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Abstract

In this paper, an intelligent variable impedance control combined with a fuzzy gain dynamic surface is proposed to improve the 
interaction of the robot manipulator with an unknown varied environment. The parameters of the proposed variable impedance 
are adapted by optimization an introduced cost function using a recurrent fuzzy wavelet network. The stability conditions for the 
varying inertial, stiffness and damping are presented to guarantee the stability of the variable impedance. Additionally, a fuzzy 
dynamic surface method is developed to tune the gains of the dynamic surface as a robust controller. The proposed fuzzy gain 
dynamic surface is used to force the end-effector of the manipulator to track the desired impedance profile in the presence of large 
disturbances. Using Lyapunov’s method, the stability of the mentioned closed-loop system is proved. Finally, by using a designed 
simulator for IRB120 (ABB) robot, several simulations are carried out to verify the performance of the proposed method for the 
execution of various tasks in an unknown varied environment in the presence of large disturbances.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Impedance control is a classical control method to realize compliant behavior in the robotic manipulators. Hogan 
in [1] introduced the main concept of the impedance controller that nowadays is considered a main compliant con-
troller. The main statement of the impedance control is that the end-effector should modulate its behavior according 
to interaction with the environment. When a robot interacts with an unknown varied environment, the impedance 
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parameters are necessary to be tuned in order to perform various tasks. In fact, the variable impedance control gives 
the robustness and the flexibility to change impedance and dynamic interaction of the end-effector in a continuous 
manner during task execution. In the following introduction section, we considered two procedures. First, we study 
the variable impedance control and its challenges. Additionally, we present the intelligent variable impedance method 
as one of the main continuations of our research. Then, we study the dynamic surface as a nonlinear controller used 
to force the robot manipulator to track the variable impedance profile. To present a robust controller in this work, we 
propose the fuzzy gain dynamic surface to observe and eliminate the uncertainties and disturbances.

There are several works that have addressed the variable impedance methods. In [2–4], variable impedance control 
is accomplished by using reinforcement learning methods. In [5], a novel design and fabrication methodologies are 
addressed to produce cost effective hardware prototypes for investigating the efficacy of the variable impedance ap-
proach. In [6], an adaptive impedance control approach is proposed to adjust the stiffness on-line using the tracking 
error of the motion trajectory. In [7], a fuzzy approach is used to generate the impedance gain to guarantee a certain 
contact force on the contour of the fixed environment. In [8], the impedance parameters are modulated on-line accord-
ing to human behavior during the interaction. In [9], an iterative learning control method is proposed for impedance 
control robotics tasks when the endpoint of soft tool interacts with a rigid object or environment at a certain periodic 
force pattern. Seraji et al. [10] have used the direct and indirect adaptive method to generate the reference position 
and the estimated parameters of the unknown environment.

However, only a limited number of the works have addressed the stability conditions for the variable impedance 
profile. In fact, the impedance control with constant gains ensures the stability of the closed-loop system, and it makes 
a stable behavior of the system both in free motion and in case of interaction with passive environments [11,12]. 
However, stability is lost if the impedance parameters are considered time varying. The authors in [13] have analyzed 
the stability conditions for varying stiffness and damping. In [14], a switched stiffness approach is presented for 
vibration control. Ferraguti et al. [15] presented the tank-based approach to guarantee the system passivity for time 
varying stiffness. Selvaggio et al. [16] proposed an online technique to adapt the pose and geometry of virtual fixtures 
and used the tank-theory to guarantee the stability of the systems. In [17], a multi-layer perceptron network was 
used to estimate and regulate the impedance parameters without considering the stability of the impedance profile. 
Therefore, we have to present a stability condition for the variable impedance control.

In this work, an adaptive control method is proposed to optimize a cost function using Recurrent Fuzzy Wavelet 
Neural Network (RFWNN). In fact, the presented method is an online learning approach to tune the impedance pa-
rameters of the robot manipulator. According to the task requirements such as convergence to the desired environment 
without large overshooting or with an acceptable desired force tracking, the cost function is defined to improve the 
interaction of the robot manipulator. It is worth to mention that, RFWNNs have both the properties of the fuzzy logic 
and wavelet neural networks. In fact, the combination of the fuzzy mechanism as an effective solution for dealing with 
a complex nonlinear process and wavelet neural network as an approach for estimation of the local changes makes 
a powerful adaptive method to model the nonlinear dynamics [18–20]. Additionally, the recurrent property of the 
RFWNN is able to store the past information of the network and use it to estimate the model of sudden jumps of the 
dynamical system. In addition, a stabilizer coefficient is proposed to guarantee the stability of the variable impedance. 
Therefore, the presented approach leads to improve the stability and robustness of the variable impedance profile 
while the robot interacts with a varied and unknown environment.

Because of the nonlinear dynamics of the robot manipulators, it is necessary to use an effective nonlinear control 
such as sliding mode control [21], feedback linearization [22] or the backstepping control [23,24] to force the robot 
manipulator to track the generated impedance profile. In [25], an event-triggered control method is developed using 
backstepping approach and according to a nonlinear decomposition of input quantization. Additionally, Two methods 
can be considered including force impedance control or position-based impedance control [26,27]. In our work, we 
present a fuzzy approach to tune the gains of the dynamic surface as a robust force impedance control.

There are several works addressed disturbances and saturation problems in the control systems [28–31]. In [32], 
an interval type-2 fuzzy approach is used to detect the fault in the sensor saturation for continues-time fuzzy semi-
Markov jump [33] systems. With respect to the previous works, the presented fuzzy approach, as a simple structure, 
is able to remove the external disturbances to handle saturation and to improve the response of the actuators. Fur-
thermore, the dynamic surface control technique can solve the problem of the “explosion of complexity” caused by 
repeated differentiation of virtual controllers during the recursive procedures in the back-stepping method [34,35]. 
The dynamic surface solves this problem by using a low-pass filter of the synthetic virtual control law at each step of 



JID:FSS AID:7862 /FLA [m3SC+; v1.329; Prn:2/06/2020; 9:36] P.3 (1-26)

M.H. Hamedani et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 3
Fig. 1. The block diagram illustrates the closed loop system. The inner loop (includes FGDS, Robot and robot state feedback) and the outer loop 
(includes variable impedance, FGDS, Robot and robot state feedback).

the back-stepping procedure [34]. Several works have addressed the dynamic surface control using adaptive methods 
in the robotic systems [36–39]. However, in our work, the gains of the dynamic surface are adapted with respect 
to the presence of uncertainty and disturbances using the fuzzy approach. Therefore, the simple presented method 
leads to improve the robustness of the robot manipulators. Additionally, we used the dynamic surface methods as a 
novel application of this approach to obtain a simple structure, the target impedance is formulated in the state space, 
and effective dynamic surfaces are defined to track the desired impedance behavior. In fact, dynamic surface control 
is used to force the robot manipulator to track the desired impedance, while the robot interacts with an environ-
ment.

