

• Syntax of sdf is very similar the one used for

Urdf.

• Within the <world> tag we specify the

models and plugin for the simulator

• Models are the entities composing the scene.

Robots described in URDF are examples of

models for a SDF file.

Example Sdf

<?xml version="1.0" ?>

<sdf version="1.6">

<world name="box_world">

<model name="box_model">

<link name="box_link">

<visual name="box_visual">

<geometry>

<box>

<size>1 1 1</size>

</box>

</geometry>

</visual>

</link>

</model>

</world>

</sdf>

Rename the example as box.sdf, save it into your home directory and launch it by:

ign gazebo box.sdf 87

ROS 2 - Simulation

Gazebo-Ros integration

• ROS prescribes a

specific way to

launch all the pieces

needed in your

system. There are

dedicated launch file

and packages which

support the

integration of gazebo

within the ros

framework

launch Gazebo

gazebo_ignition_simulator = IncludeLaunchDescription(

PythonLaunchDescriptionSource(

[PathJoinSubstitution([FindPackageShare(’ros_gz_sim’),

’launch’,

’gz_sim.launch.py’])]), #ign_gazebo.launch.py

launch_arguments={’gz_args’: LaunchConfiguration(’gz_args’)}.items()

)

Spawn Urdf

gz_spawn_entity = Node(

package=’ros_gz_sim’,

executable=’create’,

output=’screen’,

arguments=[’-topic’, ’robot_description’,

’-name’, ’robot_name’,

’-allow_renaming’, ’true’,

)

88

ROS 2 - Simulation

Gazebo-Ros integration

• Once the model has been

spawned with the create

node, it exists in the Gazebo

environment but meshes

could not be visualizable.

• Gazebo must be informed

about the location of

meshes through the

environment variable

GZ_SIM_RESOURCE_PATH.

Include these lines within the

package.xml

<export>

<build_type>ament_cmake</build_type>

<gazebo_ros gazebo_model_path="${prefix}/.." />

</export>

• The values in the attributes

gazebo_model_path are appended to

GZ_SIM_RESOURCE_PATH

• ${prefix} refers to the path in the

install directory, which also contains

the meshes if specified in the CMake

file. 89

ROS 2 - Sensors & controllers

90

ROS 2 - Sensors & controllers

91

ROS 2 - Sensors & controllers

Available controllers

• joint_state_broadcaster defined to publish joint states

• joint_position_controller position commands are used to control joint

positions

• joint_velocity_controller velocity commands are used to control joint

positions or velocities

• joint_effort_controller efforts commands are used to control joint positions,

velocities or efforts

• joint_trajectory_controllers used to control the execution of joint-space

trajectories on a group of joints

All the available controllers can be found in this repository: https://github.com/

ros-controls/ros2_controllers

92

https://github.com/ros-controls/ros2_controllers
https://github.com/ros-controls/ros2_controllers

ROS 2 - Sensors & controllers

Configuring and launching controllers

Controllers are usually defined with YAML files. These files contain a list of controllers

that the controller manager will load

Controllers are defined by a name and

type

• The name is the identifier

needed by the controller

manager associated to the

controller.

• The type represent the library

that will be loaded

controllers.yaml

controller_manager:

ros__parameters:

update_rate: 100 # Hz

joint_state_broadcaster:

type: joint_state_broadcaster/JointStateBroadcaster

joint_trajectory_controller:

type: joint_trajectory_controller/JointTrajectoryController

position_controller:

type: position_controllers/JointGroupPositionController

93

ROS 2 - Sensors & controllers

Configuring and launching controllers

ROS2 controllers whose type is specified within the YAML file, requires additional

configurations

• Firstly, we need to specify the

names of the joints on which

those controllers will act

• Additional parameters can be

configured depending on the type

of controller

position controller.yaml

joint_trajectory_controller:

ros__parameters:

joints:

- joint_0

- joint_1

- joint_2

- joint_3

command_interfaces:

- position

state_publish_rate: 100.0

action_monitor_rate: 20.0 # Defaults to 20

allow_partial_joints_goal: true #

open_loop_control: true

allow_integration_in_goal_trajectories: true 94

ROS 2 - Sensors & controllers

Configuring and launching controllers

The YAML configuration file will be loaded using either a launch file or the URDF file.

