
Shared-control teleoperation methods for a cable-suspended dual-arm
unmanned aerial manipulator

Mario Selvaggio, Federico Esposito, Vincenzo Lippiello, and Fabio Ruggiero

Abstract— This paper introduces two shared-control teleop-
eration methods for remotely executing long-reach tasks with a
cable-suspended dual-arm unmanned aerial manipulator. The
proposed techniques aim to improve task performance and
user experience during remote tasks involving interaction with
the environment. Two application scenarios are envisioned:
pushing against a flat surface to emulate in-contact inspection
tasks of infrastructures, and object grasping to simulate debris
removal in cluttered environments. The effectiveness of the two
shared-control teleoperation methods is evaluated through a
human-subjects study involving 10 participants commanding
the simulated robot via a joystick interface. Statistical analysis
demonstrates significant enhancements in task performance and
system usability when using the proposed methods compared
to standard teleoperation.

I. INTRODUCTION

Unmanned Aerial Manipulators (UAMs) hold great
promise for performing in-contact tasks in high-altitude areas
that are hard or dangerous for humans to reach [1]. The in-
teraction capability of these robotic platforms allow them to
maintain or repair high-voltage lines [2] or clear disaster sce-
narios from clutter and debris [3], [4]. However, interaction
involves making intentional contact with the environment and
this generates impulsive forces that may be dangerous or
even destabilize the aerial platform. To avoid this problem,
a recent trend in aerial manipulation is the inclusion of long,
flexible cables between the suspension and the manipulation
platforms [5]. On one hand, this configuration (also denoted
as long reach) keeps the rotors’ blades at a larger distance
from the interaction spot, minimizing their risk of colliding
while also absorbing the effects of unavoidable impacts
experienced by the manipulator(s). On the other hand, it
increases the control complexity as unactuated and flexible
links cause pendulum-like oscillations of the manipulation
system.

Despite notable strides in technology and algorithms
enabling autonomous operations, aerial manipulation tasks
performed with such systems remain challenging to execute
entirely autonomously. The complexity of unstructured and
dynamic environments further compounds the difficulty of
these tasks requiring human-like capabilities in terms of

This project has received funding from the European Union’s Horizon
Europe Framework Programme under grant agreement No 101070596
(euROBIN project), the AI-DROW project, in the frame of the PRIN 2022
research program, grant number 2022BYSBYX, funded by the European
Union Next-Generation EU, and the the European Union’s Horizon 2020
research and innovation program under the Marie Skłodowska-Curie (grant
agreement n. 953454). The authors are solely responsible for its content.

The authors are with the department of Electrical Engineering and
Information Technology, University of Naples Federico II, 80125, Napoli,
Italy. Corresponding author e-mail: mario.selvaggio@unina.it

Fig. 1. Visual representation of the shared-control teleoperation architecture
for cable-suspended aerial manipulation considered in this work. The human
user specifies the arms centre point position and their relative distance while
the autonomy decides the rest of the control inputs based on the task to be
performed.

perception and cognition. In such scenarios, human-in-the-
loop teleoperation control is still the unique viable solu-
tion [6], [7]. However, it may easily become cognitively
demanding for a human to online control the dynamics
of such a complex flying robot along its many degrees of
freedom (DOFs). Designing optimal human interfaces for
aerial manipulation tasks is paramount to solve this problem
for their fast deployment in the wild [8]. In shared-control
teleoperation architectures, direct control of the human is
usually put beside some autonomous control: the operator
is in charge of controlling the lowest amount possible of
the system’s DOFs, which are relevant to the task execution,
while the autonomy chooses the rest of the control inputs to
accomplish the goal while improving the user’s experience
and the usability of the robot [9] (see Fig. 1).

Inspired by this, this article aims to develop and evaluate
shared-control teleoperation methods for a cable-suspended
dual-arm UAM performing in-contact tasks. The robotic ma-
nipulation system considered in this work is the Lightweight
& Compliant Arms for Service (LiCAS), shown in Figure 1,
attached to a quadrotor platform by means of cables [10],
[11], [12]. For this robot, two application scenarios are
considered: i) Pushing against a flat surface: emulating in-
contact infrastructure inspection situations where the robot
has to push a sensor against a flat surface with its end-
effectors and reach a desired value of the force exchanged
to remain in contact during measurements [13]; ii) Grasping
and transport of an object: emulating a debris removal
task where the robot is supposed to approach, grasp, and
then move away a box-shaped target object [14]. For each
scenario, we propose a shared-control approach that we
hypothesize would enhance the task performance while low-
ering the human physical/cognitive effort. The shared-control

modalities are systematically compared to baseline teleoper-
ation methods along a human-subjects study involving 10
participants commanding the simulated robot via a joystick
interface. The results of the statistical study show that task
performance and system usability are significantly enhanced
by our proposed methods.

II. RELATED WORKS

The field of aerial manipulation is incredibly vast, and sev-
eral different robotic systems belonging to this branch have
been developed so far [1]. Despite notable advancements
in the field of perception and cognition, these robots are
still far from achieving human-like interaction capabilities.
For difficult tasks, the inclusion of a human in the control
provides the necessary perception and cognition abilities to
achieve superior eye-hand coordination. However, it may eas-
ily become cognitively demanding for a human to remotely
control a complex mechanism, with many DOFs, which is
kinematically different from the human embodiment.

