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Abstract— In this article we describe an approach for object
detection and pose estimation from stereo RGB frames for robot
manipulation in manufacturing scenarios. This solution was de-
veloped in the framework of the second challenge of the EuRoC
project, and meets the need of a registration method invariant
to the view perspective and robust to the structural symmetries
and ambiguities of the target objects. Our contribution consists
of automatic correction of sub-optimal results of registration
algorithms. As most registration algorithms only converge on
local optima, a tool for recognizing and correcting wrong
alignments is highly desirable. Our insight is that, for a given
target point cloud, it is important to study the alignment space
offline and identify sub-optimal solutions before the registration.
The convergence of the algorithm leads to the error pattern
knowledge that can be used to discard the wrong solutions, and
recover the correct alignment. Experiments on synthesized and
real data show that exploiting the known information about the
spatial properties of the objects, together with appropriate pre-
processing and refining of the data, we can have a substantial
improvement in discarding wrong hypothesis for geometrically
ambiguous items.

I. INTRODUCTION
During the last decade we witnessed a substantial growth

of the use of robotics for manufacturing applications, and
an increased interest toward safe interaction in industrial
environments between workers and machines. The current
industrial realities demands for a broader mobile manipulator
usage, not only in production lines, but also for logistics,
and generic manipulation tasks. This led to the development
and deployment of more and more dexterous mobile manip-
ulators who are largely guided by vision systems. With the
continuous increase of the working environments complexity,
precise, reliable and fast robotics vision system becomes a
key requirement for mobile manipulators to prosper.

To boost the application and innovation of advanced tech-
nologies on industrial robots, the European Robotics Chal-
lenge (EuRoC) for European manufacturing industry was
initiated in 2014. Among the challenges proposed, Category
2: Shop Floor Logistics and Manipulation described in [17]
focuses on the use of mobile manipulators in manufacturing
environments to accomplish logistics and manipulation tasks.
The work presented in this paper has been developed for the
framework of the EuRoC project in category 2 challenge.
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Fig. 1. The Miiwa robot at the EuRoC working environment. On the table
in the foreground are visible some of the target objects: a plastic box, some
nuts and washers.

The working environment proposed by EuRoC consists of
a realistic manufacturing set-up, furnished with tables and
shelving units (generically referred to as working surfaces).
Target items such as bolts, nuts, washers, or plastic boxes
(SLC) which occasionally containing sets of the other objects
are randomly arranged on the working surfaces in a room.
The challenge is organized as series of tasks: the robot is
required to autonomously find and collect five plastic boxes,
place them in goal locations and assemble together bolts,
nuts and washers. The robotic platform provided by the
project, MIIWA, is composed of an omnidirectional mobile
platform and a light weight 7DOF compliant robot, LWR
iiwa, equipped with a gripper. Stereo RGB cameras (Mako
and Manta of Allied Vision) are mounted on both the end-
effector and the top of the platform.

Mobile manipulators like MIIWA are designed to au-
tonomously interact with the physical environment. To this
end, spatial awareness is a fundamental requirement. Current
technology provides several options for robot and object
localization. Time of flight cameras, and more sophisticated
LIDAR systems, offer a direct and accurate depth measure-
ment with opened fields of view independently of lighting
conditions. However devices empowered by this technology
are still quite expensive [9], [7]. Stereo cameras, on the other
side, provide at once full views of the scene with adequate
resolution, low power consumption, and affordable expense
[10]. Because stereo vision requires to compute disparities
from two or more rectified images, the quality of depth
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estimation can be affected by computational resources and
adverse lighting conditions [3], [8], [18]. On MIIWA 3D
vision relies on a stereo camera setup, and is implemented
according to the algorithm proposed by Hirschmller in [6],
where disparity matrices are computed through pixels-wise
semi-global matching basing on mutual information. Hence,
for each stereo RGB camera, the provided output consists of
streams of RGB-Depth frames, in turn used by our system
to generate the scene point clouds to describe 3D structure
of the environment observed.

Based on point cloud description of 3D objects, point
cloud registration can be performed to detect and localize 3D
object and estimate its pose. Among point cloud registration
algorithms, the Iterative Closest Point algorithm (ICP) con-
stitutes a dominant solution [1], [12]. ICP’s principle is to
iteratively find correspondences between two point clouds,
and refine the alignment by minimizing objective function
related to matching distance. This approach is effectively
used for the recognition and localization of known objects
by aligning point cloud templates to the scene clusters.

