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Abstract—This article proposes a Model Predictive Non-Sliding
Manipulation (MPNSM) control approach to safely transport
an object on a tray-like end-effector of a robotic manipulator.
For the considered non-prehensile transportation task to succeed,
both non-sliding manipulation and the robotic system constraints
must always be satisfied. To tackle this problem, we devise
a model predictive controller enforcing sticking contacts, i.e.,
preventing sliding between the object and the tray, and assuring
that physical limits such as extreme joint positions, velocities,
and input torques are never exceeded. The combined dynamic
model of the physical system, comprising the manipulator and
the object in contact, is derived in a compact form. The
associated non-sliding manipulation constraint is formulated such
that the parametrized contact forces belong to a conservatively
approximated friction cone space. This constraint is enforced
by the proposed MPNSM controller, formulated as an optimal
control problem that optimises the objective of tracking the
desired trajectory while always satisfying both manipulation and
robotic system constraints. We validate our approach by show-
ing extensive dynamic simulations using a torque-controlled 7-
degree-of-freedom (DoF) KUKA LBR IIWA robotic manipulator.
Finally, demonstrative results from real experiments conducted
on a 21-DoF humanoid robotic platform are shown.

I. INTRODUCTION

Service robots are developed to assist human beings in

performing tasks that are typically dull, dangerous, or repet-

itive. To date, they have been realized in different forms

and structures and employed in various applications ranging

from household and personal assistance to industrial collabora-

tion [1], [2]. These robots usually operate semi-autonomously

in human-centered environments and must satisfy multiple

requirements. One of them consists in exhibiting compliant

human-like manipulation skills. However, most robotic sys-

tems nowadays are still missing this essential feature and are

equipped with simple, prehensile grippers, which are used to

pick, and only limitedly manipulate, a relatively narrow variety

of objects. The main problem of this solution is assuring

that the grasp holds all the time, which requires it to resist

all the forces that could reasonably act on the object during

the manipulation tasks, without causing too high internal
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Fig. 1. Illustration of the main problem addressed in this paper: a robotic
manipulator (blue) has to transport an object (black cube) along a desired
trajectory (dashed grey) on a tray-like end-effector (orange/white) while guar-
anteeing a sticking behaviour, i.e. satisfying both non-prehensile manipulation
(i.e., friction cones) and robotic system constraints such as joint limits,
maximum torques, etc.

stresses [3], [4]. When this cannot be guaranteed, e.g., due to

external interactions or highly dynamic movements, the object

is likely to slip and fall from the fingers.

To extend the set of manipulative actions, manipulate ob-

jects of different size and shape, exhibit bigger operative

workspace, and enhance the dexterity in dynamic tasks, non-

prehensile robotic manipulation has recently emerged as a

valid alternative to grasping manipulation [5]. Non-prehensile

manipulation circumvent the problem of grasping and retain-

ing an object by realizing manipulative actions that jointly

exploiting frictional, gravity, and inertial forces such as push-

ing, throwing, and striking, which humans commonly employ

to carry out everyday manipulation tasks. The success of non-

prehensile manipulation has already been demonstrated along

with several applications, mainly in industrial-like settings,

for instance to re-orient parts on a planar surface [6]. The

main advantage resides in using simpler robotic end-effectors,

purposely designed to robustly perform manipulation tasks

with a wider variety of objects. However, this comes at the

expense of developing and endowing robots with control

methods that rely on accurate and reliable models of the

mechanics involved. For this reason, to date few robots have

been shown capable of non-prehensile manipulation skills

which, in principle, would enable them to perform a broader

range of dexterous manipulation tasks, the simplest one being

transporting an object along a trajectory.

In this paper, we consider the problem of non-prehensile

transportation of an object along a desired trajectory using a

tray-like end-effector. In the considered setting, it is in general



not possible to prevent any induced motion of the object

relative to the hand. The goal is to satisfy both manipulation

and robotic system constraints along the performed trajectory,

i.e., preventing the object to slide and fall. Solving this

problem would enable service robots to perform dexterous,

waiter-like object transportation tasks, which can be exploited

to, e.g., serve lunch on a tray to patients in a hospital. A

robotic manipulation system composed of a serial robotic

arm endowed with a tray-like end-effector is used to carry

out the considered task (see Fig. 1). Such a system exhibits

several robotic system constraints (such as limited range of

joint motion, maximum feasible torques, etc.) that must always

be satisfied together with non-sliding manipulation constraints

(i.e., friction cones) that prevent sliding of the object and, thus,

task failures. From a technical viewpoint, carrying a payload

modifies the robot’s dynamics which, in turn, must not only

counteract but also opportunely regulate its motion to prevent

sliding and avoid violating robotic system constraints.

Thus, we propose a Model Predictive Non-Sliding Manipu-

lation (MPNSM) control architecture for a robot arm transport-

ing an object on a tray-like end-effector in a non-prehensile

configuration. Our MPNSM controller allows the realization

of the considered task encoded as a desired trajectory which

must be tracked while taking into account both manipulation

and inherent robot constraints in a unified and principled way.

This is mainly achieved by realizing contact forces between the

hand and the object that satisfy friction cone constraints, thus

enforcing a non-sliding behaviour. In addition, to guarantee

a continuous execution of the task, we consider the rate-of-

change of the joint torques as output of our controller (in

literature, this is referred to as jerk control [7]) which, once

integrated over time, returns the overall input of our robotic

system. This procedure makes the obtained joint torque profile

(and thus the system accelerations) continuous and allows

integrating force signals stemming from the interaction as

feedback into the controller [8]. We derive and incorporate the

combined system (manipulator and object) dynamical model

and its related constraints into a nonlinear model predictive

control problem [9]. Its solution returns the optimal control

inputs relying on the most recent measurement/estimation of

the system’s state and accounting for its evolution over a future

time horizon. This is the first work addressing the tray-based

non-sliding manipulation problem from this perspective to the

authors’ knowledge.