• Use the URDF to load controllers if you are working in simulation; use the launch

file otherwise

• We can both launch the Controller manager and the configurations including

gz_ros2_control plugin

• If you are working with Ignition, the plugin is named ign_ros2_control plugin

95

ROS 2 - Sensors & controllers

Configuring and launching controllers

<gazebo>

<plugin filename="ign_ros2_control-system" name="ign_ros2_control::IgnitionROS2ControlPlugin">

<parameters>$(find arm_description)/config/pos_controller.yaml</parameters>

<controller_manager_prefix_node_name>controller_manager</controller_manager_prefix_node_name>

</plugin>

</gazebo>

• <gazebo> tag specify that we are are working within the Gazebo framework

• <parameters>: take as input a YAML file with the configuration of the controller

• <controller_manager_name>: Set controller manager name (default:

controller_manager

If you launched the robot-state-publisher passing the urdf with the

ign_ros2_control plugin, you should see the /controller_manager node to

appear.
96

ROS 2 - Sensors & controllers

Controller management

Once the controller_manager node is active, we can load

the ros2-controllers defined in the YAML file

Command line
$ ros2 run controller_manager spawner controller_name

Launch file
load_controller = Node(package="controller_manager", executable="

spawner", arguments=["name_controller", "--controller-manager", "/

controller_manager"],)

Using rqt
$ sudo apt-get install ros-<distro>-rqt-controller-manager

$ ros2 run crqt_controller_manager rqt_controller_manager

97

ROS 2 - Sensors & controllers

Controller management: Some useful commands:

• $ ros2 control list_controller_types: will print all the type of the

available controllers that we could add inside the configuration YAML file

• $ ros2 control load_controller --set-state active name_controller

: Load a new controller (you can load only active controllers)

• $ ros2 control set_controller_state name_controller {inactive,

active}: Change the state of a controller

• ros2 control unload_controller name_controller

Hint
Use the launch.action.RegisterEventHandler() method to start the controllers

after the model is spawned in Gazebo

98

ROS 2 - Sensors & controllers

Hardware Components

The hardware components realize communication to physical hardware and represent

its abstraction in the ros2 control framework. There are three types of hardware

• system

• sensor

• actuator

which represent the hardware component. The ros2 control framework uses the

<ros2_control>-tag in the robot’s URDF file to describe its components:

Components can be described through the ros2-controller interfaces:

• State Interfaces: to retrieve the states from the joints, actuators, or sensors

• Joint Command Interfaces: to send command to the actuators (sensors type

haven’t the command interface) 99

ROS 2 - Sensors & controllers

Hardware components: type sensors and actuators

The command and state interface can include position, velocity, and/or effort.

• Actuators type are very similar to the system type, but are related to only one

joint. This type still provides both command and state interface for the single

joint

• A sensor component is related to a joint (e.g., encoder) or a link (e.g.,

force-torque sensor). This component type has only reading capabilities

100

ROS 2 - Sensors & controllers

Hardware components: type system

With ”system” type hardware com-

ponents, we can specify multi-DOF

robotic hardware, such as industrial

robots. Within the <ros2_control>-

tag, the <joint>-tag groups the inter-

faces associated with the joints of phys-

ical robots and actuators. These can

be command and state interfaces to set

the goal values for hardware and read

its current state.

<ros2_control name="Name_of_the_hardware" type="system">

<hardware>

<plugin>library_name/ClassName</plugin>

<param name="example_param">value</param>

</hardware>

<joint name="name_of_the_component">

<command_interface name="interface_name">

<!-- All of them are optional. ‘data_type‘ and ‘

size‘ are used for GPIOs. Size is length of an

array. -->

<param name="min">-1</param>

<param name="max">1</param>

<param name="initial_value">0.0</param>

<param name="data_type"></param>

</command_interface>

<state_interface name="position"/>

</joint>

</ros2_control>

101

ROS 2 - Sensors & controllers

Hardware plugin

• Regardless of the type of hardware,

we need to add a specific plugin to

enable the hardware interface. For

simulator environment, this plugin

can be the gazebo-ros-control

(for Gazebo classic),

gz-ros2-control (for Gazebo

harmonic), ign-ros2-control (for

Gazebo fortress)

<hardware>

<plugin>ign_ros2_control/IgnitionSystem</plugin>

</hardware>

102

ROS 2 - Sensors & controllers

Gazebo plugins

• A plugin is a chunk of code that is compiled as a shared library and inserted into

the simulation

• Gazebo relies on plugins for rendering, physics simulation, sensor data generation,

and many of the capabilities. Plugins make us control many aspects of the

simulation like world, models, etc.