The high modularity and conceptual simplicity of the
algorithm promoted the development of several variations
and extensions [13], making ICP an highly customizable
algorithm. Many different error metrics have been proposed,
based on quaternions, orthonormal matrices, normals, point
to plane distances [15], color [11], [13]. In the same way,
several methods for the correspondences computation and se-
lections have been developed, considering simple Euclidean
distance, plane orientations, RGB information. Approaches
based on k-d tree closest point searches are widely used
to speed up the matching procedures [13], since the metric
based closest point searching dominates the correspondence
construction. According to the dataset peculiarities, uniform
sampling or random sampling can be performed for pre-
selection cloud processing. Other approaches take advantage
of known properties of the observational data to improve
accuracy and speed, for example rejecting point correspon-
dence that do not satisfy some given constraints. An example
of a noticeable expansion of ICP is provided by Segal et
al. in [15] with the Generalized-ICP, where the the point
to plane error metrics is improved by introducing a prob-
abilistic model for point matching, with the misalignment
minimization based on MLE. Another notable ICP variant is
Normal Iterative Closest Point (N-ICP)[19]. N-ICP considers
each point together with the local features of the surface
(i.e. normal and curvature) and it takes advantage of the 3D
structure around the points for the determination of the data
association between two point clouds.

Despite of its general effectiveness, standard ICP has
shown to be particularly vulnerable to the imprecision of
real world data. Sensor noise, occlusion of targets, sparse
discretization of scene and models are all elements which
can lead ICP to failure [11]. ICP relies on point to point
correlations, however inevitable distortion in real data pre-
vents it to find perfect correspondences, and hence can make
the algorithm converge on a sub-optimal solution, i.e. a
wrong registration. Good initial alignments are often helpful,

but in many cases they still cannot guarantee the optimal
registration. As a consequence, in most of real scenarios, ad
hoc approaches are needed to validate the algorithms results
and redirect it toward the correct solution.

Our insight is that for applications such as object recog-
nition, where an estimate of the input cloud is available, the
alignment space can be explored offline, and important infor-
mation on wrong solution patterns can be obtained to direct
the registration process. In particular, both optimal and sub-
optimal alignments can be identified, and mapped respect to
each others on the alignment space. Our experiments also
show that a substantial improvement of ICP accuracy can be
achieved from a prior investigation of the alignment space.
To our knowledge, approaches based on this principle are so
far not present in literature.

The rest of paper is organized as follows. Our front-end
object pose estimation method and modified ICP algorithm
is presented in section II. Experiments and results analysis
is summarized in section III. We draw the final conclusion
in section IV.

II. METHODOLOGY

In this section we discuss the method that we developed
for the pose estimation and grasping of target objects. The
system has been designed to compute from each single input
RGB-D image the grasping points of each target object in
the scene, expressed in the scene reference frame. The core
of the algorithm is a 2D-constrained modification of ICP,
which estimates the pose of the target clusters by registering
it to a point cloud template. Target clusters are segmented
from the RGB image and projected into the 3D space. Each
cluster is then pre-processed to filter noise and uniform
their density. A learning procedure is carried on offline to
acquire information about the relative pose of each solution
(optimal and sub-optimal) in the alignment space. After the
registration, the erroneous alignment pose is corrected by
identifying the solution obtained among the learned ones,
and using it as a reference to retrieve the pose of the correct
alignment.

A. Template Construction

To compute the point cloud template of the target items,
we opt for a mesh based approach. First, we use an open

Fig. 2. Standard ICP implementation for object recognition.
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Fig. 3. Flow chart representing the key steps of the proposed method. Parts
in blue represent the offline processes, performed during training time. Parts
in orange represent the online processes

source graphics software, Blender, to create a 3D mesh
representing each object. Each of the meshes have then been
uniformly discretized into point cloud.

For the plastic box we also try a different approach based
on a multi-view reconstruction of the real object. We created
a composite point cloud by merging several different clouds
obtained from RGB-D frames from four different views.
Even after post processing, the obtained point cloud was too
noisy and inaccurate compared with the one obtained from
the mesh. We then just employ mesh based template for the
registration steps.

