
Visual and Haptic Cues for Human-Robot Handover*

Marco Costanzo1, Ciro Natale1 and Mario Selvaggio2

Abstract— The adoption of robots outside their cages in
conventional industrial scenarios requires not only safe human-
robot interaction but also intuitive human-robot interactive
communication. In human-robot collaborative tasks, the ob-
jective is to help humans in performing their job with less
physical and cognitive effort. A collaborative task can involve
the exchange of objects between the robot and the operator.
However, the handover operation should be sufficiently intu-
itive, fluid, and natural for being accepted by the involved
humans. Naturalness strongly depends on the speed of the
object exchange and the way of communication. For the latter
aspect, this paper proposes a multi-modal communication based
on visual and haptic cues. Concerning the handover speed
requirement, the paper proposes a high-performance visual
servoing based on an Extended Kalman Filter (EKF) estimating
object speed during the handover and a homography-based
object tracking. The object safety is ensured by proper control
of the robot grasp force based on a model-based approach
exploiting tactile measurements. The same perception modality
is also used as a source of haptic cues that make the handover
intuitive and natural. Experiments of human-robot handovers
through haptic and visual cues communication demonstrate the
effectiveness of the proposed approach.

I. INTRODUCTION

Even if robotic solutions that automate industrial and
logistic processes are widespread, many tasks cannot be
executed by robots and require a human partner. As an exam-
ple, in a supermarket scenario, opening cartons and picking
single items out of a box before placing them on the shop
shelf are complex operations that demand both cognitive and
manipulation skills yet outside the reach of robots. Therefore,
such tasks should be performed collaboratively and object
exchange is the primary collaboration modality. A robot that
receives an object from the human partner (H2R handover)
can lower the human workload by reaching placing poses
outside of the human workspace or the ergonomic golden
zone. At the same time, the dual operation (R2H handover)
can be useful both in the logistic and in-house scenarios,
where robots could help elderly people to retrieve objects
from high or uncomfortable places.

From a formal point of view, the handover is an action
between two agents, the giver and the receiver [1]. It is
usually divided into two phases, the pre-handover, and the
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Fig. 1. Experimental setup for the H2R and R2H handover, the frame ΣG

(in RGB convention) is the grasp frame, the magenta arrow represents the
pulling direction ypull (defined in Section III).

physical handover. For a recent survey on handover tasks the
reader is referred to [1].

Both before and during the operation, the communication
mechanism is crucial [2]; we adopt both haptic and visual
cues as communication tools between the two agents, as-
suming that the handling device (the gripper) is equipped
with force/tactile sensors and an eye-in-hand camera (see the
experimental setup in Fig. 1). The haptic cues are based on
the interaction force perceived by the agents through tactile
sensing at the fingertips while the visual cues are based
on hand gestures and visual servoing algorithms as in our
former paper [3]. However, here the dynamic performance
of the visual servoing controller has been improved in two
aspects with respect to the algorithm used in [3]. The
dynamic performance has been enhanced through the explicit
estimation of the object velocity via an EKF and owing to a
novel homography-based tracker. Moreover, an hand gesture
detector is adopted to make the human-robot communication
more intuitive and interactive compared to [3].

During the H2R operation, the robot visual loop is used
to track the target object pose and the handover location,
which is chosen by the giver and communicated to the
robot with a hand gesture. During the physical handover
phase, the object weight is shared between the giver and
the receiver. The grasping force of both agents is modulated
during the object exchange [4]. In this paper, this phase is
built on top of the slipping avoidance algorithm originally
proposed by [5]. However, the slipping avoidance strategy
alone is not effective enough to achieve a proper handover.
The communication between the giver and the receiver is
essential and the robot uses haptic cues to communicate its
readiness to take the object over.
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Fig. 2. Limit Surface in the 3D wrench space. ftmax: maximum
tangential dry friction force; τnmax: maximum torsional dry friction torque;
(ftLS), (τnLS): the generic point on the LS, i.e., the maximum external
load that the friction can withstand given the grasping force fn.

In the R2H handover, grasping force modulation is of
paramount importance. Releasing the object as soon as a
pull is detected might cause a fall if the receiver is not
correctly sharing the load. As in our former paper [3], we
explicitly detect the load-sharing phase via a Finite State
Machine (FMS), now enriched with a new phase managing
hand gestures.