• This gives users great control and makes sure only what’s crucial for a given

simulation is loaded

103

ROS 2 - Sensors & controllers

Sensor plugins

• Gazebo Sensors provides a set of sensors

models that can be configured at run time to

mimic specific real-world sensors

• The use of a sensor requires adding the

appropriate library to the project. We’ll try

now to add a camera sensor

<gazebo>

<plugin

filename="gz-sim-sensors-system"

name="gz::sim::systems::Sensors">

<render_engine>ogre2</render_engine>

</plugin>

</gazebo>

104

ROS 2 - Sensors & controllers

camera sensor

Essential tags:

• <name> is the name of the entity that will appear

in gazebo, and is specified by the user

• <type> specifies which kind of sensor we are using

• The tag <topic> represents the name of the

Gazebo topic on which data will be published

<sensor name="camera" type="camera">

<camera>

<horizontal_fov>1.047</

horizontal_fov>



<clip>

<near>0.1</near>

<far>100</far>

</clip>

</camera>

<always_on>1</always_on>

<update_rate>30</update_rate>

<visualize>true</visualize>

<topic>camera</topic>

</sensor>

105

ROS 2 - Sensors & controllers

camera sensor

The sensor is usually added to one of the links of our model

• In sdf it’s enough to place this code within the <link> tag

• In urdf sensor should be added in another location of the file within the tag

<gazebo reference = "link_name">

• Once the sensor has been added, a new topic will appear among the Gazebo

topics. You can check all the available topic with: ign topic -l

• Check if the /camera topic appears (that’s the name we defined in the <topic>

tag)

• You can print the content of the topic with ign topic -e -t /camera

• With ign topic -e -t /camera | less you can print the header information

106

ROS 2 - Sensors & controllers

Ros-Gz-Sim
• The information from the sensor exists only within the Gazebo world

• We should make these informations available to ros nodes as well

• ros_ign_bridge provides a network bridge which enables the exchange of

messages between ROS 2 and Gazebo. Its support is limited to only certain

message types

• We can initialize a bidirectional bridge so we can have ROS as the publisher and

Gazebo as the subscriber or vice versa. The syntax is /TOPIC@ROS_MSG@GZ_MSG,

where TOPIC is the Gazebo internal topic, ROS_MSG is the ROS message type for

this topic, and GZ_MSG is the Gazebo message type

• The name of the new ROS topic will be the same of the Gazebo topic. It can be

changed by passing the new name as argument to the parameter_bridge node

107

ROS 2 - Sensors & controllers

Ros-Ign-Sim

$ ros2 run ros_ign_bridge parameter_bridge /camera@sensor_msgs/msg/

Image@gz.msgs.Image

• The ros2 run ros_ign_bridge parameter_bridge command simply runs the
parameter_bridge code from the ros_ign_bridge package

• /camera is the name of the topic from which we want copy data

• sensor_msgs/msg/Image is the message type that will be published on the Ros

topic

• gz.msgs.Image is the message type taken from the Gazebo topic

• The @ indicates a bidirectional communications between the ROS and Gazebo.

