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Abstract—In this paper, a machine learning algorithm for
automatic segmentation of surgical subtasks in teleoperated
robot-assisted minimally-invasive surgery (RAMIS) is presented.
To improve previously developed methods, we propose to adopt
the interaction force measurement in the learning process. This
allows us to perform physical considerations of the surgical
states and to appropriately select parameters for the learning
model. The classification of the surgical states is performed
using a Gaussian Mixture Models (GMM) combined with Hidden
Markov Models (HMM) to infer the more explicable hidden
states of suturing procedures. The experiments are performed
using data retrieved from the da Vinci Research Kit (dVRK)
and a Force/Torque sensor integrated in a phantom used for
suturing. The results demonstrate good accuracy of surgical
gestures recognition.

Keywords—Minimally invasive robotic surgery, surgical ges-
tures classification.

I. INTRODUCTION

Combination of teleoperated tasks execution with adaptive

assistance strategies is a very promising approach in robotic

surgery. In order to employ adaptive and time-varying shared

control methods, such as virtual fixtures, task classification

constitutes an essential step. It allows to assess surgeon skills

and intentions in both training and real interventions. The

objective of this work is to develop a reliable method for the

automatic classification of surgical tasks. This procedure is

often challenging if it relies only on kinematic information.

Vision-based techniques might be employed but they bring

difficulties related to automatic video interpretation [1]. Hence,

we propose to combine kinematic data with the interaction

force measurements in the learning process. This is motivated

by the purpose of giving physical interpretation to clustered

states.

In this work we use Gaussian Mixture Models (GMM) for

state classification and combine them with Hidden Markov

Models (HMM) for task encoding. The convenience of using

a HMM for modelling surgical movements is that it provides

analogies with human behavior, which can be thought as a

doubly stochastic process, involving a hidden, immeasurable

human mental state and a measurable, observable human

action. The strength of HMMs is that they do not require any

priori definition of what surgical expertise is.

Several works can be found in literature that developed and

applied similar approaches. Zappella et al. propose several

methods for automatic surgical gesture classification using

video and kinematic data [1]. Berthet-Rayne et al. develop

a human collaborative framework for bimanual surgical tasks

based on learned models [2]: they combine active constraints

and learning from demonstration (LfD). Despinoy et al. take

into account the operating gesture workflow to provide more

intuitive training as well as more accurate gesture and procedu-

ral knowledge assessment solutions [3]. Recently, Perez-Del-

Pulgar et al. develop a LfD approach based on the use of force

information for peg-in-hole tasks [4]. The authors address

the problem of learning from demonstration trajectories that

depend on contact forces instead of depending on time.

Our aim is to adapt the proposed approaches to minimally

invasive surgical procedures, e.g. suturing, using the dVRK.

This work is an extension of the work presented in [5].

II. EXPERIMENTAL SETUP

Our experimental setup is composed by a dVRK full

surgical system with the open controllers (https://github.com/

jhu-dvrk) commanded in teleoperation mode. The user per-

forms several suturing procedures on a sponge phantom that

is intended to act as dummy tissue. The interaction forces

between the tool tip and the environment are measured by an

ATI nano 17 Force/Torque sensor integrated in the phantom.

During our experiments, the Patient Side Manipulators (PSMs)

Cartesian state (positions and velocities) and the provided

forces are collected at a sampling rate of 200 hz. In addition

an external Kinect2 RGB camera is used to collect videos

of the training and test procedures which are essential for the

verification of the clustering procedure. ROS is used to collect

all the data in a synchronized way. Data are downsampled at

60 Hz which are sufficient to describe human gesture.

In this work, GMM are used to cluster states of the suturing

procedure. We fix the value of the number of clusters to K =
4. This value is established in an heuristic way by observing

several clustering processes using different K. The aim is to

identify four states of a surgical re-constructive procedure that

are easy to be physically explained by the user; they are: idle,

interaction, free motion and thread traction.

The underlaying physical properties of the encoded states

are summarized in the table I. This criteria are used to perform

the GMM parameters initialization (means and variances of

the gaussians). Thus, we use as data to represent our states

the vector x = (p,v,f) with p ∈ R
6 being the Cartesian

pose of the manipulator, v ∈ R
6 its linear and angular

velocity and f ∈ R
6 the force and torques exerted on its

tool tip. These recorded data are then clustered using GMM.

https://github.com/jhu-dvrk
https://github.com/jhu-dvrk


Fig. 1: HMM of suturing procedure. Gi= i-th gesture (hidden state),
Oi = i-th cluster (observation).

To validate the learning procedure, once the GMM has been

trained, we perform the evaluation on a test set acquired using

the same setup. We use 30 suturing procedures as training set

and evaluated the unsupervised classification procedure on 2

sequences.

The clustered sequences are then used as observations

to train an HMM. More in details, we model the suturing

procedure as a graph of hidden states having the following

grammar:

• (G1) = idle

• (G2) = move to needle

• (G3) = grasp needle

• (G4) = move to suturing place

• (G5) = suturing

• (G6) = move other arm

• (G7) = thread scrolling

• (G8) = thread traction

Figure 1 represents the relationship, order, and flow of gestures

during the execution of the suturing task. We choose to model

the suture as a Bakis HMM, i.e. a left-to-right model suitable

to model temporal processes. We add two outer loops to

account for cyclical operations. Each hidden state has an

unique output observation that is constituted by our previously

clustered data (see table I):

• (O1) = idle

• (O2) = interaction

• (O3) = free motion

• (O4) = thread traction

As it can be seen in the result section II-A this allows

the recognition of different gestures (hidden states) having

same observations (clusters) but sequentially related. Both the

training and the test set data are processed using the Statistical

and Machine Learning Toolbox in MATLAB.

A. Results

An example of position trajectory recorded during a robotic

surgical re-constructive procedure is shown in Fig. 2. By

TABLE I: Physical interpretation of the clustered states.

state velocity force

idle low low

interaction low high

free motion high low

thread traction high high

Fig. 2: Example of trajectory recorded during a robotic surgical
re-constructive procedure. The graph on the left depicts tool tip
Cartesian positions while the picture on the right the corresponding
suturing states. Different colors correspond to different clusters.
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Fig. 3: HMM decoding of the robotic surgical re-constructive pro-
cedure shown on force norm signal. Different states are shown in
different colors.

modeling our suturing procedure as composed of 8 hidden

states and 4 observable quantities, i.e., the clusters (see Fig. 1),

and training the model using their sequence, we are able to

discriminate different gestures. The results are interpretable

looking at the Fig. 3 in which two sequential stitches are

considered. In our simple case, the HMM decoding done

using the Viterbi algorithm had accuracy 96%. The approach

revealed to accurately identify the hidden states and so to

discern between different interaction purposes.

III. CONCLUSIONS AND DISCUSSION

This work demonstrates the use of GMM and HMM for task

classification of a robotic surgical re-constructive procedure

using kinematic and interaction force information. A GMM

has been trained on a training set of expert demonstrations

and its output has been used as observable states of an

HMM. The GMM parameters have been chosen according

to physical interpretation of suturing states. The method has

demonstrated good accuracy in the task recognition of surgical

re-constructive procedures. These results are encouraging in

sight of the development of adaptive assistance methods for

robotic aided surgical interventions. Further investigation are

needed on the use of solely differential quantities (i.e. veloci-

ties) to improve spatial generalization. Future works will focus

on the comparison of the proposed method with existing ones.
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