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Abstract—This document summarizes the latest results
achieved in the field of robotic non-prehensile tray-based object
transportation. The problem consists in transporting along a
trajectory an object placed on a tray-like end-effector of a robotic
manipulator preventing it to slide and potentially fall. We devel-
oped a model-predictive control approach that computes optimal
jerk-based inputs for the considered system to accomplish the
task while enforcing both system and non-sliding manipulation
constraints. Experiments performed on the RoDyMan humanoid
robot validated our approach.

Index Terms—robotic non-prehensile manipulation, model-
predictive control, contact modeling

I. INTRODUCTION

The nonprehensile transportation of an object along a de-
sired trajectory by means of a tray-like robot end-effector is a
longstanding problem in service robotics. Several authors have
proposed different modeling, planning, and control strategies
to accomplish the transporting task while enforcing non-
sliding manipulation constraints [1]–[3].

Recently, with the increase of computing power endowed
into robots, numerical optimal control techniques started to be
devised. Among these, the Model-Predictive Control (MPC)
aims to compute solutions for the control input that are
optimal along the future predicted states of the system. In [4],
we embraced this approach and developed a MPC that uses
the combined manipulator/object dynamics for prediction and
enforces the related non-sliding manipulation constraints. The
controller features online contact forces calculation, and out-
puts optimal jerk-based control solutions for the robotic system
to perform the considered task [5]. In this paper, we summarize
the most relevant results achieved by the proposed controller
evaluated on our RoDyMan humanoid robot.

II. METHODOLOGY

A. System Modeling

In absence of external interactions, the combined manipula-
tor/object dynamics can be written in compact form as follows

M̃ (q) q̈ + C̃ (q, q̇) q̇ + ñ (q, q̇) = τ, (1)
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Fig. 1. Illustration of the main problem addressed in this paper: a robotic
manipulator (blue) has to transport an object (black cube) along a desired
trajectory (dashed grey) on a tray-like end-effector (orange/white) while
guaranteeing a non-sliding behaviour.

with (dropping dependencies)

M̃ = Mm + JT
o MoJo,

C̃ = Cm + JT
o

(
CoJo +MoJ̇o

)
,

ñ = nm + JT
o no.

(2)

where q, q̇ ∈ Rn represent the state of the robotic system in
generalised coordinates, Jo(q) ∈ R6×n represents the Jaco-
bian matrix relating q̇ to the object linear/angular velocities,
Mm (q) ∈ Rn×n is the symmetric positive-definite manip-
ulator joint-space inertia matrix, Cm (q, q̇) ∈ Rn×n is the
manipulator matrix of centrifugal/Coriolis terms, nm (q) ∈ Rn

is the manipulator gravity vector, τ ∈ Rn is the vector of
manipulator joint torques (representing the overall control
input of the robotic system), Mo (q) ∈ R6×6 is the object
positive-definite mass/inertia matrix, Co (q, q̇) ∈ R6×6 is the
object matrix of centrifugal/Coriolis terms, no (q) ∈ R6 is the
object gravity vector. The model in (1) is derived assuming
that the object does not exhibit sliding with respect to the
tray. To satisfy this assumption the contact forces between the
object and the tray must be confined within the friction cone
space. This constraint is enforced by control considering the
contact surface of the object (assumed a cuboid) discretized
with nc = 4 contact points located in the object vertices in
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Fig. 2. (a) Drawing of the object body wrench Fo = (fo, τo), i−th contact
force fci and friction cone (shaded green). po,ci is the vector defining the
i−th contact position in the body frame {O}. (b) Approximation of circular
friction cones (in shaded green) with polyhedral cones (black lines) identified
by unit vectors f̂ci,j .

contact with the tray and approximating friction cones with
polyhedrals (see Fig. 2). This allows writing the stacked vector
of contact forces Fc = [fTc1 , . . . , f

T
cnc

]T ∈ R3nc as a linear
combination of the friction cone edges, i.e.