• Once the command has been launched, the /camera topic will appear also among

the ros2 topic list

108

ROS 2 - Sensors & controllers

Visualize Camera messages in Rviz

• Open Rviz with rviz2

• Add by topic (or by display)

/camera/Image

109

ROS 2 - Sensors & controllers

Change the name of the ros topic

• The parameter_bridge node

launched in that way will generate a

new ros2 topic in which all the

contents of the Gazebo topic

declared before the first @ symbol

are published

• The new ros2 topic will have the

same name of the Gazebo topic

• Here is shown how to launch the

node by launch file and how to

change the name of the ros2 topic

bridge_camera = Node(

package=’ros_ign_bridge’,

executable=’parameter_bridge’,

arguments=[

’/camera@sensor_msgs/msg/Image@gz.msgs.Image’,

’/camera_info@sensor_msgs/msg/CameraInfo@gz.

msgs.CameraInfo’,

’--ros-args’,

’-r’, ’/camera:=/videocamera’,

],

output=’screen’

)

110

Manipulation

111

Kinematic and dynamic control

The OROCOS project

• Orocos (Open Robot Control Software) project aim was to create advanced C++

libraries for robot control

• Over the years, Orocos has become a large project of middleware and tooling for
development of robotics software. The main parts of this project are

• Orocos Real-Time Toolkit (RTT): a component framework that allows us to write

real-time components in C++

• Orocos Component Library (OCL): the necessary components to start an application

and interact with it at run-time

• Orocos framework is well integrated with ROS, a popular software bundle with the

largest community among roboticists to design new applications. Most of the

concepts from both frameworks map well and are largely supported

112

Kinematic and dynamic control

The OROCOS project

• Additional libraries were also developed to complement the bundle for advance
machine and robot control. These libraries include calculation of kinematic chains,
filtering and advance task specification among others

• Kinematics and Dynamics Library (KDL): an application independent framework for

modeling and computation of kinematic chains

• Bayesian Filtering Library (BFL): an application independent framework for inference

in Dynamic Bayesian Networks, i.e., recursive information processing and estimation

algorithms based on Bayes’ rule

• Reduced Finite State Machine (rFSM): a small and powerful statechart

implementation in Lua.

• Instantaneous Task Specification using Constraints (iTaSC): is a framework to

generate robot motions by specifying constraints between (parts of) the robots and

their environment.
113

Kinematic and dynamic control

The OROCOS project

114

Kinematic and dynamic control

The Kinematics and Dynamics Library (KDL)

• Orocos project to supply RealTime usable kinematics and dynamics code, it

contains code for rigid body kinematics calculations and representations for

kinematic structures and their inverse and forward kinematic solvers

• Github: https://github.com/orocos/orocos_kinematics_dynamics

• API: http://docs.ros.org/en/indigo/api/orocos_kdl/html/index.html

• ROS: https://wiki.ros.org/kdl

115

https://github.com/orocos/orocos_kinematics_dynamics
http://docs.ros.org/en/indigo/api/orocos_kdl/html/index.html
https://wiki.ros.org/kdl

Kinematic and dynamic control

The Kinematics and Dynamics Library (KDL)

• What can I use KDL for?

• 3D frame and vector transformations: KDL includes excellent support to work with

vectors, points, frame transformations, etc. You can calculate a vector product,

transform a point into a different reference frame, or even change the reference point

of a 6d twist

• Kinematics and Dynamics of kinematic chains: You can represent a kinematic chain

by a KDL Chain object, and use KDL solvers to compute anything from forward

position kinematics, to inverse dynamics

• Kinematics of kinematic trees: You can represent a kinematic chain by a KDL Chain

object, and use KDL solvers to compute forward position kinematics. Currently no

other solvers are provided

116

Robot vision

117

Vision sensors

Introduction

Vision is a crucial aspect in robotics. It enables

robots to perceive their environment extracting in-

formation from camera data

Applications include

• extracting an object and its position

• inspecting manufactured parts for production errors

• detecting pedestrians in autonomous driving applications

• make a robot arm perform a somewhat intelligent pick and place task

118

Vision sensors

Interface the sensor

• To develop a program using camera sensors we need to interface them to the

onboard computer of the robot

• This can be made mainly in two ways

• Using operating system drivers

• Vendor drivers

• Standard USB camera (like webcams) are directly accessible using low level

routine provided by the operating system

• In Ubuntu/Linux, after plugging in the camera, check whether a /dev/videoX

device file has been created using $ ls /dev/ | grep video

119

Vision sensors

Interface the sensor

• If ls /dev/ | grep video does not list any file, you may have permission

problems when trying to access the device

• We must be sure that our USER group is owner of the device. We can switch

owner from root to user by for example sudo chown root:user /dev/video0

• If you are in a Docker container, you can use the --privileged option to the

docker run command. This causes the device owner to be root

• To check if everything works and ROS can actually stream images, try

ros2 run usb_cam usb_cam_node_exe. Note: The package usb_cam must be

installed!