According to the above discussion, this paper presents an intelligent and robust impedance control of the robot 
manipulators to interact with the unknown varied environment. According to Fig. 1, the proposed controller in-
cludes two closed loops. The outer loop is related to the intelligent variable impedance and the inner loop is 
considered for the fuzzy gain dynamic surface. Using the Lyapunov method, the stability conditions are induced 
to guarantee the bounded signals in the closed-loop system. The contributions of this paper are summarized as fol-
lows:

• An adaptive control method is proposed to optimize a cost function based on the recurrent fuzzy wavelet neural 
network as an online learning approach to tune the impedance parameters of the robot manipulator. In the proposed 
approach the impedance parameters including inertial, damping and stiffens are considered as only one parameter 
and are estimated by the RFWNN. It leads to decrease the computational complexity. Additionally, the introduced 
online learning approach improves the interaction of the robot with the environment and effectively reduces the 
contact force error with an acceptable transient response.

• To solve the large external disturbances, we have designed an effective impedance controller based on the Fuzzy 
Gain Dynamic Surface (FGDS). As a novel application of the dynamic surface method to obtain a simple structure, 
which the target impedance is formulated in the state space, and effective dynamic surfaces are defined to track the 
desired impedance behavior. Additionally, FGDS is able to estimate the unknown uncertainties and disturbances 
of the robotic system. In fact, introduced dynamic surface control in combination with the fuzzy rules is able to 
force the end-effector of the robot manipulator to track the desired impedance model.

The rest of this paper is organized as follows: In section 2, the system dynamics of the robot manipulators and 
the variable impedance are presented. Section 3 proposes the intelligent variable impedance control and fuzzy gain 
dynamic surface. Additionally, the stability conditions are analyzed by Lyapunov stability theory. Section 4 shows the 
performance of the proposed approach using the designed simulator for the IRB120 ABB robot, and the last section 
concludes with a short summary of the paper.
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2. Preliminaries and problem formulation

Nominal and actual rigid-body dynamic of the robot manipulator are described in Section 2.1. In order to use the 
dynamic surface as a nonlinear approach, the actual dynamic of the manipulator is formulated in the state space. 
Additionally, the variable target impedance is defined in Section 2.2.

2.1. Rigid body dynamics

A rigid-body form describing the nominal dynamic equations of the n-link robot manipulator accurately can be 
considered as follows:

H (q)q̈ + V (q, q̇) + G(q) + J T (q)fe + f̃ = τ , (1)

where q ∈ Rn×1 is the joint displacement vector, τ ∈ Rn×1 refers to the applied joint torque or force signal control, 
H (q) ∈ Rn×n denotes the inertia matrix, V (q, q̇) ∈ Rn×1 shows the Coriolis and centrifugal vector, G(q) ∈ Rn×1

illustrates the gravitational vector and J (q) stands for the Jacobin matrix. fe is the interaction forces vector and f̃ , as 
the external disturbances and described in the joint space, introduces uncertainty of the interaction forces. Assuming 
that the system states q, q̇ and interaction force fe are available for feedback.

Because of model uncertainty and external disturbance, the nominal values of H(q), V (q, q̇) and G(q) are differ-
ent from the actual values Ĥ (q), V̂ (q, q̇) and Ĝ(q), respectively. Consequently, the nominal values are known and 
the actual values and f̃ , as the external disturbances, are unknown.

Assumption 1. Modeling errors values are bounded although they are not available. The bounds of the modeling 
errors are assumed as follows:

|�H (q)| ≤ δ �H (q) = H (q) − Ĥ (q) , (2a)

|�V (q, q̇)| ≤ δ �V (q, q̇) = V (q, q̇) − V̂ (q, q̇) , (2b)

|�G(q)| ≤ δ �G(q) = G(q) − Ĝ(q) , (2c)

|�f̃ | ≤ δ . (2d)

The actual dynamics of the n-link robot system (1) is expressed as:

Ĥ (q)q̈ + V̂ (q, q̇) + Ĝ(q) + J T (q)fe + f̃ = τ . (3)

Using nominal model (1) and actual robot dynamic (3), we have

H (q)q̈ + V (q, q̇) + G(q) + J T (q)fe + �=τ , (4)

where � denotes the uncertainty of robot dynamics and disturbance effects defined as follows:

� = −H (q)Ĥ (q)−1{−f̃ − V̂ (q, q̇) − Ĝ(q) − J T (q)fe + τ }
+ {−V (q, q̇) − G(q) − J T (q)fe + τ } . (5)

xR1 = q , xR2 = q̇ are defined as the state space variables, and the robot dynamic system with uncertainty terms (5)
can be described as follows:

ẋR1 = xR2 , (6)

ẋR2 = H (xR1)
−1{−V (xR1,xR2) − G(xR1) − J T (xR1)fe + τ }+U , (7)

where

U = −H (xR1)
−1� (8)

is considered as unknown dynamic uncertainty and disturbance effects.
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Fig. 2. Maneuver of the robot manipulator in the varied environments.

2.2. General variable impedance

The desired impedance is specified as:

Md
¨̃x + Bd

˙̃x + Kd x̃ = −ef , (9)

where x̃ = xI (t) − xd(t) and ef = f d(t) − f e(t). xd(t) ∈ Rm×1 is a smooth desired trajectory in the task space and 
xI (t) ∈ Rm×1 is the reference trajectory realized by the impedance profile. The dimension of the task space is denoted 
by m. f d and f e ∈ Rm×1 are the environment and desired force, respectively. Md(t), Bd(t), and Kd(t) are m × m

time varying desired inertia, damping, and stiffness, receptively. Frequently, the impedance parameters are selected as 
diagonal matrices to obtain linear and decoupled response.
The objective of the control is to design a control approach so that the impedance of the robot manipulator tracks 
the given variable target impedance (9) under assuming uncertainties and disturbances modeling (8). To that end, we 
define z1 = xI and z1 = ẋI as the state variables of the desired impedance (9) described as follows:

ż1 = z2 , (10)

ż2 = ẍd(t) − Md(t)−1{ef + Bd
˙̃x + Kd x̃} . (11)

In this work, we consider varying impedance control using an intelligent approach, which gives the flexibility to 
change impedance and dynamic interaction of the manipulator end-effector in a continuous manner during the task. 
According to Fig. 2, the following three scenarios can be considered for the robot manipulator motion:

• Environment (1): robot moves in the free space where f e = 0.
• Environment (2): robot interacts with flexible environment so that f e �= 0 and f e is small.
• Environment (3): robot interacts with the rigid environment so that f e �= 0 and f e is big.