Fc = F̂cΛ, Λ =
(
λc1,1, . . . , λcnc ,k

)
∈ Rknc , (3)

where k is the number of polyhedral edges and

F̂c = diag
(
F̂c,1, . . . , F̂c,nc

)
, F̂c,i =

[
f̂ci,1, . . . , f̂ci,k

]
(4)

is the matrix whose columns denote the friction cone edges
unit vectors, while Λ is the vector of contact force parameters.
At this point, for Fc to belong to the derived approximated
friction cone space, it is sufficient to enforce

Λi ≥ 0, ∀ i = 1, . . . , knc, (5)

which constitutes the non-sliding manipulation constraint.

B. Model-predictive Control

MPC is realized solving the following Optimal Control
Problem (OCP) at each time step

min
u(·)

Φ(x(T )) +

∫ T

0

L(x(t), u(t), t) dt (6a)

s.t. x(0) = x0 (6b)
ẋ = f(x(t), u(t)) (6c)

¯
x ≤ x(t) ≤ x̄ (6d)

¯
u ≤ u(t) ≤ ū (6e)

where Φ(x(T )) = ‖x∗(T )− x(T )‖2Qe
and L(x(t), u(t), t) =

‖x∗(t)−x(t)‖2Q+‖u(t)‖2R, T is the prediction horizon, Qe, Q
and R are diagonal positive semi-definite weight matrices, and
x∗ is the reference state. We defined an extended system state
which includes, besides the proper manipulator state q and q̇,
the contact force coefficients Λ (defined in (3)) and the control
torques τ . Their time derivative τ̇ , which is related to the
system jerk and affects the variation of the contact forces, is
directly specified by the control signal u computed solving (6).

With this choice, the continuous time dynamic evolution of the
system state writes as follows

ẋ = f (x, u) =


τ̇ = u

q̇ = q̇

q̈ = M̃−1(τ − C̃q̇ − ñ)

Λ̇ =
(
GF̂c

)†
(Aτ̇ +Bτ + C)

, (7)

where

A = MoJM̃
−1, B = MoJ̇M̃

−1, C = −2MoJ̇M̃
−1ñ.

(8)
To derive the last equation in (7) we adopt for Λ the minimum
two-norm solution of Fo = GF̂cΛ, where Fo = (fo, τo)
represents the object body wrench and G ∈ R6×3nc , usually
referred to as grasp matrix, maps Fc to Fo. This is realized
by the Moore–Penrose inverse operator applied to the matrix
GF̂c. Moreover, we assume that all the matrices entering the
dynamic model hold constant over the time horizon, i.e. their
time derivative is null.

It is worth mentioning that our ultimate goal is to transport
the object to the target pose following a desired trajectory (see
Fig. 1), i.e., we aim to realize xo = x∗o(t) and ẋo = ẋ∗o(t),
where x∗o(t), ẋ∗o(t) are the desired object states (parametrized
pose and its time derivative), while satisfying both non-sliding
manipulation and robotic system constraints. From this, we
can calculate the reference values for the extended state x∗, in
particular q∗o , q̇

∗
o using a standard inverse kinematics routine,

under the assumption that the object is rigidly attached to the
manipulator.

As for the constraints, lower/upper bounds on the system
(joint positions, joint velocities, joint torques) and manipula-
tion states (contact force coefficients), are included in (6d) via

¯
x, x̄, respectively, while those on input are included in (6e)
via

¯
u, ū, respectively. The feedback term denoted by (6b) is

directly retrieved from the robotic system. Note that while
the measure of q, q̇, τ is readily available in torque-controlled
manipulators, the measure of Λ (or Fc) must be retrieved
indirectly from the measure of Fo (which can be instead
conveniently measured through a F/T sensor installed at the
end-effector of the manipulator).

The solution of the problem in (6) (i.e., the time detivative
of the joint torques) is used to obtain the required torque at
each time instant t according to the following integration rule

τ(t) =

∫ t

0

τ̇(t) dt. (9)

The problem in (6), together with the dynamics (7) and the
integration rule (9), are discretized with time step equal to
the control loop cycle time. The controller has been realized
using the acados which allowed to conveniently formulating
the OCP in MATLAB and later generate the C/C++ library
for the real world implementation. For details about the
controller/solver settings the reader can refer to [4].

The devised controller with an NMPC horizon length T =
0.8 s takes 5.4 ms on an average (1.3 ms standard deviation)
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Fig. 3. Experiments using the proposed model-predictive non-sliding manipulation control approach. The desired trajectory is shown as a white dashed line.
(a) – (d) Key frames of RoDyMan robot tracking a 5.5 s Lemniscate-like trajectory. (e) – (h) Key frames of RoDyMan robot tracking a 4.5 s rectangular
trajectory featuring three via points.

to solve one step of the problem on a Intel(R) Core(TM) i7-
9750H CPU @ 2.60GHz.

