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Abstract

This paper proposes rigid-body modelling and identification procedures for long-reach dual-arm manipulators in a cable-suspended
pendulum configuration. The proposed model relies on a virtually constrained open kinematic chain and lends itself to be simulated
through the most commonly used robotic simulators without explicitly account for the cables constraints and flexibility. Moreover,
a dynamic parameters identification procedure is devised to improve the simulation model fidelity and reduce the sim-to-real gap for
controllers deployment. We show the capability of our model to handle different cable configurations and suspension mechanisms
by customising it for two representative cable-suspended dual-arm manipulation systems: the LiCAS arms suspeded by a drone and
the CRANEbot system, featuring two Pilz arms suspended by a crane. The identified dynamic models are validated by comparing
their evolution with data acquired from the real systems showing a high (between 91.3% to 99.4%) correlation of the response
signals. In a comparison performed with baseline pendulum models, our model increases the simulation accuracy from 64.4% to
85.9%. The simulation environment and the related controllers are released as open-source code.

Keywords: Robotics in Hazardous Fields, Aerial Systems: Applications

1. Introduction

Cable-suspended long-reach manipulators have classically
being utilised to perform inspection and maintenance tasks over
large but difficult-to-access workspaces in hazardous industrial
scenarios. Only recently, their use has been extended to the ex-
ecution of challenging operations in remote high-altitude areas
(e.g., maintenance of power lines, inspection of remote infras-
tructures, etc.) where the direct access of humans is dangerous
or costly [1, 2, 3]. These robots are typically constituted by
a suspension platform that transports an articulated lower plat-
form in a cable-suspended pendulum configuration, as shown in
Fig. 1. One or multiple cables connect the two parts and are em-
ployed to: (i) decrease the weight of the overall robotic system
compared to using rigid links; (ii) provide orders of magnitude
larger end-effector workspace without affecting the weight of
the manipulators’ base; and (iii) exhibit superior resilience in
absorbing external disturbances such as impacts and collisions.
Long-reach aerial manipulators, equipped with flexible links or
multi-cable structures, are being developed to additionally in-
crease the distance between the aerial platform and the envi-
ronmental obstacles, thus lowering down the risk of impacts of
the rotor blades [4, 5, 6, 7]. In this case, the presence of ca-
bles has minimal impact on the overall aerial robot weight and
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Figure 1: The two dual-arm manipulation systems considered in this work as
examples of cable-suspended robots. On the left, the LiCAS robotic arms sus-
pended by a drone for aerial manipulation tasks [8]; on the right, the CRANEbot
system with two Pilz arms suspended by a crane for industrial tasks at CERN.

enables to safely operate in constrained environments without
affecting its energetic autonomy level.

The accurate simulation and, consequently, the develop-
ment and the deployment of model-based control strategies
for cable-suspended long-reach manipulators, is hindered by
the lack of models that accurately capture the system’s be-
haviour. Indeed, despite the numerous advantages, the pres-
ence of passive cables generally makes the modelling of these
robotic systems more involved, since low-mass and flexible el-
ements introduce an uncontrolled second-order dynamics os-
cillatory behaviour and impose intricate unilateral constraints
between the platforms. In aerial transportation of non-actuated
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loads through passive flexible links, the cable system is gener-
ally modelled as a single rigid link [9], by using finite elements
methods [10], or, to account for all the possible deformation
modes, via Cosserat rod theory [11, 12]. When dealing with
actuated loads instead, only approximate single or double pen-
dulum models have been proposed and adopted so far [13, 14].
However, these models prove inadequate in capturing the intri-
cate dynamic effects that appear when the articulated suspended
system is an actuated robotic manipulator, failing to account for
the dynamic coupling between the two platforms. For these rea-
sons, more comprehensive modelling approaches are required.

Moreover, the deployment of model-based control strate-
gies is usually hindered by the absence of realistic simulation
environments, which are helpful for their development, testing
and sim-to-real transfer [15]. Indeed, existing rigid-body dy-
namic simulators (e.g., Gazebo [16]) do not offer the possibility
of simulating cable-suspended robotic systems due to the diffi-
culty of: (i) simulating deformable structures as infinite dimen-
sional systems require approximate or finite elements models;
(ii) handling constraints embedded in closed-chain structures
created by the presence of multiple cables.

Motivated by this, here we propose modelling, identifica-
tion, and simulation methods to tackle these open problems in
cable-suspended dual-arm robotic manipulation. The two sys-
tems shown in Fig. 1 are considered as case studies to show and
validate the generality of the proposed approach. The system
on the left is an aerial cable-suspended dual-arm system used to
install bird diverters on high-voltage power lines [2, 8, 17]. In
that system, four belts, tied in a parallel pattern to a drone and
a lower platform, hold two four-DoF (Degree of Freedom) Li-
CAS manipulators. The system on the right is the CRANEbot,
a bi-manual system designed by the European Organization for
Nuclear Research (CERN) for inspecting and maintaining parti-
cle accelerator-related infrastructures [3, 18]. In this case, a set
of pulleys and steel ropes, coupled through a hook to a lower
platform, serves as a lifting mechanism to hoist an articulated
system (two Pilz© PRBT6 arms) from an overhead crane. In
the following we show that the proposed modelling and iden-
tification methodology can handle the two cable configurations
with minor modifications and can be easily extended to a wider
variety of cable-suspended robotic systems.

The main contribution of this work can be thus summarized
as follows:

• We propose a simplified open-chain rigid-body dynamic
model of multi-cable-suspended robotic structures that
can be readily integrated into standard physics-based
robot simulators. This is the first work proposing such
a modelling approach for this kind of robotic systems, up
to the authors’ knowledge.