B. Data Pre-processing

For each stereo frame, potential objects are identified
at image level by segmenting the RGB frames according
to color ranges. As the working environment of our case
provides a neutral background, color proved to be a good
feature to distinguish items from the scene. Each segment
is then projected in the 3D space, and a set of point clouds
is obtained. In order to deal with the possible overlapping
of more objects in the image, each segment is clustered
based on point distances, so that each cluster depicts one
and one only object. Clusters are finally filtered using a
statistical outlier removal, and uniformly sampled to the

Fig. 4. The mesh based point cloud template representing a blue plastic
box. On the left, a picture of the real box. On the right, a rendering of the
final point cloud template used in our experiments.

same resolution of the template point clouds. For this last
processing steps we relied on the statistical outlier removal
and the uniform sampling functions offered by the Point
Cloud Library (PCL) [14].

C. Constrained ICP

The pose estimation of the objects identified in the scene
is accomplished by registering the point cloud templates on
the scene clusters. For the registration, we relied on the
standard ICP variant as implemented by Pomerleau et al. in
[11]. This solution uses the point-to-point (Besl and McKay,
[2]) distance metrics combined with the trimmed-ICP outlier
rejection (Chetverikov et al. [4]). In our scenario, most of the
target objects have constraints on their poses. In particular,
nuts, bolts and boxes always lay on the flat working sur-
faces leaning against their base. As a result, the registration
algorithm should only consider alignment poses satisfying
the constraint that the alignment space can be reduced to
4DOFs. To better represent this constraint we define α as the
angle representing, for each given alignment, its horizontal
orientation (i.e. its rotation around the axis vertical to the
working surface). Because of our constraint, α is the only
variable characterizing the orientation of the alignment pose,
as the other two rotational components are always fixed. We
hence implemented an ICP variation, orientation constrained,
which relies on a different minimization function that updates
the transform orientation by only varying α. This solution
simplifies the problem, discards out unfeasible poses from
the alignment space, and hence speeds up the registration
process. As initial alignment, we use the transformation
which aligns the centroid of the template on the cluster
centroid, without altering its orientation.

D. Confidence Metric

In order to evaluate and compare the results of our
corrections, we need to define a confidence metric. We
use the reciprocal of average squared Euclidean distance
between matching points to define the confidence of a given
registration:

Confidence =
n

∑n
i=0 Euclidean(pmi , pti)

2

where n is the number of correspondences, pmi the i-th
point of the template cloud, and pti the i-th point of the
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target cloud. This metric allows the system to easily compare
results of the registration and safely select the best correction.

E. Error Patterns Learning

As explained above, the main drawback of ICP is a
blind convergence over the closest minimum of the objective
function, which is not guaranteed to be the correct solution.
In order to verify the correctness of an alignment, some
further knowledge about the objective function is necessary.

We define as Alignment Space the set of admissible poses
of the template cloud with respect to the scene frame. As
the objective function depends on the template pose, each
minima will correspond to a particular pose in the alignment
space. Nevertheless, the morphology of the objective func-
tion, and hence the number and relative poses of its minima
in the alignment space, is only determined by the structure
of template and target clouds. In fact, different relative
positions of template and target only result in different
rigid transformations on the alignment space. As a result,
given the template cloud and an estimate of the target, we
can compute an approximation of the objective function
offline, and explore it to predict the number of sub-optimal
alignments and their relative poses respect to the correct one.
This can be achieved by registering template to the estimated
target multiple times, using different initial alignments, and
comparing the obtained solutions. If the set of initial align-
ments provides a good coverage of the alignment space, the
registration steps will generate a significant portion of all the
reachable minima.

Once the optimal solution is identified, the transformations
between each local minima and the global one can be
calculated. We consider this procedure as a learning process
of the error patterns present in the alignment space. We
introduce the Error Pattern Transformation (EPT). For each
local minimum, the EPT is defined as the transformation
matrix transforming the wrong alignment into the correct
one. EPTs represent the relative poses of the minima in the
alignment space, and are hence dependent only on template
and target structures. This means that once computed, they
maintain their validity for real scene data.