Shared-control techniques combine the perception and
cognition abilities of human operators with the autonomy
provided by intelligent control algorithms to reduce the op-
erating pressure of a human remotely operating a robot [15].
So far, shared-control techniques have been widely used
for the control of fixed-base robot manipulators [16], [17],
[18], however, there have been some attempts to make the
teleoperation of aerial manipulators more effective. Coelho
et al. propose a passivity-based control framework for multi-
task time-delayed bilateral teleoperation and shared con-
trol of kinematically redundant robots with applications to
aerial manipulation [7]. The suspended aerial manipulator
presented in [19] is controlled to not only fulfill primary end-
effector task but also provide the operator with the capability
of steering the flying base to achieve a desired view from
the camera attached to it (secondary task). Probine et al.
propose shared-control strategies for the teleoperation of
miniature indoor robotic airships, paired with an autonomous
landing and charging system [20]. A series of experiments
involving user-guided indoor exploration and autonomous
landing validate the proposed framework. Masone et al.
propose a novel bilateral shared-control framework for a
cooperative aerial transportation and manipulation system
composed of a team of micro aerial vehicles with a cable-
suspended payload. The human operator is in charge of
steering the payload and change online the desired shape
of the formation of the robots. At the same time, an obstacle
avoidance algorithm is in charge of avoiding collisions with
the environment. The signals from the user and from the
obstacle avoidance are blended in the trajectory generation
module [21]. Kong et al. present the design and the teleoper-
ation of a suspended aerial manipulation avatar for physical
interaction in unstructured environments [3], which consists
of a humanoid torso attached to a hexacopter. The proposed
system is validated via indoor experiments reproducing post-
disaster scenarios.

However, none of the above-listed works have ever con-
sidered the development of shared-control teleoperation in-

terfaces for a cable-suspended aerial manipulator, as the one
considered in this work. The main objective of this study is
to propose and evaluate two shared-control methods for such
a system along two tasks involving a consistent interaction
with the environment.

III. CONTROL FRAMEWORK

A. Low-level Control

The considered UAM uses a decentralized control archi-
tecture. The hierarchical control adopted for the UAV is
detailed in Sec. III-A.1. It compensates for the wrench due to
the suspended manipulation platform that is estimated via a
momentum-based observer described in Sec. III-A.2. Finally,
arms position controllers are shown in Sec. III-A.3.

1) UAV control: The UAV is commanded by the hier-
archical control described in [22]. It implements a slower
outer loop, that generates the total thrust uT ∈ R+ used
for translational movements and the reference values for
the faster inner loop, that controls the orientation variables
through a torque τb ∈ R3.

We assume the UAV dynamics evolves according to the
following dynamic model:{

mp̈b = mge3 − uTRbe3 + fe

Mη̈b = −Cη̇b +QT τ b + τe
, (1)

where, in the first equation, m ∈ R+ is the mass of the UAV,
pb and ṗb ∈ R3 its translational state variables, g = 9.81 is
the gravity constant, e3 = [0, 0, 1]T , in the second equation,
ηb (3×1) represents the UAV’s orientation, expressed through
the roll, pitch and yaw angles ϕ, θ and ψ, ωb

b ∈ R3 is
the angular velocity of the UAV with respect to the fixed
world frame expressed in the body frame, Q indicates the
(3 × 3) transformation matrix that links the derivatives of
the Euler’s angles to the angular velocity of the drone, i.e.
ωb
b = Qη̇b, M = QT IbQ (3×3), where Ib ≥ 0 is the UAV’s

(3 × 3) diagonal inertia matrix, the (3 × 3) Coriolis
matrix C is computed as QTS(Qη̇b)IbQ + QT IbQ̇, where
the (3 × 3) S(·) indicates the skew-symmetric operator. The
terms fe, τe ∈ R3 are the resultant of all the external forces
and torques which are applied to the drone; in our case, the
main contribution to this terms comes from the presence of
the cable-suspended dual-arm manipulator.

The outer loop control decides uT , i.e. the total thrust
generated by the UAV’s propellers which is multiplied by
the body rotation matrix Rb ∈ SO(3) in (1); it implements
a PID-like controller with the feedforward of the desired
acceleration and of the estimated external forces to compute
the desired acceleration µd ∈ R3 as in the following:

µd = −Kp

[
ep
ėp

]
−Ki

∫ t

0

epdt+ p̈b,d −
fest
m

, (2)

uT = m
√
µdx

2 + µdy
2 + (µdz

− g)2, (3)

ϕd = arcsin

[
m

uT

(
µdy

cosψd − µdx
sinψd

)]
, (4)

θd = arctan

[
µdx

cosψd + µdy
sinψd

µdz − g

]
. (5)

Exploiting the differential flatness property of the UAV we
can compute reference values for the roll (4) and pitch (5)
angles, that are input to the inner loop. In (2) we have defined
the error variables as ep = pb − pb,d ∈ R3 for the linear
position and ėp = ṗb − ṗb,d ∈ R3 for the linear velocity, with
pb,d ∈ R3 and ṗb,d ∈ R3 being the reference values for the
position and velocity. We have used the subscript x, y and
z to indicate the first, second and third component of the
desired acceleration vector µd ∈ R3 in equations (3), (4)
and (5).