• We developed a model identification procedure for such
systems to reduce the sim-to-real gap when develop-
ing and deploying control methods for such systems
(e.g., oscillations suppression techniques [19]). The pro-
posed method overcomes the lack of one-to-one joints
correspondence between the model and the real system
maximising the similarity of their oscillatory behaviour.

Moreover it takes into account constraints imposed by the
presence of cables.

• We released the environment and the related source code
to simulate cable-suspended dual-arm manipulators with
the developed realistic models.

The rest of the paper is organised as follows: Section 2 provides
an overview of the pertinent literature in the field; Section 3
discusses the system model while Section 4 its identification
procedure; Section 5 encompasses the experiments conducted
and their respective outcomes; Section 6 compares simulation
with baseline modelling approaches, while Section 7 concludes
the paper by discussing open challenges.

2. Related Works

The focus of this section is to provide an overview of mod-
elling and simulation methods for long-reach robotic systems
featuring non-actuated, flexible cables.

As stated in the Introduction, long-reach features are gen-
erally provided to robots to access large but difficult-to-access
workspaces. When the inspection site is accessible from above,
it can be convenient to use robot manipulators suspended to an
upper platform through one or multiple cables. This enlarges
the robot workspace while also reducing dynamic coupling ef-
fects possibly caused by the interaction of the manipulator with
hard environments [5, 6, 8]. This proves particularly useful in
aerial systems, where articulated manipulators rigidly attached
to a drone may not suffice to keep a safe distance between the
rotors and the inspected areas [4, 20, 21], and where unavoid-
able impacts and overloads may destabilise the position control
of the aerial platform [22]. Thus, inserting spring elements in
the manipulator’s joints and/or using flexible suspension cables
can help alleviating these problems [23, 24, 25].

Although cable-suspended robotic systems proved to be in-
herently safe, the second-order pendulum dynamics resulting
from the presence of non-actuated flexible elements may result
in an oscillatory behaviour that needs to be accounted for. With
the assumption of rigid bodies and inextensible cables, this dy-
namics can be mathematically captured by lumped mass mod-
els following three alternative baseline approaches [13, 14, 26]:
(i) single pendulum, where the lower manipulation platform is
thought of as a single suspended mass; (ii) double pendulum,
where the first portion is represented by the hoisting cables and
the second by the lower platform; and (iii) multi-cable models,
used when the constraints imposed by the cable system cannot
be approximated with those of a single one. The latter approach
is more realistic but requires imposing holonomic constraints in
the entire system dynamic model that accounts for the presence
of the cables [27]. Although useful for controller design, the
constrained model cannot be easily simulated through classi-
cal rigid-body dynamic engines. Moreover, none of the above-
listed approaches is able to capture the dynamic coupling ef-
fects arising when the motion of the cable-suspended load is
actuated, as in the examined case studies. Thus, modelling the
entire structure using one of these methods is undoubtedly er-
roneous. The development of more accurate models may pave
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Figure 2: The proposed generic kinematic model of dual-arm manipulator sys-
tems in cable-suspended pendulum configuration. Ji denotes the i−th joint.

the way towards the development of model-based control tech-
niques useful to e.g. reduce oscillations [13, 28, 29] exploiting
the suspended manipulators’ motion [30, 31] and/or the actua-
tion of the suspension platform [32].

Physics-based simulation provides an accelerated and safe
avenue for developing, verifying, and testing robotic control al-
gorithms and prototype design [15]. Robots are typically rep-
resented in simulation as a collection of rigid bodies connected
through joints whose dynamics are computed via rigid-body al-
gorithms [33]. This approach is unsuitable when the robot fea-
tures flexible elements such as cables. As a matter of fact, re-
searchers have started applying rigid-body dynamic modelling
approaches also to flexible robots, such as soft robotic arms, to
exploit simulation and control architectures from the rigid-body
literature [34, 35]. This simplifies the process of testing control
software in simulation and transferring it onto the physical sys-
tem [36]. However, this requires the simulation to accurately
emulate the real-world environment. To realize this, the robot
model dynamics must be accurately identified via suitable iden-
tification procedures. To date, there is no published work about
identification methods purposely designed for robots endowed
with cables. As matter of fact, dynamic simulation of an aerial
cable-suspended dual-arm manipulator can be achieved in this
way only accepting a large sim-to-real gap [5].

3. System Model

A cable-suspended robotic manipulation system can be built
in many different ways. Therefore, deriving a general model
of such a system requires a more in-depth analysis of its main
components. Looking at Fig. 1, four key elements can be recog-
nised: (a) an upper suspension platform, (b) a cable system, (c)
a lower platform, and (d) one or more manipulators. The upper
platform, which supports the entire system, can be a drone, an
overhead crane, or the overall system can hang directly from
the ceiling. Cables come in various shapes and sizes: for lifting
systems, one can either utilise polyester straps or ropes made
of a metal core (typically steel) wrapped in strands. Some pos-
sibilities for connecting the cables to (a) and (c) include wind-
ing them into pulleys, tying them with hook-and-loop joints, or

knotting them at the ends. The payload is represented by (c) and
(d), and their combination constitutes a robotic system with the
lower platform acting as the manipulators’ mechanical basis.