In all defined scenarios, the end-effector response is to comply with the contact forces defined by target impedance 
(9).

One of the challenges is tuning the parameters of impedance (9) according to varied and unknown environment 
in order to improve the interaction between the robot and the environment. Additionally, the controller needs to be 
robust to remove uncertainty and disturbance term (8).

3. Proposed controller

To present a proper controller to handle the disturbances and generate an impedance profile according to a varied 
environment, a novel stable controller consisting of the RFWNN impedance and a fuzzy gain dynamic surface is 
proposed. The RFWNN variable impedance is presented as a method to interact with an unknown varied environment. 
Furthermore, the proposed fuzzy gain dynamic surface is formulated to remove the disturbances and to make a tradeoff 
between the robustness and accuracy to track the desired impedance profile. Finally, the stability of the proposed 
controller is proved using Lyapunov’s method.
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3.1. Proposed variable impedance control

As mentioned in Section 2.2, there are three scenarios when the robot interacts with the unknown varied environ-
ment. To have an acceptable interaction, the robot needs to adapt the impedance parameters. Therefore, the impedance 
profile can be proposed as follows:

(Md c + Mdv(t))
¨̃x + (Bdc + Bdv(t))

˙̃x + (Kd c + Kdv(t))x̃ = −ef . (12)

In (12), each of the desired impedance parameters has two parts including constant parameters such as Mdc , Bd c, and 
Kdc and variable parts Mdv(t), Bdv(t), and Kdv(t). Now, (12) is rewritten as follows:

Mdc
¨̃x + Bd c

˙̃x + Kdcx̃ = −ef − Mdv(t)
¨̃x − Bdv(t)

˙̃x − Kdv(t)x̃ , (13)

¨̃x + Md c
−1Bdc

˙̃x + Md c
−1Kdcx̃ = −Md c

−1ef − Mdc
−1Ks(t)f o(x̃, ˙̃x, ¨̃x) , (14)

ẍi = ẍd − Md c
−1[Bdc

˙̃x + Kd cx̃ + ef ] − Mdc
−1Ks(t)f o(x̃, ˙̃x, ¨̃x) , (15)

where ẍi is the proposed acceleration by the variable impedance profile. Additionally, the variable parameter parts of 
(13) are substituted by the Ks(t)f o term, where Ks(t) is a stabilizer coefficient and is defined as:

Ks(t) =

⎧⎪⎨
⎪⎩

ks
˙̃xf o ≥ 0

ks
˙̃xf o < 0 and | ˙̃xT ksf o| < ˙̃xT Bdc

˙̃x
0 ˙̃xf o < 0 and | ˙̃xT ksf o| ≥ ˙̃xT Bdc

˙̃x ,

(16)

where ks > 0 shows a constant and design parameter. In fact, Ks(t) is used to guarantee the stability of the variable 
impedance profile both in free motion and in case of interaction with varied environments. The condition for Ks(t)

is explained more in detail in the proof of Theorem 1. In addition, f o is the variable impedance part of (13) and is 
adapted by the RFWNN. By adapting f o, the robot is able to interact with the varied and unknown environments. The 
main advantage of the proposed variable impedance (15) is that the robot just needs to adapt f o instead of adapting 
Mdv(t), Bdv(t), and Kdv(t) in order to interact with the environment. In addition, the stability of the time-varying 
impedance profile is guaranteed using the Ks(t) term.

3.2. RFWNN

Since the robot manipulators operate in different workspaces, the properties of the environment such as stiffness or 
damping are variously unknown. Thus, offline learning methods are not served and online learning approaches with 
fast convergence should necessarily be applied. Hence, RFWNN is considered an adaptive network to estimate f o in 
(15) by observing the behavior of the robot and properties of the environment.

In this study, the structure of the RFWNN model is presented in Fig. 3. RFWNN integrates the Takagi-Sugeno-
Kang (TSK) fuzzy model with the recurrent wavelet neural networks. The kernel of the fuzzy model is the fuzzy 
knowledge and the consequent part of the TSK fuzzy rules are constant or a function. Fuzzy models cannot be applied 
to approximate local dynamics. In general, they are not able to estimate the local time-frequency of nonlinear system 
sudden changes or discontinuity [40] because of their structures. In addition, their convergence is not generally fast. 
However, the wavelet transform provides a time-frequency localization of the approximated signal. WNNs have prop-
erties such as the high resolution of wavelets, which can be used to estimate local changes [41–45], learning capability 
and global approximation of NNs. On the other hand, the WNNs have feed-forward structures and are able to estimate 
a static model. To estimate and represent dynamic mapping, the self-recurrent wavelet neural network (SRWNN), 
which has the properties of recurrent neural networks (RNNs) [46,47] and local approximation of WNNs, has been 
proposed to control a flexible-joint robot [36]. SRWNNs have a mother-wavelet layer composed of self-feedback 
neurons. Actually, they can store the past information of the network to model sudden jumps of the environment. Be-
cause of the above-mentioned reasons, in this paper, RFWNNs are used to model and estimate the variable part of the 
impedance profile. The rules used in the RFWNN have the following structures (Table 1), where R = {R1, R2, ..., Rn}
are the rules, x = {x1, x2, ..., xm} are the input variables, and Anm is the mth Gaussian type membership function for 

nth rule. The Mexican Hat as i.e. ϕ(z) = (1 − z2)e
− 1

2 z2
is used as mother-wavelet function for the conclusion parts of 
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Table 1
Fuzzy rules for recurrent wavelet neural network.

Rule No. IF THEN

R1 x1 is A11 and x2 is A12 and ... and xm is A1m y1 = ∑m
i=1 wi1(1 − z2

11)e
−z2

11/2

R2 x1 is A21 and x2 is A22 and ... and xm is A2m y2 = ∑m
i=1 wi2(1 − z2

21)e
−z2

21/2

... ... ...

Rn x1 is An1 and x2 is An2 and ... and xm is Anm yn = ∑m
i=1 win(1 − z2

n1)e
−z2

n1/2

Fig. 3. The structure of the RFWNN.
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the TKS fuzzy rules. The structure of the RFWNN is depicted in Fig. 3, and it has six layers with dynamic feedback 
connection.