120

Vision sensors

The usb_cam package

• usb_cam provides a configurable ROS Driver for standard V4L USB Cameras

• The source code is located at https://github.com/ros-drivers/usb_cam

• The package can be installed by

$ sudo apt-get install ros-humble-usb-cam

• Launch the node provided with the package

$ ros2 run usb_cam usb_cam_node_exe

• Show the image using rqt_image_view package

$ ros2 run rqt_image_view rqt_image_view

121

Vision sensors

The usb_cam package

• usb_cam publishes two important topics:

• /usb_cam/image_raw: Uncompressed frames

• /usb_cam/camera_info: Camera calibration matrices from the specified calibration

YAML file provided by the camera’s vendor, or obtained with tools from

camera_calibration package

• Moreover several Services and Parameters are provided, check the documentation

at http://wiki.ros.org/usb_cam

• The default configuration file is visible at: https:

//github.com/ros-drivers/usb_cam/blob/develop/config/usb_cam.yml

• Params can be changed ar runtime by means of the rqt_reconfigure by

$ ros2 run rqt_reconfigure rqt_reconfigure

122

http://wiki.ros.org/usb_cam
https://github.com/ros-drivers/usb_cam/blob/develop/config/usb_cam.yml
https://github.com/ros-drivers/usb_cam/blob/develop/config/usb_cam.yml

Vision sensors

The image_transport package

• The compressed format is useful to send images to other ROS nodes over the

network or store video data into bagfiles

• These topics are published by the image_transport package that provides

transparent support for transporting images in low-bandwidth compressed formats

• Its internal mechanism is very similar to using ROS Publishers and Subscribers,

but specialized for images

• Check the documentation here: http://wiki.ros.org/image_transport and

tutorials here: https:

//github.com/ros-perception/image_transport_tutorials/tree/humble

123

http://wiki.ros.org/image_transport
https://github.com/ros-perception/image_transport_tutorials/tree/humble
https://github.com/ros-perception/image_transport_tutorials/tree/humble

Vision sensors

The image_transport package

• To use the compressed image we need to republish it in an uncompressed format,

using the republish node of the image_transport package

• Exercise: Find the correct command line to execute this task

124

Vision sensors

The calibration problem

• Cameras need to be calibrated to correct image distortions due to the camera’s

internal features

• We cannot make good use of an image produced by a fisheye-like lens without

knowing just how it distorts the image

125

Vision sensors

The calibration problem

Assuming a standard pinhole camera

Simple, isn’t it?

126

Vision sensors

The calibration problem

Assuming a standard pinhole camera

127

Vision sensors

The calibration problem

• The camera_calibration package allows easy calibration of monocular or stereo

cameras using a checkerboard calibration target2

• To start calibration in one console, use the following command:

$ ros2 run camera_calibration cameracalibrator --size 7x9 --

square 0.015 --ros-args -r image:=/image_raw

• The size option here denotes interior corners (e.g. a standard chessboard is

7× 7), so for an 8× 10 checkerboard, we go with 7× 9

2You can create your own: https://calib.io/pages/camera-calibration-pattern-generator

128

https://calib.io/pages/camera-calibration-pattern-generator

Vision sensors

The calibration problem

• You should now see the calibration window and begin the calibration process.