The conveyance of cable-suspended robotic systems ne-
cessitates precise control of the suspension platform, such as
drones or cranes, which must operate at low speeds and avoid
sudden changes in direction. Furthermore, this transportation
process typically does not entail interactions with the surround-
ing environment. Consequently, it is reasonable to assume
that the cable remains consistently taut and non-extensible in
such circumstances. The proposed generic model of a cable-
suspended robotic system, shown in Fig. 2, is described below
and later customised for the particular systems considered in
this paper. Since the real cable structure forms a closed kine-
matic chain, an equivalent open kinematic chain is adopted to
simulate these systems using customary rigid-body dynamic
software. The equivalence between the adopted open kinematic
chain and the real system is later established by enforcing ca-
ble kinematic constraints and maximising the similarity of their
dynamic response, as explained in the following.

Suspension platforms are assumed to have 6 DoFs, allow-
ing unrestricted movement in three-dimensional space. Conse-
quently, the motion of the suspension platform can be repre-
sented by a combination of three prismatic and three revolute
joints, with each joint followed by a link representing the plat-
form. The cables’ motion can be represented by an additional
6 DoFs achieved by employing spherical joints at the interfaces
with the upper and lower platforms. Three revolute joints with
coincident origins and perpendicular axes are utilised to replace
the upper spherical joint, followed by links that represent the
cables. Similarly, the lower spherical joint is substituted by
three revolute joints, where the subsequent link symbolises the
lower platform. These 12 degrees of freedom (DoFs) can be ap-
propriately coupled or virtually constrained/eliminated to align
with the kinematics of the specific system. For instance, unless
a fully actuated hexacopter is employed, multirotor attitude-
translational coupling reduces the number of DoFs. Similarly,
an overhead crane restricts its motion to a plane, resulting in
only two translational DoFs. The manipulators, which typically
consist of prismatic and/or revolute joints, already have known
kinematics. Considering M as the number of joints in the ma-
nipulation system, the complete model of the cable-suspended
system encompasses N =12+M DoFs. It is important to note
that joints J1 . . .J6 and J13 . . .JN are generally mechanically
actuated (active), while joints J7 . . .J12, representing the ca-
bles, are non-actuated (passive).

Once the kinematics has been defined, its dynamic model
can be deduced through the following equation

B(q)q̈ + n(q, q̇) = u − ue. (1)

On the left side q(t), q̇(t), q̈(t) ∈ RN are respectively the joints
position, velocity, and acceleration vectors, B(q) ∈ RN×N is the
inertia matrix, and n(q, q̇) ∈ RN is the vector collecting cen-
trifugal, Coriolis, and gravitational terms. On the right side,
u(t) ∈ RN is the generalised joints actuation vector, while
ue(t) ∈ RN is the vector of the torques and forces at the joints
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induced by the interaction with the environment, defined as
ue(t)= J(q)T he(t), where J(q) ∈ RN×6 is the Jacobian matrix
and he(t) ∈ R6 denotes the vector of forces and moments ex-
erted by the manipulators’ end-effectors on the environment.

Controlling the motion of a system means determining u(t)
such that q(t)= qd(t) and q̇(t)= q̇d(t) where qd(t) ∈ RN and
q̇d(t) ∈ RN describe the desired trajectory. For our purposes,
u(t) has been chosen as a set of proportional-derivative (PD)
controllers, i.e.

u = Kd ˙̃q + Kp q̃, (2)

where ˙̃q(t)= q̇d − q̇ and q̃(t)= qd − q are the velocity and posi-
tion error, respectively, while Kp=diag{kp,1, . . . kp,n} ∈ RN×N

and Kd =diag{kd,1, . . . kd,n} ∈ RN×N are semi positive-definite
diagonal gain matrices with the physical interpretation of
springs and dampers respectively, acting on the i-th joint. This
choice has a threefold motivation: (i) concerning active joints,
robot manipulators are often equipped with position and ve-
locity controllers, hence a feedback of those signal is always
available; (ii) for the passive ones, although they are not ac-
tuated, they usually exhibit elastic and viscous friction be-
haviours, which can be replicated through such gains; (iii) it
allows easy implementation of the virtual constraints to tie the
generic model to the particular system, as shown in Sect. 5.2.

4. Model Parameters Identification

In the proposed open-chain rigid-body model described by
equations (1)-(2), each link is characterised by ten parame-
ters, including mass, inertia tensor, and centre of mass posi-
tion. Similarly, each joint is described by two parameters for
friction (using the Coulomb-viscous model) and two parame-
ters for proportional-derivative gains. To accurately represent
a real cable-suspended system, the model requires knowledge
of the parameter set p ∈ RP mentioned earlier. Parameters as-
sociated with rigid components, such as manipulators and plat-
forms, are typically either already known or can be estimated
using conventional identification methods (see e.g. [37, 38]).
These methods leverage the linearity property of the manipu-
lator’s dynamic model by utilising measurements of position,
velocity, and torque, which are typically available (or recon-
structable) from the sensors on the manipulators actuation sys-
tem. However, estimating parameters for non-rigid parts (ca-
bles) and passive joints is challenging because: (i) they lack
of one-to-one correspondence in the real system since, as seen
in Section 3, the cable suspension system is modelled as set
of connected rigid-links through rotational joints with the same
origin; (ii) passive joint measures (position, velocity, torque)
are not available unlike their active counterpart; (iii) there is
the need to capture the intricate kinematic and dynamic con-
straints imposed by the presence of cables. Consequently, clas-
sical identification approaches are unsuitable, necessitating the
proposal of an alternative procedure.

