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Abstract

This paper presents a method to estimate the relative motion between two vehicles with high accuracy. The estimated
quantities are intended to be used as a reference system for automotive sensing techniques and online embedded
motion-estimation algorithms. We propose the sensor eigenfusion which makes use of a stereoscopic vision system
mounted on-board of a host vehicle. Highly reliable markers, i. e., QR-codes, mounted on a remote vehicle are used for
robust features detection and tracking. In the case of the mentioned camera system, the proposed method uses the 3D
reconstruction capabilities of stereoscopic vision and optical flow techniques usually used in monocular vision systems.
The measurements are then shaped, smoothed and fused using a Kalman filter. To achieve the required high accuracy
the characteristic statistical parameters of the filter are adapted online according to confidence measures which depend
both on the 3D reconstruction and on the optical flow analysis.

1 Introduction

The ability of estimating the motion of mobile robots
with respect to the environment in which they are moving
is of a great importance. For autonomous mobile robots,
which aim to navigate themselves in an unknown envi-
ronment, this is a non-optional feature. Even more impor-
tant is the case in which the robot requires the motion of
other objects that are present in the environment. In many
cases, for instance, the objects need to be recognized and
categorized as potential obstacles. Another case is repre-
sented by the situations in which a moving object is con-
sidered as a reference for motion planning functions (e. g.
target chasing and dynamic manipulation). A confirma-
tion of what has been mentioned is the great success of
competitions such as the DARPA Grand and Urban Chal-
lenges [1, 2, 3].

A field in which both the above-mentioned cases are rel-
evant is autonomous driving. In order to ensure safe ap-
plications in future road traffic, one key challenge is the
planning of collision-free paths over time. Since the envi-
ronment of an autonomous vehicle or robot is not static,
the motion of other objects needs to be considered. Other
vehicles, pedestrians or animals can, in fact, trigger au-
tonomous intervention functions and, in this way, directly
influence the trajectory of the vehicle. In order to opti-
mally plan this trajectory, quantitative information about
the motion of the remote objects is required. This pa-
per, therefore, is aimed at presenting a method for esti-
mating the relative position and velocity of the objects
present in the environment with respect to a host vehicle.
This way the situation can be evaluated and an eventual
autonomous intervention can be planned enough time in
advance. Commonly used ways of interpreting a situation
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are summarized in [4].

Different techniques are already used for environment
detection and description as described in [5]. They al-
ready make use of several sensor technologies involving
radar, laser, infrared, ultrasound and video [6]. Mod-
ern cameras, in particular, are very powerful sensors be-
cause of the huge quantity of information they can deliver
and that can be interpreted in different ways [7]. Meth-
ods to exploit this information have been developed in
stereoscopic vision systems [8] and in monocular sys-
tems that make use of optical flow techniques [9]. This
latter, inspired by biological creatures such as bees [10]
and humans [11], is able to provide information about
the relative motion between the observer and the objects
as shown in [12] and [13]. Different techniques have
been devised in order to combine the depth measurements
(i. e., measures of position in the 3D world) with the op-
tical flow vectors (namely measures of velocity in the 2-
dimensional image space)[14, 15]. Moreover, also the
Sflow/depth constraint can be exploited to detect moving
objects in a more robust way [16]. Finally, as reported
in [17], optical flow techniques are applied to camera im-
ages stabilized using a stereo architecture and knowledge
on robot kinematics.

In this paper a stereoscopic system has been designed for
the real-time computation of the relative dynamics be-
tween the host and the remote systems. The combination
of the depth information and the sparse optical flow is
performed by means of a statistical filter, whose param-
eters take into account the relationship between the two
measurements techniques. Additionally, the optical flow
analysis is performed on the images of both cameras and
its output is used as part of the measurement vector in the
filtering process. Finally, the statistical parameters of the

© VDE VERLAG GMBH - Berlin - Offenbach



ISR 2016 (June 21 — 22, 2016, Munich, Germany)

\ Detected feature
/

Figure 1: Combination of depth information with optical
flow

filter are adapted online based on particular confidence
measures related to the measurement process. Therefore,
the filter will shape, smooth and merge the data coming
from the vision system.

The outline of the paper is as follows. Next section in-
troduces the concept of eigenfusion and particularizes it
for the presented case. Section 3 formalizes the adaptive
statistical filtering. A description of the hardware and the
software used in this work is given in Section 4. Section 5
reports the outcomes of the performed tests. Finally, Sec-
tion 6 concludes the paper.

