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INTRODUCTION
The development of surgical tasks and skills level classi-
fication methods and its combination with adaptive assis-
tance strategies is a very promising approach in robotic
surgery. In order to employ adaptive and time-varying
shared control methods, such as virtual fixtures [1], task
classification constitutes an essential step. It allows to
assess surgeon skills and intentions in both training and
real interventions. Our objective is to develop a reliable
method for the automatic classification of surgical tasks.
This procedure is often challenging if it relies only on
kinematic information. Vision sensors might be employed
but they usually require fine parameters tuning and a
huge programming effort. Hence, we propose to adopt
the interaction force measurement in the learning process.
In this paper, a force-based unsupervised segmentation
approach of reconstructive surgical gestures is presented.
In the past, similar approaches have been investigated:
Zappella et al. have proposed several methods for au-
tomatic surgical gesture classification using video and
kinematic data [2]; Pierre et al. have developed a human
collaborative framework for bimanual surgical tasks based
on learned model where they combine active constraints
and learning from demonstration [3]; in the work of
Despinoy et al. the operating gesture workflow has been
taken into account, in order to provide more intuitive
training as well as more accurate solutions for procedural
knowledge assessment [4]; in the work of Perez-Del-
Pulgar et al. the authors address the problem of learning
from demonstration trajectories that depend on contact
forces instead of depending solely on time [5]. In our
work, we use force and kinematic data to train a Gaussian
Mixture Model (GMM) in order to cluster subtasks during
a robotic surgical reconstructive procedure. Comparing
our approach with the manual annotations of the surgical
gestures, an average matching score of 88.32% is observed
for the fully automated gesture recognition process.

MATERIALS AND METHODS
Our experimental setup is composed by the da Vinci
Research Kit commanded in teleoperation mode via open
controllers1. The user teleoperates the Patient Side Ma-
nipulators (PSMs) using the Master Tool Manipulators
(MTMs) by observing the scene through the endoscopic
stereo camera. The complete robot dynamical model has
been previously identified in order to estimate external

1https://github.com/jhu-dvrk

Fig. 1. Example of task classification during a robotic surgical
reconstructive procedure. The graph on the left depicts the Patient Side
Manipulator tool tip Cartesian trajectory segmented using our approach.
The pictures on the right represent some relevant suturing states.

forces from motor current measurements [6]. This method
has been used in combination with a recently developed
force sensor integrated into the robot trocar [7] that is able
to measure the interaction forces (components orthogonal
to the instrument’s axis) between the tool tip and the envi-
ronment. The adopted force sensor guarantees a resolution
of 0.01 N and a range of measurement of [−10, 10] N that
are suitable for measuring interaction forces between the
surgical instrument and soft tissues throughout most of
robot-aided surgical interventions. This is also the case
of in-vivo suturing procedures where the forces can be
of very low intensity (| | f | | ≤ 1 N) during the interaction
with the tissues but also | | f | | ≥ 5 N, in some cases, when
the thread traction is executed. During our experiments
the PSMs Cartesian state (positions and velocities) and the
measured forces are collected at a sampling rate of 200 Hz.
In addition, an external Kinect2 RGB camera is used to
collect videos of the training and test procedures which are
lately exploited to verify the accuracy of our method. ROS
is employed to collect all the data in a synchronized way.
During the demonstration phase we obtain a sequence of
n elements of sensory information x̂n = (x1, x2, . . . , xn).
At each time step we encode a tuple xi = (pi, vi, fi)
with pi being the Cartesian position of the manipulator,
vi its velocity and fi the force exerted at the tool tip.
These data are classified in an unsupervised way using
GMM and Expectation-Maximization (EM) approach (see
Fig. 1). A GMM is parametrized by two types of values:
the mixture component weights and the component means
and variances/covariances. For a multivariate GMM with
K components, the k th component has a mean µk and
covariance matrix Σk . Given a tuple x the probability that



this belongs to an encoded GMM is:
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The log-likelihood function of a GMM can be written as
follows:

L (x̂n) =
n∑
i=1

log (P (xi)) (4)

The learning objective is to find a set of GMM parameters
that maximizes Eq. (4). To this end, the EM algorithm
iteratively maximizes the likelihood of a statistical model
given the training sequence x̂n and a predefined number
of Gaussians. In this work, we have chosen this value
to be K=4 in order to identify four states of a surgical
reconstructive procedure. This value has been established
in a heuristic way by observing several surgical recon-
structive interventions performed by expert surgeons. We
have used 30 suturing procedures as training set and
evaluated the unsupervised classification procedure using
2 sequences. Both the training and the test data have
been offline processed using the Statistical and Machine
Learning Toolbox in MATLAB.

RESULTS
In order to validate our clustering procedure we trained
the GMM and performed the evaluation using test set
data. Demonstration and test phases consisted of suturing
procedures conducted on a sponge phantom intended to
act as dummy tissue. The result of a classification test
is shown in Fig. 2. Here, only the time history of the
measured force norm is reported, since it represents the
most significant quantity for this evaluation. For the sake
of clarity, only PSM1 data and states are shown but
same results hold for PSM2. The four states we aimed
at identifying were: idle, interaction, free motion and
thread traction. To give an insightful explanation of the
graph, the teleoperated robot is, at the beginning, in the
idle configuration, then starts to move to perform its first
action, i.e. needle grasping. The interaction state identified
between 75 and 80 s is due to the contact occurred with
the tissue while grasping the needle. Then, the operator
moves and the next contact is detected while the needle is
passing the phantom between 82 and 92 s. Successively, a
new idle state is identified while the needle is regrasped
by the PSM2. A free motion state is identified during the
process of thread scrolling performed in alternation with
the PSM2. Finally, the thread traction state concludes
the suturing procedure. Our method allows to classify

Fig. 2. Force norm variation during a reconstructive procedure used as
test set. Different states are classified and shown using different colors.

the correct sequence of states with 88.32% of accuracy
during the fully automated gesture recognition process.
This result has been calculated by comparing the obtained
results to manually annotated data. The annotation phase
have exploited the above mentioned recorded videos.

CONCLUSIONS AND DISCUSSION
This paper demonstrates that is feasible to use interac-
tion force information to reliably classify the states of
a robotic surgical reconstructive procedure. A GMM has
been trained using a set of demonstrations performed by
expert surgeons and has been used to cluster test sets.
The presented method allows the fully automated gesture
recognition with an accuracy of 88.32% with respect
to manual annotations of the surgical gestures. These
results are encouraging in sight of the development of
adaptive assistance strategies for robotic aided surgical
interventions. However, some limitations of the method
have been identified. Indeed, the use of position infor-
mation does not allow spatial generalization. Moreover,
with the adoption of GMM and force measurements, it
is difficult to distinguish between different contact states,
e.g. needle grasping and suturing. As future works, further
investigations on the use of solely differential quantities
(velocities), and on the exploitation of tasks sequence
information are needed.
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