The proposed technique allows the determination of the
value of unknown model parameters utilising measurements
obtained during the execution of oscillatory motions imposed
on the system through manual changes to the initial state and

through manipulator movements. With reference to Section 3,
the values to be determined and referred to hereafter are there-
fore those related to the jointsJ7 . . .J12, and the corresponding
virtual links and PD controllers. We assume that, during a set of
experiments involving the generation of oscillations of the sus-
pended system, a data recording mechanism (motion capture,
fiducial markers, GPS, etc.) is used to determine the time se-
ries of poses of the lower platform in a given reference frame.
The identification procedure consists in solving an optimisation
problem to find the set of parameters p̂ ∈ RP to minimise the
deviation between the actual recorded behaviour of the system,
assessed through a number Ne of measured trajectories Ne mea-
sures, and the forward simulated model, maximising their sim-
ilarity. The number Ne of acquired trajectories must be chosen
beforehand, finding a compromise between the accuracy of the
parameter identification procedure and its computational bur-
den. We define this optimisation problem as follows

p̂ = arg max
p

1
Ne

Ne∑
i=1

R
(
xi

m, x
i
s(p)

)
s.t. p ≤ p ≤ p ,

(3)

where xi
m = {xi

m(0), xi
m(dt), . . . , xi

m(T )} is the trajectory of
the system’s state recorded during the i-th experiment (with
dt and T denoting the time step and trajectory duration, re-
spectively), xi

s(p) denotes the corresponding trajectory signal
obtained from the forward simulated model, while R(·) repre-
sents a metric of similarity between the two sets of signals.
Lower and upper bound constraints, p and p, are respectively
necessary to guarantee the physical consistency of the optimi-
sation result (e.g., the links’ mass must always be positive, as
well as the friction coefficients and the control gains) and to
ensure a fast convergence while preventing unnecessary com-
putational effort. Hereafter, the time dependence t and the apex
i will be omitted for clarity. Vectors xm and xs embed mea-
sured/simulated state trajectory of the system, i.e., the pose
trajectory of the lower platform in a three-dimensional space.
The presence of cables restricts the set of poses the lower plat-
form can assume, rendering its trajectories similar to those of
a spherical pendulum. In particular For this reason, the data
of interest are the x-y position rx, ry and orientation around the
vertical axis ϕz of the platform with respect to its initial rest
state, i.e., xm=

[
rx

m ry
m ϕz

m

]T
and xs=

[
rx

s ry
s ϕz

s

]T
. At the

k-th instant of time, xs(k) is a function of the system state (i.e.,
joints position and velocity vectors) that depends on the set p of
the model dynamic parameters, according to xs(k)= g

(
q(k, p)

)
.

More specifically, with L being the cables’ length

g
(
q(k, p)

)
=

[
L sin q8(k), L sin q9(k), q7(k) + q10(k)

]T
. (4)

A forward-Euler integration scheme is employed to derive
q(k+1, p) from the direct dynamics of the system, i.e.,

q̈(k, p) =B
(
q(k)

)−1
[
Kd ˙̃q(k) + Kp q̃(k)

−n
(
q(k), q̇(k)

)
− JT (

q(k)
)
he(k)

]
.

(5)
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Integrating equation (5) and using equation (4) the symbolic
trajectory xs(p) can be constructed as function of the unknown
parameters p to be then used in equation (3). When evaluated
numerically, the model initial conditions q0 and q̇0 have to be
set consistently with the state of the physical system at the be-
ginning of the experiments. Similarly, it is essential that qd and
q̇d align with the real trajectories applied to the manipulators to
induce the oscillatory movements.

At this point, our objective is to maximize the similarity
between the real measured signals xm and the output of the
model. To this end, a metric of similarity must be chosen.
A metric of similarity numerically quantifies how closely re-
lated data samples are. Values range between zero (indicating
low similarity or dissimilarity) and one (indicating high sim-
ilarity or likeness). Regarding the metric for signals similar-
ity in the definition of the cost function of equation (3), the
Pearson product-moment cross-correlation coefficient has been
employed. Cross-correlation provides indeed information on
the similarity between two different time series and the Pear-
son correlation coefficient is its normalised version. The Pear-
son cross-correlation is a metric that measures the linear rela-
tionship between two time-series while considering both ampli-
tude and time shifts. It is a variant of the more general cross-
correlation metric. It is beneficial when examining the simi-
larity between two signals while accounting for potential time
lags. Given two sampled time-series signals x(t) and y(t), the
coefficient ρ(x, y) is defined as

ρ(x, y) =
1

N − 1

N∑
k=1

(
x(k) − µx

σx

)(
y(k) − µy

σy

)
(6)

where N is the number of samples, µx and σx are the mean
and standard deviation of x, and µy and σy are the mean and
standard deviation of y. The possible range for ρ is [−1, 1], the
closer the value is to 1, the more closely the sets of signals are
identical. Vectors xm and xs typically contain multiple signals.
Each element of the vector is then compared independently, and
the mean correlation value is computed, i.e.,

R(xm, xs) =
1
3

[
ρ(rx

m, r
x
s ) + ρ(ry

m, r
y
s) + ρ(ϕz

m, ϕ
z
s)
]
. (7)

Finally, regarding the parameters to be identified, the proce-
dure involves inputting the known links parameters (articulated
robotic system and lower platform) into the model and allow-
ing the optimisation process to yield the parameters pertaining
to the cable-representative links as well as the values of friction
and gains of the PD virtual controllers on joints J7 . . .J12.

5. Experimental Setup and Validation Results

As explained in Sect. 4, parameter estimation (identifica-
tion) entails the utilisation of one or more experiments. Once
an estimate is obtained, the parameters are substituted into the
model, and the behaviour of the simulated system is compared
with a fresh set of experiments (validation). This section de-
scribes the two experimental setups used to retrieve the mea-
surement data (Sect. 5.1), the necessary customisation of the

Figure 3: Setup of the LiCAS A1 in 4-cable-suspended configuration.

generic model of equation (1) and (2) for each of the sys-
tems (Sect. 5.2), and the identification procedure validation
(Sect. 5.3).