II. CONTROLLERS

A. Grasp force controller

The grasp control algorithm aims at modulating the grasp-
ing force to automatically avoid slippage. The object is
modeled as a planar slider and the robot exchanges friction
force and torque with the object by means of the fingertips
of the SUNTouch force/tactile sensor [6] able to measure the
6D contact wrench. Under the assumption of axisymmetric
pressure distribution [7], the contact area is a circle of
radius ρ = δfγ

n , where fn is the grasping force and the
two parameters δ and γ can be estimated via the procedure
described in [5]. The static friction is modeled with the well-
known Limit Surface (LS) concept [8]. The LS is defined in
the wrench space (Fig. 2), if the point describing the external
load (ft, τn) belongs to the area inside the LS, no slippage
occurs. The bigger the grasp force, the bigger the LS and
the non-slipping region. By following the same arguments
of [9], it is possible to compute the minimum grasping force
that keeps the external load inside the LS fnLS.

However, it is well known that such an analysis takes into
account constant loads only and, in the case of time-varying
forces, the break-away force decreases as soon as the load
variation rate increases [10]. This effect can be captured by
resorting to the LuGre dynamic friction model [11] applied
to the instantaneous rotation about the Center of Rotation
(CoR) of the planar slider [12], via the following nonlinear
observer

ζ̇ = ω − σ0

g(fn, c)
ζ |ω| (1)

ω̇ = l(−σ0ζ − σ1(fn, c)ω + y), (2)

where ζ is the internal dry friction state corresponding to the
dry friction σ0ζ. The functions g(fn, c) and σ1(fn, c)ω are
the maximum dry friction and viscous friction, respectively,
computed as a torque about the CoR depending on the
estimation of the CoR position c and the normal force
fn as detailed in [12]. The torque y = τn − cft is the
generalized friction torque measured at the fingertip. When
|y| > g(fn, c) the dry friction is not enough to counteract
the sliding motion and the slipping velocity ω builds up. To
counteract both the external load and the break-away force
decrease, the estimated slipping velocity is controlled to zero
by applying a grasping force computed as the superposition
of two contributions

fn = fnLS + fnd, (3)

where fnLS and fnd are called static and dynamic contribu-
tions respectively. In particular, fnd regulates the estimated
slipping velocity ω to zero by means of a linear control
action. During certain phases of the handover task, the
dynamic contribution is turned off (i.e., fnd = 0). Thus
two control modalities are defined: static mode (dynamic
contribution disabled), dynamic mode (dynamic contribution
activated). The strategy to switch between the two modalities
during the handover is described in Section III.

B. Visual Servoing

During the H2R handover, the robot picks the object
directly from the human hand. The object is presented in
an unknown pose in the camera’s field of view. Moreover,
the object location cannot be considered constant as the
human giver could (in)voluntarily move the object during
the maneuver. This issue is addressed by resorting to a visual
servoing (VS) controller. In order to enhance the VS tracking
performance, the object velocity is estimated via an Extended
Kalman Filter (EKF) and used as a disturbance cancellation
action (see Fig. 3) on the camera velocity.

The objective of the VS controller is to align the current
camera image with a target one by controlling the camera
velocity. We assume to have an RGB-D image, thus the strat-
egy is to synthetically represent the images with 3D feature
points composed by the coordinates of some keypoints on
the object surface in the camera frame.

Let s =
[
s⊤1 . . . s⊤N

]⊤
, s⋆ =

[
s⋆⊤1 . . . s⋆⊤N

]⊤ ∈ R3N be
the vectors of the N current and matched 3D features si,
s⋆i ∈ R3, the relation between the variation of s and the
camera body velocity screw v =

[
v⊤ ω⊤]⊤ is

ṡ = L(s)v, (4)

where L(s) is the so-called interaction matrix [13] which,
considering 3D feature points, can be written as

L(s) =

[
−I3 . . . −I3

S⊤(s1) . . . S⊤(sN )

]⊤
, (5)

where I3 is the 3 × 3 identity matrix and S(·) is the skew
symmetric operator.

Taking into account the discrete-time nature of the control
algorithm, in the following, we will derive the exact sampled



data version of the system (4). First, considering the structure
of the matrix L(s), (4) can be written in a form that is linear
with respect to the state, i.e.,

ṡ = S̄⊤(ω)s− v̄, (6)

where S̄(ω) = IN ⊗ S(ω), v̄ = 1N ⊗ v, ⊗ represent the
Kronecker product, IN is the N × N identity matrix and
1N = [1 1 . . . 1]

⊤ ∈ RN . Let T be the control sampling
time, in the time interval [kT, (k + 1)T ] the control input
is kept constant at the value vk =

[
v⊤
k ω⊤

k

]⊤
and the

system behaves as a linear one inside the sampling time
intervals. Thus, it is possible to write the discrete-time feature
dynamics in the sampling instants as

sk+1 = e−S̄(ωk)Tsk −
∫ T

0

e−S̄(ωk)σ dσv̄k. (7)