In the first layer, each node is an input node corresponding to one input variable. These nodes are used to distinguish 
each of the input signals. In the second layer, the If part of the fuzzy rules and wavelones are implemented. For the 
fuzzy sections of Layer 2, the membership degree is calculated for each entering input signals from Layer 1. The 
Gaussian functions are considered membership functions as follows:

Aji(xi) = e

−(xi − cji)
2

σ 2
ji , i = 1, ...,m , j = 1, ..., n , (17)

where m is the number of input signals, n refers to the number of the fuzzy rules, Aji(xi) shows the jth membership 
function for the ith input variable, and cji and σji represent the center and width of the Gaussian membership function, 
respectively. In addition, each wavelone of Layer 2 can be obtained as:

�j =
m∏

i=1

ϕji(zji) , zji = uji − bji

aji

, i = 1, ...,m , j = 1, ..., n , (18)

where bji and aji are the translation, and the dilation factors of the mother-wavelet, respectively. In addition, the 
inputs of the wavelet nodes uji are defined as:

uji = xi + ϕold
ji θji , i = 1, ...,m , j = 1, ..., n , (19)

where θji represents the information storage parameters, and ϕold
ji is the previous value of mother-wavelet function of 

network. The main aspect of RFWWN is the feedback term, which stores the past information and current dynamics 
of the network for the next sample.

In the third layer, the number of nodes is equal to that of rules R1, R2, ..., Rn and wavelones. In fact, each node 
corresponds to one fuzzy rule and one wavelone. In this paper, the AND(product) operation is used to calculate 
μ1, μ2, ..., μn as:

μj =
m∏

i=1

Aji(xi) , i = 1, ...,m , j = 1, ..., n . (20)

The μj are considered as input signals for the consequent layer. The output of the lth wavelet layer is

	j = wj�j , j = 1, ..., n . (21)

In the fourth layer, we have

y =
n∑

j=1

μj	j , j = 1, ..., n . (22)

In the last two layers, defuzzification is made and the output of the network is calculated as:

Output of Network = f o = y∑n
j=1 μj

. (23)

Therefore, the parameter vector p is defined as:

p = [w1, ...,wn, c11, c12, ..., cmn, σ11, σ12, ..., σmn, a11, a12, ..., amn, b11,

b12, ..., bmn, θ11, θ12, ..., θmn] . (24)

3.3. Cost function

To define an effective cost function to optimize by the RFWNN, two scenarios are considered. First, in a free task 
by the robotic manipulator, the velocity between the end-effector and the variable environment should be controlled 
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to prevent unstable behavior. However, in contact task, the force applied by the environment should converge to the 
desired value. Accordingly, a goal function for the learning of RFWNN can be defined as:

E(t) = μvEv(t) + μf Ed(t) , (25)

where μv and μf are gain functions which can be considered variable or constant. In addition, Ev(t) and Ef (t) can 
be defined as

Ev(t) = 1

2
˙̃xT ˙̃x , (26)

Ef (t) = 1

2
ef

T ef . (27)

In fact, the (26) and (27) evaluate velocity and force error. The weights of RFWNN need to be modified using a 
learning algorithm to minimize the cost function (25) and to enable the robotic manipulator to interact with the varied 
unknown environment.

3.4. Learning approach of RFWNN

The learning of the RFWNN is performed by modifying the weights of the network to optimize the cost function. 
To reach this aim, the gradient algorithm is considered to optimize the cost function in (25). The vector parameter p
in (24) is adjusted using the following formula:

p(t + 1) = p(t) − γi(1 − μ)
∂E

∂p
+ μ(p(t) − p(t − 1)) , i = 1,2 . (28)

In order to update the weights of the network efficiency, two learning rates for the fuzzy and the wavelet sections 
are considered. Where γ1 is the learning rate for wn, cmn, and σmn and, γ2 is the learning rate for amn, bmn, and θmn. 
Because E as the cost function is not explicitly the function of the f o (the network output), the derivative ∂E

∂p can be 
calculated by the following formulas:

∂E

∂p
= ∂E

∂ẍI

∂ẍI

∂f o

∂f o

∂p
. (29)

The term ∂E
∂ẍI

can be expanded from Eq. (25) and (15) as:

∂E

∂ẍI

= μv

∂Ev

∂ ˙̃x
∂ ˙̃x
∂ẍI

+ μf

∂Ef

∂ ėf

∂ ėf

∂ẍI

, (30)

∂E

∂ẍI

= −μv
˙̃xBd

−1
c Mdc + μf ėf Md c . (31)

The term ∂ ẍI

∂f o
can be calculated from (15) as:

∂ẍI

∂f o

= −Ks . (32)

Finally, the term ∂f o

∂p can be obtained by the back propagation learning method.

3.5. Fuzzy gain dynamic surface control

To remove the uncertainty and disturbance term (8), FGDS is proposed to tune the dynamic surface gain. In the first 
step, the virtual control law is designed for x2 in the joint space. Therefore, the commended trajectory from (10) and 
(11) is considered in the joint space using the inverse kinematics. We denote xI 1 and xI 2 as the joint space variable 
for the commanded trajectory z1 and z2, respectively. For the present purpose, the first error surface is defined as:

s1 = xR1 − xI 1 , (33)

and its derivative is
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ṡ1 = xR2 − xI 2 . (34)

A virtual control x̄2 is designed to drive s1 → 0 as follows:

x̄2 = −K1s1 + xI 2 , K1 > 0 . (35)

Because of multiple surface sliding control drawbacks [35], x̄2 is passed through a first order filter with time 
constant τ2 > 0 as:

τ2ẋ2f + x2f = x̄2 , x2f (0) = x̄2(0) . (36)

In the second step, the actual control law for τ is designed. Therefore, second error surface s2, with filtering virtual 
control vector x2f is defined as follows:

s2 = xR2 − x2f , (37)

and its derivative is

ṡ2 = ẋR2 − ẋ2f . (38)

By substituting (7) and (36) in (38), it yields:

ṡ2 = H (xR1)
−1{−V (xR1,xR2) − G(xR1) − J T (xR1)fe + τ }+U − x̄2 − x2f

τ2
. (39)

We now propose a signal control τ such that s2 → 0. As already mentioned, the control objective is to design a 
fuzzy gain dynamic surface control as an uncertainty and disturbance observer for the state vector xR1 and xR2 in 
order to track the desired state represented by xI1, xI1. Accordingly, the control signal is proposed as follows:

τ = {V (xR1,xR2) + G(xR1) + J T (xR1)fe + H (xR1)(−K2s2 + x̄2 − x2f

τ2
)} . (40)

Substituting (40) in (39) yields:

ṡ2 = −K2s2 + U . (41)

Analytic expression of the closed-loop system is driven via surface errors (s1 and s2) and boundary layer error y2. 
Substituting (37) in (34) yields:

ṡ1 = s2 + x2f − xI2 . (42)

Boundary layer error is defined as follows:

y2 = x2f − x̄2 = x2f + K1s1 − xI2 , (43)

and its derivative is

ẏ2 = x̄2 − x2f

τ2
+ K̇1s1 + K1ṡ1 − ẋI2 . (44)

Substituting (42) and (43) in (44) yields

ẏ2 = x̄2 − x2f

τ2
+ K̇1s1 + K1s2 + K1(x2f − xI2) − ẋI2 = −y2

τ2
+ R2 , (45)

where R2 = K̇1s1 + K1s2 + K1(x2f − xI2) − ẋI2. From equations (41), (42), and (43) dynamic surfaces can be 
rewritten as follows:

ṡ1 = s2 + y2 − K1s1 , (46)

ṡ2 = −K2s2 + U , (47)

where (45)-(47) are the equations of the closed-loop system. In the proposed method, to remove the effects of uncer-
tainty and disturbance term U in (47), the fuzzy gain dynamic surface method is presented to tune K2 and K1 gains. 
By adapting the value of the K2 in (47), the effect of disturbance and uncertainty U can be removed. For instance, if 
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Table 2
Fuzzy rules to tune K1.

Rule No. IF THEN

R1 s1 is Big Positive and ṡ1 is Big Positive K1 is Big Large
R2 s1 is Big Positive and ṡ1 is Small Negative K1 is Large
R3 s1 is Big Positive and ṡ1 is Big Negative K1 is Small
... ... ...
Rn s1 is Small Negative and ṡ1 is Big Positive K1 is Big Small

the U exists, then by increasing the value of the K2 the effects of the U will be decreased. However, the big value 
gains make the spike response especially in transient response of the system and increase the noise effect. To prevent 
large sudden variations of torque motor signals, especially in transient response to the system, the gains of controllers 
K1 and K2 are selected by the following fuzzy rules in Table 2, where s1 and ṡ1 are obtained from (33) and (34), 
and K1 is the fuzzy gain and output of the fuzzy rules. Note that, if we decided to apply s2 as the input of the fuzzy 
rules then we had to also consider its rate (ṡ2). However, because of difficulty in measuring acceleration feedback 
(drift or noise drawbacks) in practice, ṡ2 is not available. In addition, the U in (47) affects the first dynamic surface 
implicitly. Therefore, K2 is not directly tuned by fuzzy rules and is proposed to consider by the K2 = δK1 and δ > 0. 
Additionally, δ is chosen by the designer based on the knowledge of the system so that the magnitude of the control 
signal is acceptable.

Big Positive, Small Positive, Zero, Small Negative, Big Negative are considered as the linguistic terms of the primes 
part of the fuzzy rules and Big Large, Large, Medium, Small and Big Small are the linguistic terms of the consequence 
part. According to mentioned linguistic term for the fuzzy rules, all membership functions of their corresponding fuzzy 
sets are Gaussian functions such as:

μm(x) = e
− (x−cm)2

2σ2
m , (48)

where x is the input of the membership function and takes s1 and ṡ1. Additionally, m is used to distinguish the 
membership function for each of the linguistic terms. For example for the membership function for the term of the 

Small Negative for ṡ1 in the second rule can be considered as μsmallNegative(ṡ1) = e
− (ṡ1−csmallNegative)2

2σ2
smallNegative . The parameters 

of cm and σm in (48) are chosen based on the knowledge about the constrained robot and controlling of the manipulator.

3.6. Stability analysis

The block diagram of the proposed controller for a robot manipulator is depicted in Fig. 4. The presented approach 
includes two closed loops. The outer loop is related to the variable impedance and the inner loop is considered for the 
fuzzy gain dynamic surface. The controller is proposed to force the robot manipulator to track the variable impedance 
control (9) and to remove the uncertainty and disturbance (8).
The variable impedance block is responsible for determining the desired state vector z1 as position of the reference 
trajectory. Fuzzy gain block, based on the inputs, determines K1 and K2 to remove uncertainty and disturbance term 
U. Virtual control and first order filter generate x̄2 and x2f , respectively. In addition, RFWNN block is responsible 
for providing f o as an adaptive parameter of variable impedance block. Finally, proposed control signal is available 
for actuators of robot manipulator by actual control block.

The objective of the variable impedance control is to achieve a stability behavior and vibration reduction, which 
force the robot to have an acceptable interaction with the varied environment. By multiplying (9) by the error velocity 
˙̃xT , we have

˙̃xT Md
¨̃x = −˙̃xT ef − ˙̃xT Bd

˙̃x − ˙̃xT Kd x̃ (49)
dK

dt
= −˙̃xT ef − ˙̃xT Bd

˙̃x − dP

dt
, (50)

where K is the kinetic energy, and P refers to potential energy. In order to guarantee the passivity of the impedance 

profile and stability of the system, the kinetic energy must not be increased; namely, 
dK ≤ 0. The damping term 

dt
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Fig. 4. Block diagram of the proposed controller for a robot manipulator.

−˙̃xT Bd
˙̃x < 0, ∀ ˙̃x �= 0 leads to permanent decrease in the kinetic energy. According to (50), to guarantee the reduction 

of the kinetic energy K , the potential energy P has to increase for all time instants; namely, 
dP

dt
> 0, ∀t ≥ 0. However, 

it is not possible to realize in a passive impedance and it depends on the selection of the impedance parameters. For 
example, by choosing the impedance parameters Bd , Kd , and Md such that the condition Bd

2
√

KdMd
< 1 is complied, 

it can be proved that there exists a time period with 
dP

dt
= ˙̃xT Kd x̃ < 0 which it leads to the sign of 

dK

dt
cannot be 

defined and predictable. Therefore, considering the stability of the impedance profile is important when the parameters 
of the impedance are variable.

In the following, Theorems 1 and 2 are presented to guarantee the stability closed-loop system.

Theorem 1. Consider closed-loop system Fig. 4 and the robot manipulator (1). Let Md(t), Bd(t) and Kd(t) be sym-
metric, positive definite and continuously differentiable varying inertial, damping and stiffness profiles, respectively. 
Then, the closed loop system in 4 is uniformly ultimately bounded (UUB) if the following control torque is applied:

τ = {V (xR1,xR2) + G(xR1) + J T (xR1)fe + H (xR1)(−K2s2+ x̄2 − x2f

τ2
)} (51)

where K2 is selected by the fuzzy mechanism. Additionally, Assumption 2 and the following conditions should be 
satisfied:

K1(t) ≥ 2 + K∗
1,K2(t) ≥ 5

4
+ K∗

2, and
1

τ2
≥ 5

4
+ λ2

where K∗
1 > 0,K∗

2 > 0, λ2 > 0, and (52)

Ks(t) =

⎧⎪⎨
⎪⎩

ks
˙̃xf o ≥ 0

ks
˙̃xf o < 0 and | ˙̃xT ksf o| < ˙̃xT Bdc

˙̃x
0 ˙̃xf o < 0 and | ˙̃xT ksf o| ≥ ˙̃xT Bdc

˙̃x .