5.1. Experimental setup

The modelling and identification methods described previ-
ously have been tested on the two long-reach dual-arm robotic
platforms shown in Fig. 1.

The first platform is a lightweight and compliant anthro-
pomorphic dual-arm system (LiCAS) in a 4-Cable Suspended
configuration, shown in Fig. 3. The human-size and human-
like arms employ Herkulex DRS-0402/0602 smart servos as-
sembled in a customised frame manufactured in aluminium and
carbon fibre. Four harnesses support the arms’ shoulder struc-
ture (0.7 kg weight) by 1 m long / 250 mm separated cables,
as depicted in Fig. 3. The arms are fed by a 3 S 1600 mAh
LiPo battery and controlled through a C/C++ program executed
on a Raspberry Pi Model 3 connected to the WiFi network of
the OptiTrackTM testbed to log the positioning data and the data
from the BNO 055 inertial measurement unit (IMU) also inte-
grated into the shoulder structure.

The second platform, the CRANEbot, is lifted by overhead
cranes, which allows operations to be carried out from above,
performing remote procedures in radioactive areas at CERN
that cannot be reached by ordinary ground robots. The load
(190 kg), lifted through to the overhead crane lifting system at
the height of 3.897 m via a crane hook adapter, is equipped with
an on-board camera system and two six-axis Pilz© PRBT 6 ma-
nipulator arms mounted at a horizontal distance of 380 mm,
controlled through a C++ framework executed on an Intel®

on-board computer and powered by 8 Lead-gel 13000 mAh
rechargeable batteries, arranged in the central body together
with modules for WiFi/4G connection. The lower platform
was equipped with a set of ArUco markers for the experiments,
whose pose was detected through external Axis® PTZ high-
resolution IP cameras.

To capture the cable system dynamics and its coupling with
the actuated load, in the following, the suspension platforms
are left out of the model and will be included in future work.
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Figure 4: Experimental setup for the identification measurements: manual mod-
ification of the starting condition for LiCAS (left) and CRANEbot (right).

For this reason, the drone for LiCAS has been directly substi-
tuted by a testbed, and the crane for CRANEBot is kept station-
ary in its initial configuration. In order to excite the oscillatory
dynamics of the systems, two types of experiments were con-
ducted: unforced oscillations (Sect. 5.3.1) and arms-induced
oscillations (Sect. 5.3.2). In the first case, an operator manu-
ally modifies the lower platform’s starting position causing a
displacement from its rest state (see Fig. 4), while in the sec-
ond, the arms move following a trajectory which is a sum of
cubic polynomials so as to generate oscillations of the suspen-
sion structure. Motion tracking systems record the pose of the
lower platforms during the generated oscillatory behaviour.

5.2. Customisation of the dynamic model

The generic model expressed by equation (1) and (2) has
been customised for the two addressed case studies. The Li-
CAS system results in M=8 (two 4-DoFs manipulators) and
N =20. Since the testbed is stationary, the first six joints do not
enter into the model. LiCAS exhibits some notable behaviours:
(i) if the lower platform rotates around the vertical axis, it re-
turns to its initial configuration according to a damped elas-
tic behaviour (see Fig. 5b); (ii) the parallel arrangement of the
four cables ensures the lower platform to stay always parallel
to the ground (see Fig. 5a). For the elastic return to the ver-
tical rest position, two PD controllers as in equation (2) have
been adopted for J7 and J10, i.e., kd,7, kp,7, kd,10, kd,10,0 and
qd

7, q̇d
7, qd

10, q̇d
10=0. Two PD controllers on J11 and J12 are in-

serted to model the horizontal behaviour of the lower platform.
From geometrical considerations, it is easy to understand that
the platform stays parallel to the ground if J11 and J12 have
the same and opposite motion as J8 and J9 respectively, as
a consequence kd,11, kd,12, kp,11, kp,12,0 and qd

11=q8, q̇d
11= q̇8,

qd
12=q9 and q̇d

12= q̇9.
For CRANEbot instead, M=12 (two 6-DoFs manipulators)

and N =24. Again, since the crane is stationary, the first six
DoFs do not enter the model. This system exhibits the fol-
lowing remarkable behaviours: (i) as before a damped elas-
tic behaviour occurs when the lower platform rotates around
the vertical axis; (ii) the coupling between the pulley and hook
blocks any tilting movement of the lower platform (see Fig. 5c),
which remains mechanically paired to the cables system. For

(a) (b) (c)

Figure 5: (a) Lower platform stays parallel to the ground along a lateral dis-
placement; (b) Rotation about the vertical axis of the lower platform, before
elastically returning to its rest position; (c) Detail of the suspension system and
mechanical block of the hook’s rotation with respect to the pulleys during a lat-
eral movement of the arms.

the elastic return to the vertical rest position, the same ap-
proach of using PD controllers for J7 and J10 applies. Ro-
tation about the lower platform can instead be virtually blocked
by inserting PD controllers as in equation (2) on J11 and
J12, commanding the joints to track their zero position, i.e.,
kd,11, kp,11, kd,12, kp,12,0, and qd

11, qd
12, q̇d

11, q̇d
12=0.