Finally, by expanding the exponential matrices in power
series, it is possible to write

sk+1 = sk + P (ωk)L(sk)vk, (8)

with the matrix function P (·) : R3 → R3N×3N defined as

P (ω) =

∫ T

0

e−S̄(ω)σ dσ. (9)

The velocity v in equation (4) represents the relative
camera/object velocity that, in ideal conditions with a static
object, coincides with the camera velocity. In the general
case, the object motion can be modeled as an additional
disturbance velocity vd = [v⊤

d ω⊤
d ]

⊤ with respect to the
camera frame, namely

v = vc + vd, (10)

where vc = [v⊤
c ω⊤

c ]
⊤ is the actual camera velocity com-

mand. Note that, vd can be used to model both the object
motion and any inaccuracy of the robot in generating the
velocity vc. However, since (9) assumes that the continuous
time velocity is a piece-wise constant signal, we are im-
plicitly assuming that also the disturbance vd is piece-wise
constant. This is true if object acceleration is sufficiently low
compared to the adopted sampling time T .

The estimation of the disturbance velocity vd is carried out
by means of an EKF assuming a constant velocity model, i.e.,

vdk+1 = vdk + νk (11)
sk+1 = sk + P (ωck + ωdk)L(sk)(vck + vdk) + ηk

= f(sk,vdk) + ηk (12)
yk = sk + χk, (13)

where yk is the measurable output, and νk, ηk, χk are
Gaussian process noise with covariance matrices N , H and
X , respectively.

The visual servoing control scheme is shown in Fig. 3.
The velocity control output is the sum of two terms

vc = −v̂d + vcl, (14)

where v̂d is the disturbance velocity estimated by the EKF
with the purpose to counteract the disturbance velocity vd,
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Fig. 3. Visual control system block scheme.

while vcl is the closed-loop control action designed to ensure
stability. Such a component is computed as in [13] as

vcl = −λL†(sk)ek, (15)

where ek = sk − s⋆ is the feature error and λ > 0 is the
control gain.

The 3D feature points si can be measured by tracking
2D features in pixel coordinates on the object surface and
then, by means of the depth sensor and the camera intrinsic
parameters, transform the 2D features in the 3D metric
space [14]. Assuming that the object has a planar textured
face to be tracked, let [ui vi]

⊤ and [u⋆
i v⋆i ]

⊤ be the pixel
coordinates corresponding to the 3D features si and s⋆i ,
respectively. If we choose the 3D features on a planar face of
the object, the relation between all the current and reference
features is given by the homography matrix H ∈ R3×3 [15],
namely,

µik

uik

vik
1

 = Hk

ui
⋆
k

vi
⋆
k

1

 ∀i, (16)

where µik is an auxiliary variable. Thus, instead of tracking
the 2D features, we estimate the homography matrix via a
template-tracking algorithm based on ZNCC [16]. The target
2D features [u⋆

i v⋆i ]
⊤ are selected arbitrarily on the target

image and the current ones are generated via the homography
matrix (16). This approach has an advantage compared to
local trackers, such as KTL [17], which track 2D features in-
dividually and errors can accumulate over time or the tracked
features could move independently even if they belong to the
same 3D rigid body. A template-tracking algorithm, instead,
does not accumulate errors because it always compares the
current image with the target one. Moreover, reconstructing
the 2D features from the homography estimation ensures that
the features always respect the rigid body constraint.

III. HANDOVER

We propose a framework that uses both visual and haptic
cues for efficient H2R and R2H handover under the following
assumptions: the robot receiver knows the object to be used
as the target for the visual servoing controller; the object
is texture-rich with at least one planar surface to be used
for the homography estimation; the robot is endowed with a
sensorized hand able to estimate the contact wrench and an
eye-in-hand RGB-D camera (see Fig. 1).

To recognize hand gestures, we use the ROS Hand Gesture
Recognition package [18], which relies on the MediaPipe
Gesture Recognizer, an open-source machine learning-based
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Fig. 5. Representation of the FSMs for the H2R (top) and R2H (bottom)
handover algorithms.

package from Google, that provides the recognized hand
gesture results in real time along with 21 hand landmarks
coordinates of the detected hand into standard ROS topics.
The package can classify hand signs starting from image
data streamed from an RGB-D camera making use of a pre-
trained machine learning model. We used the two hand signs
turn left and turn right showed in Fig. 4 to activate the H2R
and R2H phases, respectively.

A. H2R Handover

During the H2R handover, the human operator presents
an object to the robot that has to grasp it directly from the
human hand. The algorithm is presented in the FSM diagram
in Fig. 5-top. Since, at the beginning, there is no contact
between the manipulator and the object, the robot relies on
visual cues only.