F. Error Patterns based Correction

When ICP registers a scene online, in the first pass it
outputs an initial alignment. The alignment can be either the
correct solution, or stuck in a local minima. If the matching
confidence is not higher than the threshold, all EPTs are
applied to correct potential error by multiplying the trans-
formation matrices to the initial alignment. After the EPT
corrections the second pass constrained ICP is performed to
generate corrected pose estimations with updated matching
confidences. The pose with the largest matching confidence
is preserved as final result.

III. EXPERIMENTS AND RESULTS

In this section we report the results on standard, our 2D
constrained ICP, and our 2D constrained ICP with EPT based
correction. The algorithms have been evaluated on the task

Fig. 5. Example of an ICP registration on the observational dataset. On
the left, the template cloud (in white) and the target cloud (red) before the
registration. On the right, the target cloud (now in green) is aligned on the
template.

of estimating the pose of the blue plastic box used in the
assembling scenario. To this end, we created two different
datasets, one is based on the observational data recorded at
the assembling working location, and the other one is based
on samples synthesized from the mesh templates. We tested
the different systems on the two datasets and measured their
performances.

A. Datasets

The synthesized dataset was generated by applying Gaus-
sian noise to the mesh based point cloud template. As
suggested in [11], we defined three different noise magni-
tudes for position misplacement, respectively with a standard
deviation of 0.1, 0.4 and 0.7 mm. For each noise level, we
generated 2 different point cloud samples for each noisy
condition which adds up to 6 clouds. The final data was a set
of 8 point clouds representing different portions of the box
and featuring different levels of noise. To build the dataset
from the real data, we used actual stereo frames captured at
the assembling work location through the robot stereo vision
system. 8 different RGB-D frames depicting the plastic box
from different angles and distances were selected, and pre-
processed as stated in section III.B.

For each dataset, we used 50% of the samples as a training
set to generate possible the target object cloud in alignment
space and to construct the Error Pattern Transformations.
We tested different algorithms on the remaining 50% testing
samples.

B. Error Pattern Transformations Generation

To compute the Error Pattern Transformations, we used
each of the training set samples as a distinct target cloud. We
then obtained the set of minima by registering our template
to each of such target cloud. In order to get an effective
coverage of the alignment space, we registered each target
from different initial poses. Because of the 2D constraint, the
pose orientation can only variate by rotating around the axis
vertical to the working surface, that is of different values of
α.
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Fig. 6. Histograms representing the frequency of convergence of the ICP
algorithm over solutions within the given intervals of α. Figure 3.A shows
the frequencies relative to the synthesized data, while figure 3.B shows
the results for the observational data. Dark red histograms indicate the
correct alignment, while blue histograms represent the sub-optimal solutions
selected for the computation of the Error Pattern Transformations.

We then generated the set of initial alignments by fixing
the alignment position to the target centroid, and shifting
α of 5 degrees over the interval [0, 2π], for a total of
72 orientations. This proved to be a simple but effective
sampling of the alignment space for two reasons. First,
during the online registrations our system always uses initial
alignments centered on the target cloud centroid. Hence, by
considering that region, we direct the minima search over the
alignment space actually explored by the online registration
processing. Second, we notice that the convergence of the
algorithm is mainly dependent on the initial orientation, but
hardly influenced by the initial position. Hence, keeping
the position fixed and only varying α largely reduces the
number of initial alignments to consider, but does not induce
significant loss in the computation of the minima set.

Fig. 6 describes through histograms the results of our
minima search. Histograms A and B represent the distribu-
tions of minima with respect to α with bin size of π/5, for
the synthesized and for the observational training sets. The
distribution has been computed by merging the minima sets
obtained from the registration of each sample for each set.
The horizontal axes show all the possible convergence poses,
identified by the respective value of α, grouped according to
rotation intervals. Since the position can always be estimated
by aligning two centroids, hence is not needed to characterize
the pose for each α value. The vertical axes depict the fre-
quency of convergences obtained for each given orientation
interval over the whole training set. For the synthesized
training set the error patterns are clearly identifiable: one
only prominent sub-optimal solution is found for α = π.
The graph for the observational case shows similar results,
but with the presence of further minima around the optimal
(α = 0) and the main sub-optimal (α = π) solutions.