Next, move the pattern to all screen corners and tilt in every direction. When

enough information is gathered, press the calibrate button

• Now you can see your camera calibration data in the console. You can simply save

it in a file with ini extension or press the save button in the app to save the same

in a tarball with both ini and yaml format

• For more information follow instructions here: https://docs.ros.org/en/

rolling/p/camera_calibration/doc/tutorial_mono.html

129

https://docs.ros.org/en/rolling/p/camera_calibration/doc/tutorial_mono.html
https://docs.ros.org/en/rolling/p/camera_calibration/doc/tutorial_mono.html

Vision sensors

The calibration problem

• The Camera Calibration Parser helps you to create a yml file, which you can

load with nearly all ros camera driver using the camera_info_url parameter

• The image_proc package removes camera distortion from the raw image stream

• It is meant to sit between the camera driver and vision processing nodes

• To perform rectification use: $ ros2 run image_proc rectify_node

130

Computer vision

Computer vision is a field of computer science that focuses on enabling computers to

identify and understand objects and people in images and videos

• ros2 vision_opencv3 contains packages to interface ROS 2 with OpenCV which

is a library designed for computational efficiency and strong focus for real time

computer vision applications

• Interfacing ROS 2 with OpenCV is done via cv_bridge package

• To use OpenCV in your ROS code add this to your CMakeLists.txt:

• find_package(OpenCV)

• include_directories (${OpenCV_INCLUDE_DIRS})

• target_link_libraries(my_awesome_library ${OpenCV_LIBRARIES})
3https://github.com/ros-perception/vision_opencv

131

https://github.com/ros-perception/vision_opencv

Computer vision

OpenCV - CvBridge

• The CvBridge library converts between

ROS 2 image messages and OpenCV im-

age representation for perception appli-

cations

• ROS passes around images in its own

sensor_msgs/Image message format

• Use CvBridge to convert ROS images

into OpenCV cv::Mat format

132

Computer vision

OpenCV - CvBridge example code

• Create a new package with

$ ros2 pkg create ros2_opencv --dependencies rclcpp std_msgs

sensor_msgs cv_bridge image_transport OpenCV

• In your CMakeLists.txt:

add_executable(ros2_opencv_node src/ros2_opencv_node.cpp))

...

ament_target_dependencies(ros2_opencv_node rclcpp std_msgs

sensor_msgs cv_bridge image_transport OpenCV)

...

install(TARGETS ros2_opencv_node DESTINATION lib/$ PROJECT_NAME)

133

Computer vision

Fiducial Markers

• Efficient algorithms to perform object recognition and pose estimation working in

real world environments are difficult to implement

• In many cases one camera is not enough to retrieve the three-dimensional pose of

an object

• Markers are typically represented by a synthetic square image composed by a wide

black border and an inner binary matrix which determines its unique identifier

134

Computer vision

Fiducial Markers

• When the intrinsic parameters of the camera and the size of the fiducial are

known, the pose of the fiducial relative to the camera can be estimated

• The pose estimation code solves a set of linear equations to determine the world

(X, Y, Z) coordinate of each of the vertices

• From this, we obtain the transform of the fiducial’s coordinate system to the

camera’s coordinate system

• A robot can determine its position and orientation by looking at a number of

fiducial markers –

135

Computer vision

Fiducial Markers

• To install the fiducial marker software packages ... search ROS 2 github code!

136

Computer vision

Fiducial Markers -The aruco_ros package

• To use the aruco ros fiducial packages, clone it from the repo4

• Checkout the correct branch

$ cd ros2_ws/src/aruco_ros

$ git checkout humble-devel

• Compile and run to check if it works correctly

$ colcon build

$ ros2 launch aruco_ros single.launch.py

4https://github.com/pal-robotics/aruco_ros.git

137

https://github.com/pal-robotics/aruco_ros.git

Computer vision

Fiducial Markers - The aruco_ros package

• You should then subscribe to your camera topic

• Exercise: Create a launch file that starts the camera and connects the streamed

/image_raw topic to the aruco_ros_node

138

Computer vision

Fiducial Markers

Let’s test and use marker detectors in simulations using Gazebo ROS

Exercise: Create a launch file that starts the Gazebo simulator with a camera inside

and the aruco_ros_node 139

Computer vision

Fiducial Markers

To use marker detectors in simulations using Gazebo ROS

• Generate the Aruco marker

https://chev.me/arucogen/

• Create a Gazebo model, add it to the

GZ_SIM_RESOURCE_PATH

$ export GZ_SIM_RESOURCE_PATH=<SOME_PATH>/

gazebo_models/

140

https://chev.me/arucogen/

Computer vision

Fiducial Markers

• Import the aruco model into your world, and

save the world with name

• Relaunch the simulation loading the new world

141