The inner loop, instead, generates τ b that is the torque
generated by the UAV’s propellers. The structure of the inner
loop controller is described by the following equations:

τ̃ = −Ke

[
eη
ėη

]
−Ka

∫ t

0

eηdt+ η̈b,d, (6)

τ b = IbQτ̃ +Q−TCη̇b −QT τest, (7)

where the error variables are defined as eη = ηb− ηb,d ∈ R3

for the Euler’s angles and ėη = η̇b − η̇b,d ∈ R3 for their time
derivatives, with ηb,d and η̇b,d ∈ R3 being reference values,
τest ∈ R3 is the estimate of the external torque. Finally
Ki > 0 (3× 6) and Ka > 0 (3× 3) are gain matrices.

The hierarchical control generates inputs in the form
of the total thrust uT and the control torque τb that are
produced directly by the UAV rotors, commanding their
desired speed ω, computed thanks to the inverse of the
quadrotor’s allocation matrix.

2) Momentum-based estimator: To avoid using heavy and
expensive external sensors, the observation of the generalized
momentum and the total energy of the robot is used to detect
the unexpected occurrences, such as collisions, using only the
already available proprioceptive measurements [23]. Such a
collision identification technique has been used in [24] as
an estimator of external wrenches and unmodeled dynamics
that helps the UAV to reject the disturbance associated with
aerodynamic effects, payloads, and physical interactions. We
have implemented a momentum-based estimator that is able
to quantify the external forces and torques applied to the
robot, so that we can then use them to compute appropriately
robust control inputs using (2) and (7). We have decided to
use a second order estimator because the literature shows that
it is an acceptable solution when it comes to UAVs [24]. The
expressions of the generalized momentum and of its time
derivatives are:

q =

[
mI3 03
03 Ib

] [
ṗb
ωb
b

]
, q̇ =

[
mge3 − uTRbe3 + fe
CT η̇b +QT τ b + τe

]
, (8)

while the equation that describes the evolution of the esti-
mated disturbances fest and τest is:[

fest
τest

]
= K2

(∫ t

0

−
[
fest
τest

]
+K1

(
q −

∫ t

0

[
fest
τest

]
+

+

[
mge3 − uTRbe3
CT η̇b +QT τ b

]
dt

)
dt

)
.

(9)

When picking the transfer function to use to choose the gains
for the estimator, we looked at Butterworth’s polynomials,
as they offer the flattest response possible in the passband.

3) Arms kinematic control: LiCAS A1 arms’ movements
are position-controlled and are realized through servomotors
mounted on the manipulators’ joints. This allows using
kinematic-based algorithms to compute joint values starting
from Cartesian pose of the arms’ tips. To reduce the amount
of user’s commands, we opted to give the user the control
of the arms center point, which is located at the middle of
the two end-effectors, while keeping a constant orientation.
The left and right arm tip reference position are extracted
adding/subtracting a distance that can be chosen by the user
to open or close the arms around an object. Denoting by
xd ∈ R3 the desired position of the arms center point
(expressed in the shoulders reference frame, see Fig. 1) the
left and right arms tips reference positions are computed as:

xdl,r
= xd ±

[
0, L/2, 0

]
, (10)

where xdl,r
∈ R3 are the desired positions for the left and

right arm tips in the same reference frame, and L represents
the desired distance between the two, controlled by the user.

Since the arms only have 4 DoFs, we can not define both
the position and the full orientation of their tips: in this case
we consider a 3-DoFs task that only concerns tip positioning,
so that we can exploit the arms’ redundancy to allow
for some optimization. The joint velocities command from
Cartesian references are computed exploiting the differential
inverse kinematics relation using the pseudo-inverse of the
manipulators Jacobian, i.e.:

q̇l,r = J†
l,r

[
K(xdl,r

− xl,r) + ẋdl,r

]
+Nl,r

˙̂ql,r (11)

where xdl,r
and ẋdl,r

are computed from (10) and contribute
to construct the PD error in (11), Jl,r(ql,r) =

∂xl,r

∂ql,r
∈ R(3×4)

is the tip position task Jacobian, J†
l,r its Moore–Penrose

inverse, K (3×3) is a gain matrix, Nl,r = I−J†
l,rJl,r (4×4)

is the null-space projector of the joint velocity ˙̂ql,r, that
can be used to optimize the arm configuration. For this
have chosen to minimize at each instant the current distance
between the arms’ center of mass CoM and its initial
position CoMn; this task, however, is put at a lower priority
level compared to the correct positioning of the arm’s tips,
so the distance will not always reach the absolute minimum
value. This minimization is performed by choosing:

˙̂ql,r = K
∂w

∂ql
, w = −1

6
||CoM(ql,r)−CoMn(ql,r)||. (12)

B. Teleoperation and Shared Control

The theory presented above is valid in the 3D space.
For the rest of the paper, we restrict our focus to the 2D
(plane x-z in Fig. 1). For each task the robotic system has
to perform, two control techniques have been devised: a
pure teleoperation one, in which only the human operator
can specify both pb,d (the desired position for the drone, 2-
DOFs), xd (the desired position for the arms center point,
2-DOFs) and L (the distance between the arms tips, 1-DOF),