(53)

Proof. To prove the stability of the closed loop system in Fig. 4, it is necessary to consider the variable impedance 
and fuzzy gain dynamic surface in the stability procedure. Proving the stability of the dynamic surface with time 
varying gain is required because the proposed fuzzy gain dynamic surface is applied to force the robot to track the 
desired impedance. Furthermore, because of the presented intelligent impedance, the desired impedance (9) is a linear 
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time-varying system and therefore, the stability of (9) is required to be considered. According to the proof mentioned 
above, the Lyapunov function is chosen as:

V = VDS + VI , (54)

where

VDS = 1

2
[sT

1 s1 + sT
2 s2 + yT

2 y2] , (55)

VI = 1

2
[ ˙̃xT Md c

˙̃x + x̃T Kdcx̃] . (56)

VDS is used to analyze the stability of the fuzzy gain dynamic surface and VI can be used for varying impedance 
control. Differentiating (55) with respect to time and substituting (46) and (47) yields

V̇DS = sT
1 ṡ1 + sT

2 ṡ2 + yT
2 ẏ2

= sT
1 (s2 + y2 − K1s1) + sT

2 (−K2s2 + U) + yT
2 (−y2

τ2
+ R2) . (57)

It is obvious that,

V̇DS ≤ ‖s1‖‖s2‖ + ‖s1‖‖y2‖ − K1‖s1‖2 − K2‖s2‖2

+ ‖s2‖U − ‖y2‖2

τ2
+ |yT

2 R2| . (58)

For any finite workspace �, similar Assumption 1 and boundedness of xd , there exists a positive constant P2 such that 

‖R2‖ ≤ P2. Using the fact that 2a1a2 ≤ a2
1 + a2

2 , (i.e. ‖S1‖‖S2‖ = 2‖S1‖‖S2‖
2 ≤ ‖S1‖2 + ‖S2‖2

4 )

V̇DS ≤ ‖s1‖2 + ‖s2‖2

4
+ ‖s1‖2 + ‖y2‖2

4
− K1‖s1‖2 − K2‖s2‖2

+ ‖s2‖2 − ‖y2‖2

τ2
+ ‖y2‖2 + P 2

2

4
+ δ2

4
. (59)

In order to V̇DS ≤ 0, we choose K1(t) = 2 + K∗
1, K2(t) = 5

4 + K∗
2 and 1

τ2
= 5

4 + λ2 and substituting into (59) yields

V̇DS ≤ −K∗
1‖s1‖2 − K∗

2‖s2‖2 − λ2‖y2‖2 + δ2

4
+ P 2

2

4
≤ −K∗

1‖s1‖2 − K∗
2‖s2‖2 − λ2‖y2‖2 + H , (60)

where K∗
1 > 0, K∗

2 > 0; statement H is the high order term which introduces the uncertainty presence. Let us choose 
constant ς satisfying the condition as follows:

0 < ς < min[K∗
1,K

∗
2, λ2] . (61)

Hence, we obtain:

V̇DS ≤ −2ς
(1

2
(‖s1‖2 + ‖s2‖2 + ‖y2‖2)

) + H = −2ςVDS + H . (62)

(62) implies that V̇DS < 0 when VDS > H
2ς

. The surface errors (s1 and s2) and the boundary layer error y2 are all 
uniformly ultimately bounded in a compact set which is proved in Theorem 2. Now, differentiating (56) with respect 
to time yields:

V̇I = ˙̃xT Md c
¨̃x + x̃T Kdc

˙̃x , (63)

and substituting (14) in (63) yields:

V̇I = −˙̃xT (Bdc
˙̃x + Kdcx̃ + Ksf o) + x̃T Kdc

˙̃x , (64)

V̇I = −˙̃xT Bd c
˙̃x − ˙̃xT Ksf o . (65)
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In (65), Ks(t) ≥ 0 is positive. However, the sign of the ˙̃xT and f o is not definite. Consequently, the term ˙̃xT Ksf o

has the potential to make V̇I > 0. Therefore, we consider the Ks as a design parameter to guarantee the stability of 
the system using (53).

In order that V̇I < 0 and to guarantee the stability of impedance profile, we consider Ks(t) = 0 for the condition 
˙̃xT f o < 0 and | ˙̃xT ksf o| ≥ ˙̃xT Bd c

˙̃x. In fact, by observing the power ˙̃xT f o < 0 generated by RFWNN, the stabilizer 
Ks(t) decides that it is allowed to injected to system or not. In fact, (53) is working as a switching condition to 
guarantee V̇I < 0 in (65). Consequently, according to (62) which implies that V̇DS < 0 when VDS > H

2ς
and constraint 

(65), V̇ = V̇DS + V̇I < 0 then the proof of Theorem 1 is thus established.
Now, Theorem. 2 is presented to verify that error vector bounds for proposed control system converge asymptotically 
to a compact set. �
Theorem 2. According to (45), (46), (47), and considering VDS in Theorem. 1, error vectors including surface errors, 
boundary layer errors and estimation errors are defined as follows:

N = [
sT

1 sT
2 yT

2

]
.

N converges asymptotically to the compact set

�N := {N ∈ RlN×1|‖N‖ ≤ √
M} , (66)

where M = 2(VDS(0)e−2ςt + H
2ς

) with ς and H are given in (60) and (61).

