Singularities: high joint velocities

Acknowledgements

Problem

Robot joint limits and singularities are constraints that cause the surgeon to re-grasp the needle in the middle of suturing using complex dual-arm hand-off movements [1]. This increases the surgeon’s cognitive workload and causes severe fatigue and degeneration in performance.

Proposed Solution

Haptic-guided system that helps the surgeon to grasp the needle in an optimal configuration, which allows avoiding constraints along post-grasp suturing trajectories.

System Description

Kinematics

Suturing requires the surgeon to grasp the needle through the robot and deliver it along a predefined suturing path.

Grasp Parametrization

The grasping manifold is parameterized by \(\alpha \) (angle around the needle tangent) and \(\theta \) (needle curvilinear abscissa) [2, 3].

Optimization

Mathematically, the problem writes as follows:

\[
\begin{align*}
\text{minimize} & \quad \mathcal{H}(q_\theta(z)) \\
\text{subject to} & \quad z^- \leq z \leq z^+ \\
& \quad \frac{\partial h}{\partial q_\theta}(z) - \lambda = 0
\end{align*}
\]

Newton-Raphson method is used to solve the optimization problem. At each step \(z \) is updated as \(z_{n+1} = z_n - \gamma \nabla_z \mathcal{H} \)

\[
\nabla_z \mathcal{H} = \int_0^s \frac{\partial h}{\partial q_\theta} \, ds,
\]

\[
\frac{\partial h}{\partial q_\theta} \rightarrow \text{analytical}
\]

Grasp Parametrization

The vector \(z = [n, \theta]^T \) identifies any point in the grasp subspace \(Z \subseteq \mathbb{R}^2 \). The differential mapping to the robot configuration space is

\[
q_\theta = J_\theta(q_\theta) R_n J_g(z) \hat{z}
\]

where \(J_\theta(z) \in \mathbb{R}^{6 \times 2} \) is the grasp Jacobian specific to the object shape and the choice of grasping parameters.

Results

The proposed method

- Guides the surgeon towards the optimal needle grasping configuration through haptic forces while leaving her/him in control of the surgical system;
- Allows following the desired suturing path, thus avoiding joint limits (path deviation) and singularities (high joint velocities).

Acknowledgements

This research was partially supported by the IEEE RAS Technical Committee on Haptics under the “Innovation in haptics” research programme.