Fig. 2. UAM grasping task. Left: the arms approach the object and grasp
it reducing their relative distance. Right: the UAM picks the object from
the floor and transports it to a desired location.

and a shared-control one, in which the autonomy takes over
the control of pb,d while the human still takes care of xd
and L (see Fig. 1). As previously said, the user commands
are specified via a joystick’s interface, and the position of
the two sticks on each of their axes is scaled and mapped
to velocities s = [sx, sz]

T along the x and z axes, while a
button is used to control the opening/closing movement of
the arms. The human user can additionally choose to specify
arm tip movements with respect to the shoulders or to the
world depending on the situation. As already stated, in pure
teleoperation the user controls the two parts of the robot
(UAV and arms) independently, with a total of 5 reference
commands to be imparted.

For positional commands specified with respect to the
world frame, we compute the vector δ = [δx, δz]

T repre-
senting the positional displacement of the drone/arms from
the position they were in at the beginning of the task, as
follows: [

δx
δz

]
=

[
δx
δz

]
+

1

f
Rw

s

[
sx
sz

]
, (13)

where f ∈ R+ is the rate at which the control runs and the
rotation matrix Rw

s ∈ SO(2) is used to bring the velocities
s ∈ R2 from the shoulder reference frame to the world
reference frame1. The components of δ are initialized at zero.
To avoid potential discontinuity in the robot’s commanded
position the two displacements δx and δz are filtered and
mapped before altering the UAV’s reference position. The
filtered values δ′x and δ′z are computed as:[

δ′x
δ′z

]
= Ko

[
δ′x
δ′z

]
+Kn

[
δx
δz

]
. (14)

where Ko = 0.9 and Kn = 0.1 are the chosen filter gains.
1) Grasping an object: Executing a grasping action with

the considered system in teleoperation mode requires con-
tinuously switching between controlling the drone and the
arms and it might be too cognitively demanding and time
consuming for a user. More specifically, the teleoperation
method requires specifying commands using (13) alterna-
tively for the UAV (in the world frame) and for the arms (in
the shoulder frame). Our proposed shared-control method

1Note: when s is specified with respect to the world frame Rw
s is the

identity matrix.

Fig. 3. UAM pushing against the flat surface task. Left: arms in the nominal
configuration; Right: arms have been moved forward; the angle between the
cables and the world’s vertical axis is increased.

accommodates the user-specified arms linear movements (in
the world frame), trying to restore the initial arms con-
figuration by means of drone movements. This choice is
made since arm movements are faster and more intuitive for
the user with respect to specifying drone movements while
accounting for the current arms configuration. To this end,
the same δ′, constructed from (13), is added to both the initial
drone position and arms tip center point to get pb,d and xd
according to the following equations:

xd(t) = xd(0) + δ′(t), pb,d(t) = pb,d(0) + δ′(t). (15)

The effect of this shared-control action is a joint command of
the drone/arms system useful for grasping tasks (see Fig. 2).
In addition, a button is used to control the opening/closing
movement of the arms incrementing or decrementing L
in (10) by a certain amount at each press.

2) Pushing against a flat surface: The other shared-
control algorithm we have designed deals with force control
during pushing interactions with the environment: the human
user maintains control over the arms’ movements specifying
xd, while an autonomous force controller can be activated to
alter the position of the drone in order to regulate the force
exchanged to a desired value. The idea behind this controller
stems from the observation that the amount of exchanged
force is proportional to the sine of the angle formed by the
cables with the vertical direction (see Fig. 3). There are two
ways to modify this angle: changing the arms configuration
or changing the drone position. The first method might cause
the arms to straighten leading to singular configurations. The
second method avoids such occurrence exploiting pivoting of
the arms around the interaction point. Jointly commanding
the drone and the arms to accomplish the force regulation
task, avoiding the explained problems is too demanding for
the user. Our shared-control method is responding to this
need by autonomously allocating movements to the drone
(pb,d) in response to user commands of the arms tips (xd).
We conduct this task in quasi-static conditions so that the
acceleration of the UAV does not have a large effect on the
estimated force.

The autonomous controller consists of a PI loop. The input
that the user gives to the algorithm is the absolute value of
the desired pushing force. The PI controller acts on the error
between the desired and the estimated force that the UAV

experience along its x − y axes, as well as on its integral,
We then compute the displacements of the drone as:[
δx
δy

]
= −

[
Kp 0
0 Kp

] [
ex
ey

]
−
[
Ki 0
0 Ki

] ∫ t

0

[
ex
ey

]
dt, (16)

where Kp and Ki are positive scalar gains, while ex and ey
are the force errors, e.g. ex = fest,x−fx,d. Our force control
algorithm has been implemented by closing a (sensorless)
force feedback loop around the existing position control loop
that was offered by the hierarchical controller of the UAV.

IV. EXPERIMENTS AND RESULTS

In this section, we first describe in details the software that
we have used to build the simulator and to control the UAM
(Sec. IV-A), then we describe the two tasks that the user must
execute and present the experiments performed to compare
our shared-control methods against baseline teleoperation,
and finally we analyse the outcomes (Sec. IV-B).