5.3. Identification and validation results
The entire implementation of the identification framework

has been executed in MATLAB®. A nonlinear programming
solver (fmincon) has been adopted for the optimisation. Among
the available minimisation algorithms, the active-set was cho-
sen to facilitate more substantial steps, enhancing convergence
speed compared to the alternatives. The code was executed us-
ing the Parallel Computing ToolboxTM to expedite the compu-
tations. The integration step for the model was set to 1 ms.
The outcomes deriving from unforced oscillation for LiCAS
and arms-induced for CRANEbot will be shown. The follow-
ing experimental results focus on main axis motions, but due to
system nonlinearity, unforced or arms-induced oscillations in-
volve all axes. The measures include oscillations along all axes
for identification and validation despite the main axis emphasis.

5.3.1. Unforced oscillations
In these experiments, an operator manually adjusts the

robot’s initial pose by pulling the lower platform (see Fig. 4).
To perform LiCAS identification, three measurement pairs were
employed. Each pair involves a modification of a single com-
ponent that determines the initial configuration of the platform,
precisely the position along x-axis (rx), the position along y-
axis (ry), and the orientation around z-axis (ϕz), as illustrated
in Fig. 3. Additionally, the validation process encompasses
four additional measurements. Three of these measurements
follow the configuration above, while the last involves a com-
bined motion along the x and y axes. Because of the removal
of the suspension platform, the subsequent discussion will fo-
cus on the remaining joints. First, it will address the dynamic
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(d)

(b)(a)

(c)

Figure 6: Comparison between simulated model (grey line) and validation sig-
nals (black line) with unforced oscillations: (a)-(c) involve a modification of
the position along x, y and z axes respectively while (d) involves a combined
motion along the x and y axes. The dotted line shows the error between simu-
lation and real data. Pearson cross-correlation coefficient ρ and maximum error
|e| values are shown in the bottom right box.

parameters featured in equation (1). Then, the controller gains
as outlined in equation (2). Concerning the dynamic parame-
ters, the ones related to the manipulators and the lower plat-
form, i.e., masses (m10 . . .m20), centres of mass (l10 . . . l20), in-
ertia tensors (I10 . . . I20), and friction coefficients ( fv,10 . . . fv,20)
are known and can be directly substituted into the model. The
ones instead related to cables (m7 . . .m9, l7 . . . l9, I7 . . . I9, and
fv,7 . . . fv,9) are unknown and need to be identified. Note that m7
and l7 do not enter into the model since they are irrelevant to the
rotational dynamics around joint J7. Finally, it was assumed
that the centres of mass of the cable links have components
solely along the cables’ vertical axis, i.e., li =

[
0 0 lzi

]T
with

i = 8, 9, and that their inertia tensors I7, I8, I9 are all diagonal
matrices in the form diag{ixx, iyy, izz}. Regarding the controller
gains in equation (2), the values for manipulator controllers,
i.e., joints J13 . . .J20, are known and can be directly substi-
tuted. Joints J8 and J9 do not show any peculiar behaviour, so
their gains are null. On the other hand, joints J7,J10,J11,J12
exhibit peculiar behaviours modelled through PD controllers,
so their values need to be identified.

Table 5 shows the list of parameters p included in the iden-
tification process, together with their initial value p0 (starting
point of the optimisation algorithm), the upper bound p, and the
estimate p̂. The lower bound p values were all set to zero for
physical consistency. At the end of the identification process,
the cost function yields a total value of 0.9715. Fig. 6 compares
the validation measurements and the signals obtained from the
simulation after incorporating the estimated parameters into the
model. Every graph within the analysis showcases the Pearson
cross-correlation coefficient ρ that quantifies the similarity be-
tween the measurement and simulation data, along with the ab-
solute maximum error value |e| between the respective signals.
Specifically, the correlation values obtained are 95.5%, 98.9%,
and 96.8% for the first three experiments, while the x and y po-
sitions in the final experiment exhibit correlations of 98.5% and
99.4% respectively, accompanied by errors of |ex

| = 0.039 m

'

''

''''

'

'

'

''

(a) (b)

Figure 7: (a) Sinusoidal joints reference qd
xy for the generation of three oscilla-

tions of different amplitudes around x and y axes. The joint reference maximum
amplitude has been set to 11.5 deg for the first trajectory qd ′

xy , to 17 deg for qd ′′
xy

and to 20 deg for qd ′′′
xy . (b) Sinusoidal joints reference qd

z for the generation
of three oscillations of different amplitudes around z axis. The joint reference
maximum amplitude has been set to 2.85 deg for the first trajectory qd ′

z , to 5.7
deg for qd ′′

z and to 8.6 deg for qd ′′′
z .

Table 1: MAE and MRE for LiCAS identification

exp X exp Y exp Z exp XY
Abs err 0.0204 m 0.0126 m 4.867◦ 0.013 m /

0.010 m
Rel err % 27.08 18.45 15.89 16.04 /

16.25

and |ey
| = 0.023 m. Finally, the corresponding Mean Absolute

Error (MAE) and Mean Relative Errors (MRE) are reported in
Table 1.

5.3.2. Arms-induced oscillations
In these experiments, oscillations are induced by the move-

ments of the arms. For the identification of the CRANEbot pa-
rameters, three pairs of measurement were utilised, with each
pair corresponding to one of the axes shown in Fig 4. Further-
more, three additional experiments, one for each axis, were con-
ducted for validation. To excite cable-suspended oscillations,
sinusoidal trajectories (see Fig. 7) were commanded to the sec-
ond and third Pilz manipulator joints, with varying amplitudes
and a frequency matching the system’s resonance frequency.
Specifically, the x and y axes were driven at a frequency of
0.25 Hz, while the z-axis oscillated at 0.33 Hz. Fig. 7 shows the
joint’s sinusoidal reference trajectories employed for the afore-
mentioned experiments. Each experiment has been performed
by modifying the amplitude of the commanded trajectory.