Proof. Multiplying (62) by e2ςt yields

d(VDSe2ςt )

dt
≤ He2ςt (67)

Integrating (67) and multiplying by e−2ςt , we have

VDS(t) ≤ VDS(0)e−2ςt − H

2ς
e−2ςt + H

2ς
, (68)

and H
2ς

e−2ςt → 0 and then

VDS(t) ≤ VDS(0)e−2ςt + H

2ς
. (69)

According to (55) and N , we have

1

2
NT N ≤ VDS(0)e−2ςt + H

2ς
. (70)

Now, we can obtain:

‖N‖ ≤ √
M , (71)

where M = 2(VDS(0)e−2ςt + H
2ς

). Therefore, if t = 0 then ‖N‖ ≤ 2(VDS(0) + H
2ς

). If t → ∞ then VDS(0)e−2ςt → 0

and ‖N‖ ≤ H
2ς

. Consequently, the compact set is introduced as follows:

F = {s1, s2,y2 | ‖s1‖2 + ‖s2‖2 + ‖y2‖2 ≤ H

ς
} . (72)

Compact set F can be kept arbitrarily small choosing K∗
1, K∗

2 and λ2. As a result, s1, s2 and y2 as the states of the 
closed loop system are uniformly ultimately bounded and converge to the compact set F . �
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Fig. 5. ABB IRB 120 robot manipulator and the wall position, the green wall is considered a known environment and black wall is considered an 
unknown varied environment. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Simulation study

To illustrate the effectiveness and robustness of the proposed controller including the intelligent variable impedance 
and fuzzy gain dynamic surface, a set of simulations with large input disturbances and varied environments is pre-
sented. Additionally, to focus on the structure of the control aspects, the model of the ABB IRB120 robot is designed 
as a simulator with six revolute joints as shown in Fig. 5. IRB 120 manipulator one of the portable robot because it 
has only 25 kg weight. In this work, we design a simulator using MATLAB 2014a to generate and insert the desired 
objects including robot manipulator and interactive environment. In order to use the simulator, the CAD model of the 
objects need to be saved as the STL format and then became a “.mat” file by a MATLAB interface code. Let mi and 
li be the mass of link i, lci be the distance from joint i − 1 to the center of the mass of the link i and Ii be the moment 
of inertia of the link i about an axis coming out of the page passing through the center of mass of link i, i = 1...6. In 
addition, Fig. 6 depicts the coordinate system of ABB IRB 120 robot manipulator.

Generalized coordinates are defined to describe the dynamic equations of the robot as follows:

q = [
q1 q2 q3 q4 q5 q6

]T = [
θ1 θ2 θ3 θ4 θ5 θ6

]T
. (73)

The dynamics of the robot in joint space can be expressed as (1). Table 3 shows the parameters of the robot 
dynamical model of IRB120 manipulator.

The end-effector of the manipulator moves along a virtual desired position xd depicted in Fig. 7 as follows:
The wall is located at xw = 0.45, −0.5 ≤ yw ≤ 0.5 and 0 ≤ zw ≤ 0.72. The initial conditions are set to be q0 =

(0 0.06 0.7 0 0 0)T rad and q̇0 = (0 0 0 0 0 0)T rad/s. To simulate the variable environment, we 
supposed that the environment applies the external force on the end-effector as follows:

f e(t) =
⎡
⎣

fex

fey

fez

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

8000

⎡
⎢⎣

x − xw

0

0

⎤
⎥⎦ −0.5 ≤ y < 0 (Environment 1)

(8000 + kv sin( 2π
0.3y))

⎡
⎢⎣

x − xw

0

0

⎤
⎥⎦ 0 ≤ y < 0.5 (Environment 2).

(74)



JID:FSS AID:7862 /FLA [m3SC+; v1.329; Prn:2/06/2020; 9:36] P.16 (1-26)

16 M.H. Hamedani et al. / Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 6. Coordinate systems of ABB IRB 120 robot manipulator.

Table 3
Parameters of ABB robot manipulator.

The kv sin( 2π
0.3y) is known as the variable stiffness term of environment 2 where Kv = 4000. According to Fig. 5, 

the coordinate of environments 1 and 2 are −0.5 ≤ y < 0 and 0 ≤ y < 0.5, respectively. Due to the wall position, end-
effector tracks the virtual constraint surface xd in the free space and moves sliding along the wall when it contacts the 
vertical wall. Fig. 8 shows the stiffness profiles of environments 1 and

In the following, two cases are considered to evaluate the performance of the proposed controller. Initially, fuzzy 
gain dynamic surface is presented to control the robot manipulator (Case 1). In case 1 and by a considering large and 
nonlinear disturbance, the performance of the proposed method and constant gain dynamic surface are compared. To 
evaluate only the structure of the fuzzy gain dynamic surface, in case 1, the parameters of the impedance are fixed as:

Md = diag
[
2 2 2

]T
Bd = diag

[
300 300 300

]T
Kd = diag

[
50 50 50

]T (75)
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Fig. 7. Virtual desired xd and the wall position.

Fig. 8. Stiffness profiles for environments 1, 2 and free motion.

In addition, f d is supposed as follows:

f d =
⎡
⎣

fdx

fdy

fdz

⎤
⎦ =

⎡
⎣

50
0
0

⎤
⎦ . (76)

In case 2, the performance of the proposed intelligent impedance control is evaluated by the varied unknown environ-
ment, and the results are discussed.

4.1. Case 1: proposed fuzzy gain dynamic surface

The main purpose of this simulation in case 1 is to evaluate the performance of the proposed method to handle the 
disturbances. Accordingly, the disturbance is described as follows:
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Fig. 9. Position tracking (Case 1.1).

Fig. 10. Error Position tracking (Case 1.1).

f̃ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[10 10 10]T 2 ≤ t ≤ 4s

[25 25 25]T 4 ≤ t ≤ 6s

[45 sin(t) 45 cos(t) 45 sin(t)]T 6 ≤ t ≤ 8s

[0 0 0]T otherwise .

(77)

f̃ (t) includes the fixed, variable and large nonlinear terms to demonstrate the ability of the proposed robust controller 
to handle the different types of disturbances.

Case 1.1: To establish a fair comparison, the gains for the dynamic surface K1 = diag[36.3, 12, 12, 36.3, 36.3, 36.3]
and K2 = K1 are considered the constant gains dynamic surface diagonal matrix such that the averages of the fuzzy 
gain and fixed gain are approximately equal. Fig. 9, Fig. 10 and Fig. 11 show the position tracking, error position 
and control signals of the robot in the presence of the disturbances (77), respectively. As it can be observed from 
Fig. 9 and Fig. 10, the position tracking is not satisfied when the disturbances are applied to the system. In Fig. 9, the 
manipulator leaves the wall during 8 − 9 sec; therefore, the interaction between the robot and environment is lost.
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Fig. 11. Torque control signal (Case 1.1).

Table 4
Fuzzy rules designed for K1.

Table 5
RMS of the position errors and force signal of the Cases 1 and 2.