A. Experimental Setup

All the simulations and following tests were carried
out in the ROS/Gazebo environment at a frequency of
f = 100 Hz; the control schemes for the UAV and for
the arms were developed in Matlab/Simulink, and converted
into C++ code thanks to the Simulink’s automatic code
generation tool. The generated C++ files were wrapped to
exchange inputs and outputs through ROS topics with the
UAM simulated in Gazebo and with the rest of the ROS
nodes. We have utilised the RotorS library to accurately
simulate the dynamics of the UAV system. The UAM was
created following the approach in [25]. We modified one of
the xacro file of the library changing the drone’s inertial and
geometrical parameters to reach a size and weight appropri-
ate for carrying the dual-arm cable-suspended manipulator,
then adjusted the positioning and enumeration of the rotors
in accordance to the allocation matrix. The xacro file was
completed by inserting in it the information regarding the
LiCAS A1 arms, connecting the arms’ to the UAV’s body
link via a 6-DoF kinematic chain representing the cable,
as well as with the definition of some frames centered in
the end-effectors, which are used by the inverse kinematics
described earlier. RotorS library is used to control the drone:
it simulates the rotors and the wrench they apply to the robot
setting the speeds of the actuators through a ROS message;
it also simulates, through Gazebo plugins, the odometry and
IMU sensors that we can use to localize the robot in the
world and to close the feedback loop on the position and
attitude controller. The RotorS package for control of the
multicopters’ position and orientation lacked the robustness

TABLE I
INERTIAL AND GEOMETRICAL PARAMETERS OF THE SIMULATED UAV

Mass Width Height Length
20.269 kg 0.6m 0.24m 0.645m

Rotor radius Ix Iy Iz
0.3m 0.845 kgm2 0.845 kgm2 0.912 kgm2

PS PT
0

20

40

60

T

(a)
PS PT

0

2

4

6

E

(b)
PS PT

0

2

4

6

R

(c)

PS PT
0

1

2

3

F

(d)
PS PT

0

0.01

0.02

0.03

M
1

(e)
PS PT

0

0.01

0.02

0.03

M
2

(f)

Fig. 4. Results of the wall pushing task. A standard deviation has been
added and subtracted to show a realistic range of values around the means.
(a) Time T , (b) Ease of use E , (c) Responsiveness R, (d) Root mean
square force error F , (e) Minimum manipulabity measure M1, (f) Mean
manipulabity measure M2.

needed to control a UAM rather than a UAV, so to solve this
problem we decided to use our estimator-based controller
presented earlier. The arms are PID controlled via ROS
position/effort controllers. The joystick we used is the F710
Wireless Logitech Game Controller.

B. Human-subjects Study

To validate the proposed shared-control algorithms, we
performed a comparative human-subjects study with a sam-
ple size of 10 people (8 male, 2 female, average age
27), well-accustomed to the field of robotics but who had
never used our specific system before. Each of the subjects
performed four tasks in a randomized order to decrease
biases associated with novelty or with the increased expe-
rience that a user has on the second and following tests.
Before the experiments, we explained to the subjects how
to use the joystick to command the UAM, the situations to
avoid (mainly singularity configurations caused by the over-
extension of the arms) and what their goal was for each
task; in case of simulation-breaking human errors we let
the subject retry the test. At the end of each pair of tasks
the subjects were compiling a survey in which they were
questioned about their satisfaction i.e. the ease of use of the
control interface and about its responsiveness on a scale from
“Very Unsatisfied” (associated with a numerical value of 1)
to “Very Satisfied” (associated instead with a value of 5).
The tests have also been timed by the examiner, while “bag”
files from ROS were recorded in order to have information
about all the messages exchanged by the system during the
tasks. To finalize the analysis of the data gathered during
the experiments, we have implemented the Mann–Whitney
U test (also known as Wilcoxon rank-sum test), which is a
nonparametric test of the null hypothesis.

1) Pushing: The first task consists in using the UAM
to push with arm tips against a flat surface and generate

a desired force. The subject receives the feedback in the
form of the pushing force itself, which is presented both
with its current numerical value and with a graph showing
its recent evolution. In the meantime the simulation is also
shown, so the user can watch how their commands affect the
robot configuration. The two analysed cases are Pushing with
Teleoperation (PT) and with Shared control (PS) devised as
explained in Sec. III-B. In the PT task, the subject is told
to try and keep the pushing force against the flat surface
at an absolute value of 7 N by moving the robot’s arms.
In the PS task, the goal of the subject remains the same,
as does the way they receive information from the system
about the pushing force and the configuration of the robot.
What changes is that the force control described previously
is active, and the subjects are told that, as they move the
robot’s arms, a controller will also try to reach the desired
force of 7N by means of drone movements.

The data gathered shows us that the mean of the time
required to complete the task (T) in PT was 35.4380 s with
a standard deviation of 10.7952 s, while in PS these values
are brought to a mean of 29.7620 s and a standard deviation
of 12.3565 s, as shown in Fig. 4a.

The PS task also received much better results in terms of
ease of use and responsiveness, compared to the PT one: the
mean of the ease of use (E) for PT was 3.5, with a standard
deviation of 1.0801, while the mean of the ease of use for PS
was 4.6, with a standard deviation of 0.5164, which shows us
that the shared-control approach was consistently preferred
to the teleoperated one, as presented in Fig. 4b; the mean
of the responsiveness (R) for PT was 3.4, with a standard
deviation of 1.0750, while the mean of the responsiveness for
PS was 3.9, with a standard deviation of 1.1005, as shown
in Fig. 4c.