Similar considerations and assumptions can be made for the
identification of this cable-suspended robot. The crane is fixed,
and its joint dynamics do not enter the model. The parameters
of the manipulators and the lower platform are known, cable
centres of mass lie solely along the vertical axis, and inertia
tensors have a diagonal form. Gains to be identified are only
those related to the peculiar behaviours affecting the movement
of the lower platform and the damped-elastic rotation around
the vertical. Details on the configuration of the optimisation
problem and the identified parameters p̂ can be found in Table 5.
The cost function after the identification process for CRANEbot
is 0.9472. Fig. 8 presents a visual comparison between the
three pairs of measurements utilised for validation and the cor-
responding simulation data, after incorporating the estimated
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(a)

(b)

(c)

Figure 8: Comparison between simulated model (grey line) and validation sig-
nals (black line) with arms-induced oscillations: (a)-(c) involve a modification
of the position along x, y and z axes respectively. The dotted line shows the
error between simulation and real data. Pearson cross-correlation coefficient ρ
and maximum error |e| values are shown in the bottom right box.

Table 2: MAE and MRE for CRANEBot identification

exp X exp Y exp Z
Abs err 0.0072 m 0.0046 m 2.610◦

Rel err % 31.8 42.71 39.3

parameters into the model. The images exhibit a notable confor-
mity of the oscillatory signals, showcasing that the movement
of the arms elicits a simulated response that closely mirrors that
of the physical system. This observation underscores the suc-
cessful identification process, affirming that the simulated be-
haviour accurately captures the dynamic response of the actual
system. In particular, for the validation, the correlation val-
ues x and y axes are 95.9% and 92.6% respectively, with max-
imum errors in the order some centimetres (|ex

| = 0.022 m and
|ey
| = 0.012 m), while for the z-axis the correlation is 91.3%

with a maximum error |ez
| = 9.066◦. Again, the corresponding

Mean Absolute Error (MAE) and Mean Relative Errors (MRE)
are reported in Table 2.

6. Simulation

Simulation can provide an amenable venue to preliminary
test control strategies, which must rely upon the manipulation
system or oscillation suppression control. Therefore, once the
model customisation and identification are complete, the ob-
tained parameters can be directly replaced in the simulator. The
results in Sec. 4 hold valuable significance as they enable the
simulation of a model that faithfully reproduces the behaviour
of the real-world system by reducing the sim-to-real gap.

Table 3: LiCAS arms: Inertia tensors

ixx ixy ixz iyy iyz izz

I10 . . . I12 3.02e-3 0 0 8.64e-4 0 3.39e-3
I13, I14 3.53e-2 0 0 3.01e-2 9.04e-3 1.87e-2
I15, I16 3.58e-2 0 0 3.22e-3 -1.45e-3 3.66e-2
I17, I18 2.06e-2 0 0 1.08e-2 -5.36e-3 1.63e-2
I19, I20 6.79e-3 0 0 4.91e-3 2.67e-3 3.40e-3

Table 4: CRANEBot arms: Inertia tensors

ixx ixy ixz iyy iyz izz

I13, I14 3.53e-2 0 0 3.01e-2 9.04e-3 1.87e-2
I15, I16 3.58e-2 0 0 3.22e-3 -1.45e-3 3.66e-2
I17, I18 2.06e-2 0 0 1.08e-2 -5.36e-3 1.63e-2
I19, I20 6.79e-3 0 0 4.91e-3 2.67e-3 3.40e-3
I21, I22 7.37e-3 0 0 5.87e-3 -1.71e-3 3.96e-3
I23, I24 0 0 0 0 0 0

To build the simulation model shown in Figs. 9 and 10, we
employed an open kinematic chain with 6 revolute joints to rep-
resent the cable structure as explained in Sec. 3. The model
is described in URDF format and is endowed with a Gazebo
model plugin that realises the dynamic behaviour resulting from
the unilateral constraints imposed by cables. As a result, the
lower platform can displace maintaining the horizontal config-
uration and exhibit an elastic behaviour around the vertical axis.
The identification procedure illustrated in Sec. 4 leads to physi-
cally consistent dynamic parameters as used in this model. The
equivalence of exhibited dynamic behaviour between the real
and the simulated systems can be better appreciated in the video
accompanying this paper, both in the case of unforced and arm-
induced oscillations.

A comparison between our proposed model in Sec. 3 and
two baseline pendulum models has been performed as supple-
mentary evidence supporting the proposed approach. Fig. 11
shows the error on the LiCAS lower platform pose between a
Gazebo simulation of an unforced oscillation experiment on y-
axis and (i) a single pendulum model (ii) a double pendulum
model (iii) the proposed model endowed with identified param-
eters. The employment of model (iii) ensured a maximum error
reduction of respectively 64.4% and 85.9% when compared to
(i) and (ii). Fig. 12 compares a CRANEbot simulation by mak-
ing it start from a non-rest state and simultaneously moving the
arms. The baseline models clearly cannot capture the dynamic
coupling due to the movement of the arms, which is instead
taken into account in the proposed model. This last reduces the
maximum error of respectively 80.4% and 84.3% compared to
single and double pendulum modelling approaches.