Throughout this work, vectors and matrices are denoted
by lower and upper case bold letters, and random vari-
ables are written using sans serif fonts.

2 Sensor Eigenfusion

With the expression sensor data fusion, one commonly
refers to multisensor data fusion, which makes use of
measurements coming from different sensor systems in
order to get a single estimation of a required quantity,
which is most likely to be better than every single mea-
surement [5]. The concept of sensor eigenfusion, instead,
is based on the assumption that the sensor systems, which
provide the measurements, are actually represented by
only one sensor type. This way the same information
which is contained in the measurements is analyzed us-
ing different techniques. Afterwards, the results of these
analyses can be merged to obtain a single estimate, which
originates then from a deeper exploitation of the infor-
mation content. This averaging process is weighted, in
this case, not on the sensor technology but rather on the
technique that is involved in the elaboration of the infor-
mation. Therefore, the expression of the corresponding
weights to be used in the fusion process, does not have a
general expression, but it should be derived for the par-
ticular case that is considered (see Subsection 2.1).

2.1 Use of the Sensor Eigenfusion in the
Presented Case

In the case presented in this paper, the sensor system con-
sists of two cameras and the measurements are therefore
the image data. The different techniques involved in the
process of information analysis are the 3D reconstruction
using the stereoscopic system and the optical flow using
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the two monocular systems, of which the stereo-system is
made up. In Fig. 1 the described architecture is depicted.

2.1.1 3-D Reconstruction

As can be seen from Fig. 1, the 3-D position of a detected
feature is reconstructed by using the properties of the
epipolar geometry. Knowing the geometry of the stereo
system, represented by the rotation matrix R5 and the
translation vector t1o between the two cameras, the fol-
lowing system of equation can be formulated:

p = Mpn )
p = t1o + A2Ri2pr2,

where p € R?, is the representation of the point in the
reference system of the host vehicle, while py; and pr2
are the homogeneous coordinates of a feature in the im-
age planes I; and I» in Fig. 1. The solution of the system,
using least squares techniques, gives the coordinates of
the detected marker in the 3-dimensional space.
Moreover, once a feature has been detected in the first im-
age, the epipolar constraint has been exploited to speed
up the search for the corresponding feature in the second
image [12]. The epipolar constraint is defined by

PLEP, =0, )

where the vectors pr; and py, are the two blue rays in
Fig. 1, and E is the essential matrix which is related to
the stereo system geometry.

2.1.2 Optical Flow Analysis

The optical flow analysis has already been used in au-
tomotive applications and integrated with stereo systems
[18, 19, 20, 21, 22, 23, 24, 25]. In the presented paper a
sparse optical flow technique has been used.

In Fig. 2 two subsequent frames are overlapped: three
markers (see Section 4) are depicted in their current and
previous configurations, the previous configuration being
shadowed. The correspondences between same features
detected on the markers is highlighted by red and blue
arrows. Starting from these correspondences the velocity
vector in the image plane vy; = [Xt, YI}T is computed.
Defining the velocity vector in the camera reference sys-
tem of Fig. | as

v = [&r, %3, €27, Sr, ©By, S0 ], 3)

3

Figure 2: Matched features for the calculation of optical
flow vectors
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the following equation, relating it to the velocity in the
image plane, can be derived:

Vi = .7iiV. (4)

The matrix Jj; is the image Jacobian defined as [12]

-+ XXy, -(1+X7) Y

Jhi = Ly
0 -+ XL 1+v?) XV X,

2ci  2Ci
®)

where zc;, the component of the detected feature along
the z¢ axis, is computed in the camera reference system
of Fig. 1.

Combining all the vectors vy;, relative to the different de-
tected features, in the vector vy, next equation holds

Vi1 Ju
Vi2 T2

Vie=| . |=1| . |v=JLv. (6)
Vin ¢71n

A least square technique can be employed to solve Eq. (6)
for the vector v. This solution is given by Eq. (7) where
.,’711 is the image Jacobian pseudo-inverse

v =Jv. (7

The vectors v are evaluated for the right and the left im-
age and expressed in the same reference system xcyczc
of Fig. 1. The weighted average v of these two vectors

Cvi and “vg is defined by
1 1
B gCVL + 5CVR
i S ®)
€L ER

The expression of the errors 1, and ey is computed using
the following definition where also the values of vy, Ji.
and v are relative to the left and the right image, respec-
tively:

Tl ©)

£=|vie -

3 Statistical Filtering of Measure-
ments

The measurements provided by the 3D reconstruction and
by the optical flow are merged, filtered and fused by the
aid of a Kalman filter (KF). This techniques has been ap-
plied in [26, 27, 28, 29]. In order to obtain a high accu-
racy of the estimates, the KF is designed in such a way
that it takes account for the nonstationarity of the mea-
surement noise. The noise covariance matrix is chosen
adaptively based on confidence measures connected to
the 3D reconstruction and the optical flow analysis, as
explained in Subsection 3.2.

3.1 System Model

Considering only the planar motion, in Fig. 3 the host
and the remote vehicle are depicted in the world refer-
ence system OXY.
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Figure 3: Estimated quantities
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The host reference system, whose origin coincides with
the mid point of the rear axle of the host vehicle, is also
represented. In this reference system, the quantities x,
yr and v, together with their derivatives, are to be esti-
mated. The well-known KF-equations [30] are used for
this task. The state and observation equations that de-
scribe the dynamic system and which are required to ap-
ply the KF, are described in the following.

The state vector x[n] and measurement vector y[n] for the
KF are introduced as

x[n] = [Xr[n]a Yr[n]ﬂ 1/&[”]759[“]7 Yr[n]y 1/)r[n]:| ! , (10)

yin) = [Tl y? ol ], 52, 920, 9]
11

where the superscript “m” indicates that the quantities are
measured, i.e., they contain measurement noise. Since
the relative dynamics of two objects is to be estimated,
a decoupling of x.[n],y;[n], and ¢;[n] is assumed. This
way the state equations for x, and x; are

2

a5 IX,s 12
5 " (12)

%:[n 4+ 1] = % [n] + Txs, (13)

x:[n + 1] = x¢[n] + Tx[n] +

where 7' is the time step, and the second derivative of X,
is modelled as process noise 7. Then, the noise vari-
ance ogx .» that is required in the process noise covariance

matrix in the KF, is determined using the approximation
7 () a4
where 7,’¢* is the maximum value of the second deriva-
tive of x,. This approximation is based on the 3o-rule
for Gaussian distributions. The state equations for y, and
y: as well as for ¢, and 1br are equivalent to Egs. (12)
and (13). Also the process noise variances for these quan-
tities are approximated equivalently to Eq. (14).
All quantities of the state vector can be measured with the
proposed system and so the observation matrix is a simple
identity matrix. However, the measurement noise vector
7,, € R® in the observation equation cannot be assumed
to be a stationary random process, for example because
of the pixel-quantization in the cameras which leads to
a larger noise power for objects that are far away. That
is why the measurement noise covariance matrix C,, is
chosen adaptively in this work.

max
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3.2 Adaptive Measurement Noise Covari-
ance C,,

Given K measurements {y;,y2,...,yx and the cor-
responding reference values {Yref,1; Yref.2s - - - 5 Yref, i }»
which are measured using a device with a very high accu-
racy, the covariance matrix of the zero-mean noise 7,,
can be approximated by
K
i 1 T
Cnm = =1 (Y — Yeef.k) (Y& — Yretik) > (15)
k=1

if the noise process is assumed to be stationary. Since
this does not hold for the setting in the current work, it
is assumed that the measurement noise process has the
property of weak stationarity in certain intervals. These
intervals can be specified by the parameters ¢, eg defined
in Eq. (9) and d, the measure of the distance between the
host and the remote vehicle. To implement this approach,
the distance d as well as

ELR = €L + €R (16)

are quantized in () segments, leading to @Q? intervals
where the measurement noise is assumed to be weak sta-
tionary. This leads to Q? covariance matrices that are
estimated using Eq. (15) by using only those data points
for their computation which lie in the corresponding in-
tervals. Then, during online operation the task is to de-
termine to which interval the current measurements be-
long based on the current values of d and s and then
to choose the corresponding pre-computed measurement
noise covariance matrix C,,m = fleL,er,d).

4 Hardware and Software Archi-
tecture

To validate the presented method of evaluation of the rel-
ative motion between a host vehicle and a remote one,
a testing procedure has been devised and several tests
have been carried out. This section is meant to present
the hardware and the software used to perform the tests,
while Section 5 is reporting the test setup and their re-
sults.