To show that the shared-control approach is not only faster
and better received but also more accurate, we show data
about the root mean square error between the measured force
(F) and the desired force of 7N, both in the case of PT
and PS. The computation is done on the whole simulation
period, starting from the first user input, in order to reward
attempts that quickly decreased the initial error and attempts
that ended the simulation with a low final error in the steady
state. Figure 4d shows how the addition of the shared-control
algorithm makes the force control task much more accurate:
on average the PT task has a root mean square error of
2.3592N with a standard deviation of 0.5528N, while the
PS task has an average root mean square error of 1.5850N
with a standard deviation of 0.7406N.

The data presented show that the addition of a shared-
control technique in the pushing task has clear advantages:
the presence of autonomy increases the accuracy and makes
it so humans do not have to provide small and precise
joystick inputs to get closer to the desired force value and
without overshooting, while the addition of the human user
can speed up the transient and thus aid the controller as well.

One last factor that we have studied from the recorded
data of the experiment is the measure of the manipulability
of the robotic arms, that tells us how far the configuration of

the manipulator is from a kinematic singularity. The formula
used for this computation at each simulation step is:

M (ql,r) =

√
det

(
Jl,r(ql,r)JT

l,r(ql,r)
)
. (17)

We have considered both the minimum value of the manip-
ulability measure reached during the experiment (M1), in
order to compare the worst-case scenarios (see Figure 4e),
and the mean of the manipulability measure during the
experiment (M2) (see Figure 4f).

In the first case we have that the mean value of the
minimum manipulability measure in the PT task is 0.0196
with a standard deviation of 0.0101, while for the PS task it
is 0.0246 with a standard deviation of 0.0016; if we instead
consider the mean manipulability measures we have that it is
0.0263 with a standard deviation of 0.0017 for the PT task
and 0.0264 with a standard deviation of 0.0009 for the PS
task: in Fig. 4e we can see that the addition of the shared-
control algorithm results in an improvement of the worst-case
scenario, but its effects are barely noticeable in the average
cases shown in Fig. 4f.

Table II summarizes the previously mentioned test results
analyzed via Mann–Whitney U test. Statistically significant
values (p < 0.05) are highlighted in bold.

2) Grasping: The second task consists in approaching,
grasping, and moving an object to a desired goal location.
In analogy to what presented for the pushing task we perform
grasping in teleoperation (GT), and in shared control (GS)
devised as explained in Sec. III-B. During the task the
simulation is shown to the user, who can thus see how the
drone, the arms, and the object are moving. In the GT task
the goal of the subject is to bring the cube on top of the
goal location by moving the robotic system and using the
dual-arm manipulator to grasp and release the object. At the
beginning of the task the subject can use the joystick to
control the position of the arms, while the drone hovers in
position; by pressing a button on the joystick the user can
switch the state of the joystick wrapper, assuming the control
of the UAV and leaving the arms in their last configuration
or vice versa. An approach to avoid switching would involve
two coordinated operators but it is not always practical. In

TABLE II
RESULTS FOR THE PT/PS TASK

Controller Metric Average Standard deviation p
PT T 35.4380 s 10.7952 s
PS T 29.7620 s 12.3565 s
PT E 3.5 1.0801
PS E 4.6 0.5164
PT R 3.4 1.0750
PS R 3.9 1.1005
PT F 2.3592N 0.5528N
PS F 1.5850N 0.7406N
PT M1 0.0196 0.0101
PS M1 0.0246 0.0016
PT M2 0.0263 0.0017
PS M2 0.0264 0.0009

Task: pushing against a flat surface

0.2116

0.0083

0.3248

0.0173

0.6232

0.4274

GS GT
0

20

40

60

80

T

(a)
GS GT

0

1

2

3

4

5

E

(b)
GS GT

0

1

2

3

4

5

R

(c)

GS GT
0

2

4

6

L

(d)
GS GT

0

0.01

0.02

0.03

M
1

(e)
GS GT

0

0.01

0.02

0.03

M
2

(f)

Fig. 5. Results of the grasping task. A standard deviation has been added
and subtracted to show a realistic range of values around the means. (a) Time
T , (b) Ease of use E , (c) Responsiveness R, (d) Length of the path L, (e)
Minimum manipulabity measure M1, (f) Mean manipulabity measure M2.

the GS task the goal and the visualization protocol remain
the same. At the beginning of the task the user activates the
shared-control algorithm presented previously with the press
of a button: from that point on, the joystick controls the arms
while the drone tries to accommodate the arms’ movements.

We now present the results obtained starting from a review
of the data gathered from the surveys and the recorded
execution times. The mean of the time required to grasp, lift
and move the cube to the goal position (T) with teleoperation
is 59.1920 s with a standard deviation of 17.3281 s, while the
mean of the time needed to perform the same task using
shared control is 45.1300 s with a standard deviation of
9.7709 s, as shown in Fig. 5a.