We considered all the poses in the same bin as belonging to
the same minima. Of all the minima, we decided to consider
only the ones with frequency superior to than 5%. We hence
computed for each corresponding interval the mean pose,
and used it to calculate the corresponding Error Pattern
Transformation. For the synthesized dataset, we found 1
minimum, and hence computed only one EPTs. For the
observational dataset, the EPTs set included 5 patterns.

C. Experimental Results

Both ICP and constrained ICP have been tested on each
testing sample over the whole set of initial poses defined in
the previous section including position fixed on the centroid
and 72 uniformly separated values over the interval [0, 2π]
for α. We then corrected the output of each registration of
constrained ICP with the pre-computed EPTs, and evaluated
the improvement of the results. For each registration, the
correction with the highest confidence has been selected.
Nonetheless when the initial alignment featured an higher
confidence no correction was applied. The corrected align-
ments were then further refined by running constrained ICP
again using the corrected alignment as the initialization.

The results obtained by the different algorithms are shown
in Table 1. We define the accuracy of a given algorithm on
a given training sample as the percentage of correct conver-
gences over all 5 deg separated alignments. We consider an
alignment correct if the translational error and the rotational
error are inferior to 0.3 cm and 0.03 rads respectively.
The Table 1 shows similar results for the synthesized and
observational sets. On the synthesized data standard ICP
and 2D constrained ICP gave the same results, and their
performance showed to be invariant respect to the increase of
noise magnitude. We still find that for half of the registration
results, in particular the ones with initial alignment with
α ∈ (π/2, 3π/2), the two algorithms converged on the sub-
optimal solution identified in Fig. 6. On the observational
data, 2D-ICP showed an higher average performance, but
the correct convergences did not exceed 50% for either of
the two algorithms. The EPT based algorithm, on the other
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TABLE I
ALGORITHMS PERFORMANCE

Synthesized Set

Samples

STD-ICP 2D-ICP EPT-ICP
1 48.61 48.61 100.00
2 48.61 48.61 100.00
3 48.61 48.61 100.00
Average 48.61 48.61 100.00

Observational Set

Samples

STD-ICP 2D-ICP EPT-ICP
1 48.62 48.62 100.00
2 38.89 40.28 100.00
3 37.50 51.39 100.00
4 45.83 44.44 100.00
Average 42.71 46.18 100.00

Table 1. Performance of the three algorithms over the proposed datasets,
intended as percentage of correct convergences. The algorithms are: standard
ICP (STD-ICP), 2D constrained ICP (2D-ICP), and 2D constrained ICP with
EPTs based error recovery (EPT-ICP).

side, gave impressing results, as it managed to correctly
recover the optimal alignment for each of the testing samples
with any initial alignment. Even for the observational set,
where testing and training samples featured structural dif-
ferences and different morphology of the objective function,
the accuracy was still 100%. This came at the cost of a
reduced speed which is mainly due to the correction steps
and the second ICP procedure. Still, the improved alignment
accuracy justified the value of the trade off in time.

D. Experiments on the Real Robot

After testing the algorithm on the two datasets, we also
applied it to the real robot MIIWA at the assembling working
environment. Because of the time limitation, we did not carry
out a rigorous experimentation with statistical results. But
we verified the validity of our approach by observing that
the MIIWA was able to correctly identify and grasp all the
boxes on the working surfaces under all real circumstances.
An exhaustive evaluation of the system performances in the
real scenario is to be carried out in our further work.

IV. CONCLUSIONS

In this article we present an approach for object detection
and pose estimation of working tools in partially structured
manufacturing environments. We provide an insight of how
point cloud registration, and in particular ICP, can be used
to achieve satisfying results for real industrial robotics tasks.

We discuss our constrained variation of ICP, which takes
into account spatial constraints specific to our case study,
and exploits them to reduce the alignment space during the
error minimization. We also propose an algorithm to identify
offline the set of sub-optimal solutions ICP can get stuck in,
and a solution to recognize and correct such solutions during
online registrations.

We compared the accuracy of a traditional implementation
of ICP with our 2D constrained version and with a the

2D constrained version plus error correction. All of experi-
mental results and real robot behavior confirms the validity
of our solutions, and show that the presented approaches
have significantly improved the performance of ICP based
registration algorithms.

Our future directions include the testing of our method on
more challenging datasets. In particular, we would like to
consider testing scenes with occlusion and different types of
noise.
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