Figure 4: Camera configuration and reference systems

In Fig. 4 the hardware setup is depicted. The two cam-
eras, left and right, are represented together with their
horizontal aperture angle ¥ and the baseline of the stereo
system b. Furthermore, the reference system of the host
vehicle, as well as that of the stereoscopic vision sys-
tem (which has been chosen to be coincident with that of
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the left camera) are introduced. The pattern of the used
markers is made up of three highly reliable markers [31]
arranged to form a triangle, such that the orientation of
the obstacle with respect to the host vehicle can be eas-
ily calculated. The 3 x 3-bit markers are identified by
means of an assigned ID in order to immediately detect
their position in the pattern. The entire software has been
written in C++ and the developed algorithm has been run
on a PC equipped with an Intel Core i7 — 4810MQ and
a NVIDIA Quadro K3100M. The used cameras are two
mvBlueFOX3 by MATRIX VISION® with a gray scale
sensor of 1.3 Mpix (1280 x 1024), 60 fps and lenses with
a horizontal aperture angle # equal to 40° (see Fig.4).

5 Performance Evaluation

(a) Host vehicle with mounted (b) Remote vehicle and DGPS

cameras (left camera) base station

Figure 5: Vehicles setup

In order to validate the developed system, a series of test
scenarios have been devised. The tests have been per-
formed on the outdoor test ground of CARISSMA of
the Technische Hochschule Ingolstadt. The used vehicles
were an Audi A8 of Fig. 5(a) and an Audi S7 of Fig. 5(b)
as host and remote vehicle, respectively.

5.1 Referencing Methods

The estimations of the presented system are compared to
a ground truth provided by an ADMA (Automotive Dy-
namic Motion Analyzer) system that makes use of dif-
ferential GPS (DGPS) corrections. This system is able to
provide measurements of position with a precision of less
than 2 centimeters at a frequency of 100 Hz. In Fig. 5(b)
the base station of the DGPS can be seen. The data were
recorded on a PC on board of the host vehicle, to which
the cameras were connected via USB and the remote ve-
hicle via Wi-Fi.

5.2 Tests outcomes

The results of the tests are summarized in Fig. 6 for one
of the 16 scenarios that have been tested. Here there are
6 plots depicting the time series of the relative longitudi-
nal position (z), lateral position (y), yaw(¢), longitudinal
velocity (), lateral velocity (y), yaw rate (d')).
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Figure 6: Time series plots relative to a test scenario. On
the left column there are: relative longitudinal position
(), relative lateral position (y), relative yaw(z)); on the
right column there are: relative longitudinal velocity (i),
relative lateral velocity (y), relative yaw rate (1&).

The ground truth values are plotted in blue, while the es-
timated quantities are drawn in red. As it can be seen,
the tracking capabilities are very good up to high values
of relative speed, both for longitudinal and lateral direc-
tion. As regards the yaw and the yaw rate estimations,
these are more noisy since the yaw is computed and not
directly measured, whereas the yaw rate changes much
faster than the other quantities in relative motion between
vehicles.
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Figure 7: Plot depicting the trajectory of the vehicles
while driving a test scenario. Host vehicle trajectory in
blue, remote vehicle measured trajectory in red, remote
vehicle estimated trajectory in orange.

Fig. 7 represents the same scenario described by the plots
in Fig. 6, but in this case the error in space and not in
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time is compared. In blue there is the trajectory of the
host vehicle, where the cameras were mounted and the
data were recorded. The red line is the remote vehicle
trajectory measured using the ADMA system, whilst in
orange the estimated trajectory is depicted.

6 Conclusion and Future Work

In this paper the potentialities of the sensor eigenfiision
have been demonstrated for the particular case of video
sensors. The devised stereo system is intended to be
used as a system for referencing other automotive sensing
techniques. In order to improve the estimating capabili-
ties of a statistical filter, particular confidence measures
have been defined. These measures are based on the dif-
ferent techniques of analyzing measurement data coming
from a single sensor system.

Future work will be focused on refining the relative dy-
namics estimation by retrieving the kinematic and dy-
namic model of the remote vehicles, based on previous
motion estimations and on object classification. More-
over, a better design of the markers will be devised in
order to have faster and more robust estimations. Finally,
the developed system will be tested using characteristic
features of vehicles, such as the brake lights and the li-
cense plate in place of QR-markers, in order to apply it to
everyday traffic scenarios.
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