The results from the surveys are less polarizing: in terms
of ease of use (E), the PT task GT received on average a
grade of 3.6 with a standard deviation of 0.9661, while GS
receives an average grade of 3.7 with a standard deviation of
0.9487, so we can conclude that the two control modes were
perceived as fairly similar in terms of complexity of use,
even though the shared-control one ended up having slightly
better grades, as shown in Fig. 5b. One of the subjects has
commented that they felt more confident about the control
of the robot while using the teleoperation method, because
they did not have to think about how the movement of
the arms would affect the movements of the drone through
the shared-control system; it can be noted, however, that
the same subject required a time almost three times as
long to complete the GT task compared to the GS task.
Another interesting detail that we can take from the subjects
comments and behavior is that two of them, while performing
the teleoperation task, barely adjusted the arms position and
only focused on the control of the drone, thus avoiding
having to switch between the two control modes presented
in the GT task.

The difference perceived between the two tasks in terms

2.5 3 3.5

x [m]

0.1

0.2

0.3

0.4

z
[m

]

2.5 3 3.5

x [m]

0.1

0.2

0.3

0.4

z
[m

]

Fig. 6. Example of the cube’s path on the x− z plane using the GT (on
the left) and the GS architectures (on the right)..

of responsiveness (R) is larger: GT received a mean value of
3.3 with a standard deviation of 0.9487, while GS received
a mean value of 3.8 with a standard deviation of 0.9189, as
shown in Fig. 5c.

Continuing the analysis of the results of the grasping
task, we now show objective results about the length of
the path followed by the cube (L), from the moment of its
grasping to the last moment of the recorded simulations; of
course a shorter path relates to the task being executed more
efficiently. As previously stated, we have let subjects retry the
test in case the simulation broke; despite that, in the recorded
data, we still have a subject that caused a singularity in the
arms while executing the GT task and one that had similar
problems with the GS task.

We see that the average path length (L) for the GT task is
4.0645m with a standard deviation of 2.6162m, while for
the GS task the average is 3.1571m with a standard deviation
of 1.1837m. In the path length computation we have also
considered the distance that the cube travels if it falls off the
goal platform, as this gives us an indication of the precision
with which the cube has been positioned above the platform.

We can see that the use of the shared-control algorithm lets
the user travel a shorter path while completing the task; if we
compare an example of the plotted path that the cube follows
in the two tasks performed by the same subject (Figure 6),
we can also see that the addition of shared control lets the
user command a more intuitive trajectory to the robot. It is
important to highlight that in both GT and GS the control
scheme of the UAV remained the same, and that the trend
of the path in the GS being much more linear compared to
that in the GT task is seen in all the experiments recorded.

The manipulability analysis presented in Fig. 5e shows
how, in the GT and GS tasks, the addition of shared control
can hardly be appreciated when considering the worst-case
scenario of the manipulability measure during the experiment
(M1): in the first case in fact we have that GT has a mean
value of 0.0186 with a standard deviation of 0.0094, while
GS has a mean value of 0.0196 with a standard deviation
of 0.0078. Moving our attention to the average case (M2)
presented in Fig. 5f, instead, we see that the presence of the
shared control results in some noticeable improvements, as
the GT task has a mean value of 0.0230 with a standard
deviation of 0.0066 while the GS task has a mean value of
0.0267 and a standard deviation of just 0.0005.

One last thing to consider is that, during the experiments,
the task in which the subjects more often reached kinematic
singularities and thus needed to restart was GS. As we have

TABLE III
RESULTS FOR THE GS/GT TASK

Controller Metric Average Standard deviation p
GT T 59.1920 s 17.3281 s
GS T 45.1300 s 9.7709 s
GT E 3.6 0.9661
GS E 3.7 0.9487
GT R 3.3 0.9487
GS R 3.8 0.9189
GT L 4.0645m 2.6162m
GS L 3.1571m 1.1837m
GT M1 0.0186 0.0094
GS M1 0.0196 0.0078
GT M2 0.0230 0.0066
GS M2 0.0267 0.0005

Task: grasping a box

0.0283

0.9351

0.2332

0.4274

0.6232

0.0257

said previously, the shared-control algorithm controls the
arms by publishing the reference frame with respect to the
world, and then moves the drone to accommodate the arms’
movements; while at steady state this results in a translation
of the whole UAM in the direction commanded by the user,
during the transient it is possible, by giving commands to
the arms in rapid succession or by mixing commands along
two or more axes, to bring the arms in a configuration that
either reaches or approaches a singularity. As Figures 5e
and 5f show, however, by eliminating these swift or complex
commands, the manipulability measure results to be higher
than the one seen in teleoperation.

A summary of the results of the grasping task is shown
in Table III where statistically significant values (p < 0.05),
found via the Mann–Whitney U test, are highlighted.

V. CONCLUSION AND FUTURE WORK

This paper presented two shared-control teleoperation al-
gorithms for cable-suspended aerial manipulation systems,
aiming to enhance performance of remotely executed interac-
tion tasks. The proposed methods facilitate the generation of
desired pushing forces during interactions with flat surfaces
and enable seamless approach, grasping, and manipulation
of lightweight objects. Experimental comparisons between
the shared-control solutions and conventional teleoperation
methods were conducted for both surface-pushing and grasp-
ing tasks. The performance of 10 subjects testing the system
was analyzed using the Wilcoxon rank-sum test to identify
significant effects on various metrics. Results indicate that
shared control outperforms simple teleoperation based on
both subjective (user surveys) and objective (time measure-
ments, force error measurements, and distance traveled mea-
surements) criteria. Analysis of manipulability demonstrates
significant improvements in worst-case scenarios for the
pushing task and in mean values for the grasping task. The
statistical analysis also highlights significant differences in
ease of use and force error for pushing, and in execution
time and mean manipulability for grasping.