The environment and the related source code to simu-
late cable-suspended dual-arm manipulators are free at https:
//github.com/prisma-lab/cable-suspended-robots.
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Table 5: DYNAMIC MODEL PARAMETERS*

LiCAS CRANEBot
p Description p0 p p̂ p0 p p̂

m1 . . .m6 Mass links 1 . . . 6 Drone left out from the model Crane left out from the model
m7 Mass link 7 Does not enter into the model Does not enter into the model

m8 (⋆) Mass link 8 1.0 10.0 4.237 30.0 45.0 35.55
m9 (⋆) Mass link 9 1.0 10.0 5.032 30.0 45.0 35.55

m10 . . .m12 Mass lower platform × × 0.639 × × 156.25
m13, m14 Mass arm first link × × 0.233 × × 7.1
m15, m16 Mass arm second link × × 0.246 × × 1.7
m17, m18 Mass arm third link × × 0.214 × × 4.8
m19, m20 Mass arm fourth link × × 0.106 × × 0.9
m21, m22 Mass arm fifth link × × × × × 2.6
m23, m24 Mass arm sixth link × × × × × 0.2
l1 . . . l6 CoM vectors links 1 . . . 6 Drone left out from the model Crane left out from the model

l7 CoM vector link 7 Does not enter into the model Does not enter into the model
lz
8 (⋆) CoM link 8: [0 0 −lz

8] 0.1 1.0 0.174 0.1 3.5 1.894
lz
9 (⋆) CoM link 9: [0 0 −lz

9] 0.1 1.0 0.824 0.1 3.5 1.894
l10 . . . l12 CoM lower platform × × [0, 0, 0] × × [0, 0, -0.521]
l13, l14 CoM arm first link × × [0, 0.0236, -0.00946] × × [0, -0.026, -0.051]
l15, l16 CoM arm second link × × [0, 0.04, 0] × × [0, 0.162, 0.134]
l17, l18 CoM arm third link × × [-0.015, 0, -0.1] × × [[0, 0.043, -0.027]
l19, l20 CoM arm fourth link × × [0, 0, -0.143] × × [0, -0.061, 0.204]
l21, l22 CoM arm fifth link × × × × × [0, 0.021, -0.032]
l23, l24 CoM arm sixth link × × × × × [0, 0, 0]
I1 . . . I6 Inertia tensors 1 . . . 6 Drone left out from the model Crane left out from the model
ixx (⋆) Inertia links 7 . . . 9 (xx) 0.0 2.0 0.313 0.0 100.0 35.37
iyy (⋆) Inertia links 7 . . . 9 (yy) 0.0 2.0 0.363 0.0 100.0 58.23
izz (⋆) Inertia links 7 . . . 9 (zz) 0.8 5.0 0.745 0.0 100.0 5.807

I10 . . . I12 Inertia lower platform Values presented in Table 3 Values presented in Table 4
I13, I14 Inertia arm first link Values presented in Table 3 Values presented in Table 4
I15, I16 Inertia arm second link Values presented in Table 3 Values presented in Table 4
I17, I18 Inertia arm third link Values presented in Table 3 Values presented in Table 4
I19, I20 Inertia arm fourth link Values presented in Table 3 Values presented in Table 4
I21, I22 Inertia arm fifth link × × × Values presented in Table 4
I23, I24 Inertia arm sixth link × × × Values presented in Table 4
fv,7 (⋆) Viscous friction J7 0.2 2.0 0.517 0.2 2.0 0.9
fv,8 (⋆) Viscous friction J8 0.1 3.0 1.33 1.0 600.0 485.3
fv,9 (⋆) Viscous friction J9 0.1 3.0 1.311 50.0 100.0 52.7
fs,7 (⋆) Static friction J7 0.0 1.0 0.0 0.0 1.0 0.01
fs,8 (⋆) Static friction J8 0.0 1.0 0.0 0.0 1.0 0.767
fs,9 (⋆) Static friction J9 0.0 1.0 0.0 0.0 1.0 0.0
kd,7 (⋆) D gain virtual controller J7 1.0 5.0 0.0 1.0 5.0 0.0
kp,7 (⋆) P gain virtual controller J7 15.0 50.0 17.86 40.0 50.0 30.92
kd,10 (⋆) D gain virtual controller J10 1.0 5.0 0.556 1.0 5.0 0.0
kp,10 (⋆) P gain virtual controller J10 10.0 50.0 0.021 1.0 50.0 0.041
kd,11 (⋆) D gain virtual controller J11 1.0 5.0 0.01 1.0 5.0 0.0
kp,11 (⋆) P gain virtual controller J11 100.0 1000 682.4 100.0 1000 953.2
kd,12 (⋆) D gain virtual controller J12 1.0 5.0 0.01 1.0 5.0 0.0
kp,12 (⋆) P gain virtual controller J12 100.0 1000 712.3 100.0 1000 891.5

* Values are presented in the following units: masses (kg), centres of mass (m), inertias (kg m2)
(⋆) Parameters identified

7. Conclusion

This paper proposed a rigid-body model of cable-suspended
dual-arm robotic manipulators in a pendulum configuration. A
dynamic parameters identification procedure was devised for
the presented model to reduce the sim-to-real gap. Two cable-

suspended dual-arm manipulation systems were used to assess
the capability of the proposed model in handling different ca-
ble configurations and suspension mechanisms. The simulated
and real response signals showed a high (from 91.3% to 99.4%)
correlation, while the comparison between the proposed model
and baseline pendulum modelling approaches shows a signif-
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Figure 9: Simulation in Gazebo of LiCAS while performing unforced oscilla-
tion.

Figure 10: Simulation in Gazebo of CRANEbot while performing an arms-
induced oscillation.

icantly increased simulation accuracy (from 64.4% to 85.9%).
The proposed approach allows building realistic simulation en-
vironments useful for controller design, testing, and training of
machine learning methods which are promising future works
on the topic.
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