A simulation environment that uses a KUKA LWR-
IIWA manipulator can be downloaded from the follow-
ing link: https://github.com/prisma-lab/nonprehensile-object-
transp, while the video of both simulation and real-world
experiments is at this link: https://youtu.be/H14NDnmpcNg.

III. RESULTS

To demonstrate the validity of our approach, we conducted
real experiments employing the RoDyMan humanoid robot.
It is a 21-DoFs robot made of a custom-built mobile base, a
two-DoFs torso, two one-DoF shoulders, and two six-DoFs
Shunk Powerball arms. Additional construction details can
be found in [6]. For our experiments, we employed only the
kinematic chain starting at the torso and ending at the tip of the
robot’s right arm (9 DoFs). A plastic tray-like end-effector was
attached to it through a 3D printed support, which embedded a
Shunk 6-Axis F/T sensor. A calibrated Intel RealSense Depth
Camera D415 was mounted on the tray with the purpose of
tracking and recording the object displacement thanks to a QR-
code pattern and the VISP auto tracker module. The object is
a steel hollowed cuboid of dimensions 60 × 60 × 70 mm,
whose inertial properties are: mass mo = 0.236 kg and
diagonal inertial matrix, Io = diag(4.5375 × 10−5) kgm2.
The friction coefficient between the object and the tray has
been experimentally identified to be µ = 0.2. The robot was
position-controlled, and its set point was extracted from the
output trajectory solution of the MPNSM controller given
in (6). The robot control cycle time is set to 8 ms. Tables
that contains the real system control parameters and the robot
physical limits are given in [4]. A picture of the experimental
setup is given in Fig. 1.

To prove the robustness of our controller we consider two
trajectories: (i) a rectangular path in the horizontal plane,

shown at the top of Fig. 4, featuring three via points obtained
imposing trapezoidal velocity profiles with acceleration over-
lapping time equal to 0.2 seconds at the transitions between
segments; (ii) a Lemniscate-like path in the vertical plane,
shown at the top of Fig. 5, obtained employing a piecewise
cubic B-spline curve enclosed by its control points. The
validation of the performance using the proposed MPNSM
control onto the Rodyman robot is shown in the graphs of
Fig. 4 and Fig. 5, respectively. A timed sequence of key
frames taken during the performed experiments is shown in
Fig. 3 (a) – (d) and (e) – (h), respectively, where the desired
trajectory is shown in overlay. As a measure of the tracking
performance, we consider the error term E(t) = (ep(t), eo(t)),
with ep(t) = ||p∗o(t) − po(t)|| and eo(t) = ||φe(t)||, where
φe is the vector of Euler Angles extracted from the rotation
matrix error, i.e. R∗To Ro, where R∗o and Ro are is the desired
and the current object rotation matrix, respectively. In both
cases, it can be noted that when the robotic system constraints
become binding (q̇ - bottom graph), the tracking performance
is penalised (E - top graph), while the contact force coefficients
(Λ - middle graph) are still kept greater than zero.

IV. CONCLUSIONS

This paper summarized results achieved by the model-
predictive non-sliding manipulation control approach for non-
prehensile object transportation developed in [4]. We reported
the combined manipulator/object dynamic model and the
associated non-sliding constraints that are enforced by the
controller. The proposed optimization-based controller has
been capable of safely accomplishing trajectory tracking tasks
with an object being transported in a non-prehensile way on
a tray-like manipulator end-effector. The controller imposes
that the manipulation and physical constraints of the robotic
system are always respected during the executed trajectory at
the expense of the tracking performances. An interesting future
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Fig. 4. Validation of the tracking performance along the rectangular, 4.5 s
duration trajectory. The black dot denotes the start/end point, the arrows
indicate the direction. The norm of the error terms (ep and eo – top graph)
is higher as manipulation (Λ – middle graph) and system velocity constraints
(q̇ – bottom graph) are met.

research direction on this topic is the inclusion of the variable
tray orientation technique introduced in [7].
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