Future work may focus on comparing with other baseline
methods (e.g. involving two coordinated operators) or de-
vising other shared control schemes to further enhance user
performance and task effectiveness.

REFERENCES

[1] F. Ruggiero, et al., “Aerial manipulation: A literature review,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 1957–1964, 2018.

[2] A. Ollero, et al., “Aerial-core: Ai-powered aerial robots for inspection
and maintenance of electrical power infrastructures,” in arXiv preprint,
Jan. 2024.

[3] F. Kong, et al., “A suspended aerial manipulation avatar for physical
interaction in unstructured environments,” CoRR, vol. abs/2310.03586,
2023.

[4] D. Mellinger, et al., “Design, modeling, estimation and control for
aerial grasping and manipulation,” in 2011 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2011, pp. 2668–2673.

[5] R. Miyazaki, et al., “Long-reach aerial manipulation employing wire-
suspended hand with swing-suppression device,” IEEE Robotics and
Automation Letters, vol. 4, no. 3, pp. 3045–3052, 2019.

[6] A. Coelho, et al., “Whole-body bilateral teleoperation of a redundant
aerial manipulator,” in 2020 IEEE Int. Conf. on Robotics and Automa-
tion, 2020, pp. 9150–9156.

[7] ——, “Whole-body teleoperation and shared control of redundant
robots with applications to aerial manipulation,” Journal of Intelligent
& Robotic Systems, vol. 102, no. 1, p. 14, Apr 2021.

[8] B. B. Kocer, et al., “Immersive view and interface design for teleoper-
ated aerial manipulation,” in 2022 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2022, pp. 4919–4926.

[9] M. Selvaggio, et al., “Autonomy in physical human-robot interaction:
A brief survey,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 7989–7996, 2021.

[10] A. Suarez, et al., “Lightweight and human-size dual arm aerial
manipulator,” in 2017 Int. Conf. on Unmanned Aircraft Systems, 2017,
pp. 1778–1784.

[11] ——, “Design of a lightweight dual arm system for aerial manipula-
tion,” Mechatronics, vol. 50, pp. 30–44, 2018.

[12] ——, “Lightweight and compliant long reach aerial manipulator for
inspection operations,” in 2018 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2018, pp. 6746–6752.

[13] A. Jimenez-Cano, et al., “Aerial manipulator for structure inspection
by contact from the underside,” in 2015 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2015, pp. 1879–1884.

[14] H. Seo, et al., “Aerial grasping of cylindrical object using visual
servoing based on stochastic model predictive control,” in 2017 IEEE
Int. Conf. on Robotics and Automation, 2017, pp. 6362–6368.

[15] G. Li, et al., “The classification and new trends of shared control
strategies in telerobotic systems: A survey,” IEEE Transactions on
Haptics, vol. 16, no. 2, pp. 118–133, 2023.

[16] M. Selvaggio, et al., “Passive task-prioritized shared-control teleop-
eration with haptic guidance,” in 2019 Int. Conf. on Robotics and
Automation, 2019, pp. 430–436.

[17] ——, “A shared-control teleoperation architecture for nonprehensile
object transportation,” IEEE Transactions on Robotics, vol. 38, no. 1,
pp. 569–583, 2022.

[18] F. Stroppa, et al., “Shared-control teleoperation paradigms on a soft-
growing robot manipulator,” Journal of Intelligent & Robotic Systems,
vol. 109, no. 2, p. 30, Sep 2023.

[19] Y. S. Sarkisov, et al., “Development of sam: cable-suspended aerial
manipulator,” in 2019 Int. Conf. on Robotics and Automation, 2019,
pp. 5323–5329.

[20] C. Probine, et al., “A shared control teleoperation framework for
robotic airships: Combining intuitive interfaces and an autonomous
landing system,” in 2021 IEEE Int. Conf. on Systems, Man, and
Cybernetics, 2021, pp. 1028–1034.

[21] C. Masone et al., “Shared control of an aerial cooperative transporta-
tion system with a cable-suspended payload,” Journal of Intelligent &
Robotic Systems, vol. 103, no. 3, p. 40, Oct 2021.

[22] K. Nonami, et al., Autonomous flying robots. Tokyo, Japan: Springer,
Mar. 2010.

[23] A. D. Luca, et al., “Collision detection and safe reaction with the dlr-iii
lightweight manipulator arm,” 2006 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 1623–1630, 2006.

[24] F. Ruggiero, et al., “Passivity-based control of vtol uavs with a
momentum-based estimator of external wrench and unmodeled dy-
namics,” Robotics and Autonomous Systems, vol. 72, pp. 139–151,
2015.

[25] G. D’Ago, et al., “Modelling and identification methods for simu-
lation of cable-suspended dual-arm robotic systems,” Robotics and
Autonomous Systems, p. 104643, 2024.