In the Gesture Recognition phase, the robot vision algo-
rithm awaits for the visual H2R hand gesture shown in Fig. 4
to initiate the handover action.

As soon as the robot recognizes the gesture, the visual
servoing algorithm described in Sec. II-B is activated. Thanks
to the disturbance velocity estimated by the EKF, the giver
can move the object to a different location while the visual

controller tracks the object without compromising the suc-
cess of this phase.

The grasp location is considered reached when the norm of
the visual servoing error e goes below a desired accuracy εvs.
Then, the gripper closes the fingers and the dynamic slipping
avoidance algorithm is activated. At this time the object is
considered secured and the visual servoing is deactivated.
Note that, the visual servoing is still active after reaching
the grasp location until this phase, this is because the giver
could still move the object.

When the object is secured, the robot moves the end
effector back, away from the reached handover location
(Move Back state). This is unconsciously perceived by the
human giver as a haptic cue, i.e., an increased tangential
force in the robot’s pulling direction. This means that the
robot has handled the object and the human can securely
release it.

B. R2H Handover

The R2H handover strategy is described in the FSM
diagram in Fig. 5-bottom.

The robot starts holding the object in dynamic slipping
avoidance mode. Once again, the robot vision algorithm
awaits for the visual R2H hand gesture shown in Fig. 4.

As soon as the human intention to initiate the handover
is confirmed, the robot measures the object’s weight by
means of the sensorized fingertips. The weight fw

z,i can be
estimated as the force component fw

z along the z-axis of the
world frame (assumed as opposed to gravity) measured at
the beginning of this phase when the robot is still and the
human does not exchange forces with it. Once the weight is
acquired the robot reaches the handover location acquired by
the visual gesture cue and it goes into the Wait state. In this
state, the robot is still in dynamic slipping avoidance mode
to counteract any disturbance applied to the object. In the
very first phase of the actual handover, the receiver grasps
the object by partially holding the load, this haptic cue is
caught by the robot that enters in the Sharing state. This is
possible by comparing the actual force component fw

z with
the weight measured beforehand, i.e.,

fw
z > νsf

w
z,i, 0 < νs < 1, (17)

where the factor νs defines the percentage of the load that
the receiver has to hold before the robot enters the Sharing
state. By checking such a condition, the robot establishes
the receiver’s intention to share the object’s weight to suc-
cessively grab it. Note that, in the Sharing state the slipping
avoidance is switched to the static modality. This is because
the receiver is actually helping in holding the object and
any slight trembling of the human receiver would cause
unnecessary reactions of the dynamic controller.

The sharing alone does not ensure a successful handover
as the receiver could decide to abort the operation. For this
reason, there is a loop on the FSM diagram (Fig. 5-bottom).
The sharing abortion is detected with the haptic cue

fw
z < νwf

w
z,i, (18)



with 1 > νw > νs > 0. To avoid useless switches between
the Wait and Sharing state, the scale factors νw and νs should
be selected such that (νw − νs)

∣∣fw
z,i

∣∣ is greater than the
measurement noise.

In the sharing phase, the receiver could complete the
handover by pulling the object. Once again, this is detected
with a haptic cue, i.e.,

fw
z > ϕz ∨ fpull > ϕp, ϕz, ϕp > 0, (19)

where fpull is the force component in the pulling direction,
defined as the projection of the gripper approach axis on
the xy-plane of the world frame. The cue detected by the
condition (19) considers the case of the handover partner
pulling the object upwards or towards the receiver.

IV. EXPERIMENTS
Figure 1 represents the experimental setup built to test

the handover task based on visual and haptic cues. A Kuka
LBR iiwa 7 is equipped with a WSG-50 parallel gripper
and an Intel Realsense D435i RGB-D camera mounted in
an eye-in-hand configuration to retrieve visual cues. The
haptic cues are detected by means of the SUNTouch tactile
sensors [6] mounted on the fingertips and able to measure
the 6D contact wrench. The camera runs at 60Hz, the tactile
sensor at 500Hz, the gripper accepts velocity commands at
50Hz, while the robot is controlled at 1 kHz. The control
and design parameters are reported in Tab. I.

During the H2R handover, after a visual cue, the robot
has to grasp an object directly from the human hand and
place it in a predefined position on the shelf. The R2H
experiments are the opposite, after a different visual cue,
the robot grasps the object from the shelf to handover it to
the human operator. Four objects are considered: a full and
an empty plastic bottle, and two different cardboard boxes.
Since the results are very similar for all the objects, only
the first two are reported here but the accompanying video
shows all the experiments and the related plots.