Case 1.2: To demonstrate the proposed controller effectiveness to remove and handle the large and nonlinear 
disturbances effects, the proposed fuzzy gain dynamic surface is applied for the manipulator in Fig. 5. According to 
fuzzy set rules, the fuzzy rules for K1 are designed as in Table 4. In addition, K2 = δK1 and δ = 1 is selected in 
this simulation, where BN, SN, Z, SP and BP are big negative, small negative, zero, small positive and big positive 
label linguistics for the fuzzy rules, respectively. In addition, BL, L, M, BS and S are big large, large, medium, big 
small and small, respectively. The position tracking, path following simulator and error position tracking are depicted 
in Fig. 12, Fig. 13 and Fig. 14, respectively. Fig. 12 and Fig. 14 show that the behavior of the end-effector position is 
acceptable in the face of the varied environment and disturbance. Additionally, the manipulator would be able to track 
the desired trajectory recommended by the impedance profile without leaving the wall. Furthermore, the snapshots 
of the manipulator performed by the designed simulator are depicted in Fig. 13. From Fig. 15 and practical point of 
view, the control torque signals are limited in the acceptable bound without saturation. From Fig. 16, K1 as a dynamic 
surface gain is changed by the fuzzy rules to improve the performance of the manipulator when the disturbances are 
applied. Consequently, the proposed fuzzy gain dynamic surface is able to remove the disturbances of (77).

Table 5 provides the Root Mean Square (RMS) of the position error and force error signal of cases 1. This reveals 
that the proposed method improves the position errors (RMS).
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Fig. 12. Position tracking for proposed fuzzy gain dynamic surface (Case 1.2).

Fig. 13. Snapshots of the manipulator (IRB120) performing the task.
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Fig. 14. Error Position tracking for proposed fuzzy gain dynamic surface (Case 1.2).

Fig. 15. Torque control signal for the proposed fuzzy gain dynamic surface (Case 1.2).

Fig. 16. Fuzzy Gain K1 each of the joints and for proposed fuzzy gain dynamic surface (Case 1.2).
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Fig. 17. Force tracking for General Impedance Profile (case 2).

Table 6
RMS of the signals of the Cases 1 and 2.

4.2. Case 2: intelligent impedance control

To consider the effect of the varied environment and evaluate the intelligent impedance control, three scenarios are 
introduced. In the first scenario, the general impedance profile is evaluated and drawbacks of the constant impedance 
parameters are discussed. In the second scenario, the intelligent impedance is proposed to improve the force tracking 
and to reduce the force contact. In the last scenario and in order to compare the proposed intelligent impedance to 
the other variable impedance, the fuzzy approach introduced in [7] is considered. It is worth noting that the gains 
of the dynamic surface are considered as case 1.2 without disturbance effect in (77). The constant parameters of 
the impedance profile are considered in (75). To establish a fair comparison, the controller parameters for the fuzzy 
impedance approach are chosen as mm = 2, ds = 50, dmed = 150, db = 300, λ = 1/6 and kp = kn = 1. In addition, for 
the intelligent impedance, the parameters of RFWNN are chosen as μv = 1000, μf = 0.01, γ1 = 0.7, γ2 = 0.0001 and 
μ = 0.6. According to Eq. (53), we consider ks = 1 for the simulation. In Fig. 3, the input vector is x = [x̃, ˙̃x, ef ]T
and five fuzzy rules and five wavelones are employed for RFWNN. From Fig. 17 and force tracking with constant 
impedance parameters, it can be observed that the performance of the robot is not acceptable because of the weak 
tracking and considerable error particularly at the initial contact (−78.6N). In Fig. 18, the force tracking for fuzzy 
approach is depicted. It can be observed that force error during 3 − 9sec is decreased but the initial contact error is 
too large (−87.1N). According to Fig. 19 and as a practical implementation point of view, the proposed adaptive 
algorithm effectively decreases the force error at the initial contact (−61.4N) and the considerable constant error 
during 3 − 9sec. As can be observed in Fig. 19, the transient response of force tracking is improved by using the 
proposed intelligent impedance in comparison with the general impedance in Fig. 17 and fuzzy impedance in Fig. 18. 
The proposed adaptive impedance controller is able to track the desired force and improve the interaction of the robot 
manipulator with the varied environment. According to Fig. 20, the parameters of RFWNN are online updated such 
that the impedance behavior of the system leads to promote the interaction of the robot with respect to environmental 
conditions and to effectively decrease the contact force error with an acceptable transient response. Accordingly, when 
the robot works on the varied environment, the impedance parameters (9) are adapted to track the desired force.

Table 6 provides the root mean square (RMS) of the position error and initial force error signal of case 2. This 
reveals that the proposed method improves the performance of the system by decreasing the position errors (RMS) 
and the magnitude of the initial force error signal (RMS).
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Fig. 18. Force tracking for fuzzy impedance approach (case 2).

Fig. 19. Force tracking for proposed intelligent impedance approach (case 2).

Fig. 20. Online updating of RFWNN parameters for intelligent impedance control (Case 2).
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Fig. 21. Force tracking by considering the large disturbance effect for General Impedance Profile and constant gain dynamic surface (Left). Proposed 
Intelligent Impedance and fuzzy gain dynamic surface (Right) (case 2).

In the following case 2, we consider the proposed controller in the presence of disturbance (77). Fig. 21 shows that 
the combination of intelligent impedance and the fuzzy gain dynamic surface method is able to interact with unknown 
varied environment while the non-adaptive impedance profile and constant gain dynamic surface have large errors in 
force tracking and the manipulator leaves the wall during 8 −−9sec; therefore, the interaction between the robot and 
environment is lost.

In this simulation, we consider two cases. In the first case, we evaluate the performance of the proposed fuzzy 
gain dynamic surface to reject the large and nonlinear disturbances when the control signals are bounded and position 
tracking is acceptable. Furthermore, the proposed intelligent impedance is able to adapt the parameters of RFWNN in 
order to improve the desired force tracking with respect to the unknown varied environment.

5. Conclusion

In this article, we have considered the combination of the fuzzy gain dynamic surface and intelligent impedance 
for the robotic manipulators. Fuzzy gain dynamic surface is proposed to make a robust control system overcome dis-
turbance effect when the control signals are bounded and position tracking is acceptable. The formulation of the target 
impedance using effective dynamic surfaces error provides a simple structure to track the desired impedance. Based 
on the fuzzy set rules, the gains of the defined dynamic surface are tuned to observe disturbances. Consequently, 
the closed-loop system is robust against the external disturbances. In addition, the proposed variable impedance gen-
erates the desired impedance profile to interact with an unknown varied environment. Using the proposed learning 
approach of RFWNN, the impedance parameters are online updated to specify the new impedance profile as a de-
sired impedance of the end-effector. The conditions of the stability and uniformly ultimately bounded stability of the 
closed-loop system are guaranteed by using Lyapunov’s direct method. In the simulation studies, our approach is illus-
trated and evaluated in comparison to fixed gain dynamic surface and general impedance approach. Additionally, the 
results verify that the proposed controller is able to track a variable impedance model and interact with the unknown 
environment with good performance while the desired tracking force is acceptable.
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