The first experiment is only devoted to testing the novel
visual servoing controller with the disturbance estimated and
compensated via the EKF. The results are shown in Fig. 6.
Only for this experiment, the visual servoing accuracy εvs is
set to zero so that the algorithm never exits from the visual
servoing phase. The plot shows the visual servoing error (top)
and the linear and angular control velocity norms (middle
and bottom plot, respectively). The closed loop components
depending on the error e are represented in blue, while the
control action synthesized from the disturbance estimate v̂d

is reported in red. During the experiment, the human operator
randomly moves the object to generate both translational and
rotational disturbances. After the initial exponential decrease,

TABLE I
CONTROL AND DESIGN PARAMETERS USED IN THE EXPERIMENTS

νw 0.98 νs 0.5 ϕz 1.0 ϕp 0.6
εvs 0.0075 λ 0.8 l 4000 σ0 50
N diag(5I3, 20I3)10−7 H 10−7I3n X 10−7I3n
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Fig. 6. First experiment: visual serving performance evaluation. Visual
serving error norm (top); Control translational (middle) and rotational
(bottom) velocities norm. The closed loop components are reported in blue,
while the estimated disturbance is in red.
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Fig. 7. Second experiment: H2R handover of a plastic bottle. Visual serving
error norm (top); Control translational (middle) and rotational (bottom)
velocities norm.

the error remains almost constant to near-zero values even
if the human operator significantly moves the object. In
fact, in this phase, the robot moves almost only due to the
disturbance estimate control component (red lines).

The second experiment consists in the handover of the
plastic bottle in Fig. 1. The robot first waits for the visual
gesture cue in Fig. 4-left, at the same time the corresponding
hand location is acquired so that the robot can go in front
of it in an open-loop fashion. After that, the Visual Servoing
state of the H2R FSM is activated. The result is shown in
Fig. 7 which is very similar to the previous experiment. The
error exponentially decreases towards zero and, at the same
time, the disturbance estimated by the EKF is applied as a
corrective action to compensate for any motion imposed by
the human hand. Figure 8-top shows the forces measured
by the tactile sensors. At t = 5 s the object is grasped
and the slipping avoidance algorithm is activated. Between
t = 5 and t = 7 s we have the so-called load sharing
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Fig. 9. Exchanged forces during the R2H handover. The FSM state
transition phases are highlighted.

phase and the object weight is shared between the giver
and the receiver. When the robot receiver moves back the
human operator instinctively releases the grasp and the object
holding becomes a receiver duty. At this time the tangential
force (i.e., the weight) is 3N and the slippage controller
automatically imposes a grasping force of 3.7N. After the
handover, the robot is commanded to place the bottle on the
shelf. During the robot motion, the measured torque τn varies
as the gripper orientation varies while the object is fixed in
hand. Finally, at t = 26 s the robot places the object on the
shelf. Figure 8-bottom shows the same experiment repeated
with an empty bottle. Note that, in such a case, even if the
shape of the signals is almost the same, the measured force
and torque are much smaller and the controller automatically
applies a grasping force as low as 1N.

Figure 9 shows the R2H experiment. The FSM (Fig. 5-
bottom) waits for the R2H visual cue (Fig. 4-right). The
hand location is acquired as in the H2R case, but this time
the robot goes to the shelf to pick the object. The object
weight is measured in the Init state and the robot presents the
object in the handover location acquired beforehand during
the gesture recognition phase. Then, the actual R2H handover
driven by the haptic cues begins. The robot is in the Wait
state and counteracts any external force applied to the object.
This is evident between t = 3 and t = 14 s where the
human operator touches the object from different directions
(see also the accompanying video). At the same time the
controller reacts by increasing the grasping force for each
applied disturbance. At t = 14 s the human grasps the object,
this is detected by condition (17), the FSM goes into the

Sharing state and the robot is ready to release the object if
the appropriate haptic cue is detected. In this experiment, at
t = 16.5 s the human aborts the handover and releases the
object (simulating a change of intention of the receiver), this
is detected by the haptic cue in (18) and the FSM returns
into the Wait state. At t = 18.5 s the sharing state is detected
again, this time the human receiver pulls the object to fully
grasp it, the haptic cue (19) is detected and the robot opens
the gripper, thus completing the handover.

V. CONCLUSIONS

This work presented and experimentally validated a H2R
and R2H handover strategy based on both visual and haptic
cues. The experiments demonstrated that visual perception is
important to both initiate the handover and to reliably reach
the handover location, while haptic is of paramount impor-
tance during the physical handover to accurately modulate
the grasping force and receive haptic cues from the partner.
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