II. RELATED WORKS

When a robot does not firmly hold an object, there exist

motions induced by inertial or external forces that can not

always be inhibited [10]. In that case, known as non-prehensile

grasp, the object can still be manipulate typically employing

a sequence of non-prehensile manipulation primitives [5],

[11]. These include throwing [12], catching [13], batting [14],

pushing [15], rolling [16], among others. We restrict the

overview of related works to the so-called non-sliding non-

prehensile manipulation primitive (sometimes also denoted as

dynamic grasping [17]) which aims to immobilise the object

to the end-effector (as it was firmly grasped) by exploiting the

combined action of inertial, gravity, and frictional forces. This

is complementary to the sliding non-prehensile manipulation

primitive, which aims to realize controlled object motions by

exploiting the same system of forces [18], [19]. In the past,

several methodologies were devised for robots equipped with

flat palm end-effectors to carry out non-prehensile manipu-

lation tasks [20], [21]. In the following, a few examples are

reported.

A motion planning framework that explicitly considers

reaction and friction forces as kino-dynamic constraints for the

non-prehensile transportation of a bottle is proposed in [22]. A

task priority control scheme featuring sliding mode and admit-

tance control for human-robot collaborative transportation of

an object on a tray is designed in [23]: a human operator guides

a 7-degree-of-freedom (DoF) robot arm through a force sensor

located at the robot tool. A method to change the inclination

of the tray when the object is rotating around an edge based

on the computation of the zero-moment-point of the object,

modelled as an inverted pendulum, is proposed in [24] for

a waiter humanoid robot that transports objects on a tray.

A framework that offline evaluates and eventually re-plans a

trajectory based on the occurrence of slippage due to inertial

forces that occur on a grasped object during highly dynamic

robot tasks is presented in [25]. A shared-control teleoperation

architecture exploiting similar concepts has been designed to

safely transport an object placed on a tray-like end-effector

preventing its sliding in [26].

Several recent papers have focused instead on the problem

of executing robotic manipulation and, in general, interaction

tasks using MPC. To date, the common trend is to integrate

contact forces tracking as an objective and feed back their mea-

sure in the controller [8]. For instance, a whole-body MPC for

dynamically stabilising a mobile manipulator while executing

end-effector pose tracking tasks while skillfully planning for

end-effector contact forces is devised in [27]. The controller

directly computes the actuation torques and the forces exerted

on the environment. However, since the authors do not model

the environment, the interaction task is accomplished as a

force regulation problem, and it is successful only under the

circumstance that the environment impedance is underesti-

mated. A MPC strategy that is aware of its environment and

can plan whole-body motion for a mobile manipulator while

avoiding collisions is proposed in [28]. Through task-space

admittance control, it can track any desired interaction forces

and torques. System identification and an adaptive control

method extend the MPC formulation presented in [27] to

deal with mobile manipulation tasks in unknown environments

in [29]. The employed modelling strategy was derived under

the assumption that the environment can be described by

a linear mass-spring-damper system rigidly attached to the

robot. In the context of non-prehensile manipulation, model

predictive control (MPC) has been used to perform pushing

tasks requiring different levels of accuracy [30].

However, none of the above works has jointly considered the

robotic system and the manipulation constraints in a unified

model predictive non-sliding control approach to perform non-

prehensile object transportation tasks.



A. Contributions

To fill the above-mentioned gap in the literature, this paper

introduces an MPNSM control approach to perform non-

prehensile object transportation tasks while jointly satisfying

manipulation and robotic system constraints. In the following,

the main technical contributions of this work with respect to

the previous literature are summarized.

• In our previous work on the topic ([26]), an optimization-

based architecture for transporting an object on a tray

was preliminarily introduced. However, only manipula-

tion constraints were formulated and included in the main

optimization problem. The controller may thus require

inputs that actuators cannot provide and/or the robotic

system may exceed its extreme physical limits. In this

work, we address this problem, extending our previous

architecture by integrating robotic system constraints and

receding horizon control capabilities.

• The work [7] uses the time derivative of input torques

to control a humanoid robot at the jerk level. Building

upon this approach, our work proposes and extensively

validates the use of jerk control within a MPC framework

for non-prehensile object manipulation tasks.

• We derived analytical models for the computation of

(parametrized) contact forces and their time evolution

under mild assumptions. These are used within the system

dynamics constraint of the devised model predictive non-

sliding manipulation control approach. Besides this, we

mathematically proved the absence of internal force terms

within non-prehensile manipulation setup, such as the one

considered in this paper.

• Finally, we release the simulation code used to demon-

strate the performance of the devised controller to the

community for a possible future benchmark.

III. SYSTEM MODELING

In this section, the system and the contact models, which

will be employed to implement the devised controller in

Sec. V, are introduced. The combined manipulator-object

dynamic model is derived in a compact form in Sec. III-A

while contact models and the parametrization of the contact

forces are dealt with in Sec. III-B.

A. Combined manipulator-object dynamics

Let us consider a serial robot manipulator whose state can

be uniquely described through the pair (q, q̇) with q ∈ R
n

being the vector of generalised coordinates (n denotes the

joints number) and q̇ ∈ R
n its time derivative (joint velocities).

The dynamics of the manipulator can be expressed by the

following equation of motion

Mm (q) q̈ + Cm (q, q̇) q̇ + nm (q) = τ − τext, (1)

where Mm (q) ∈ R
n×n is the symmetric positive-definite

robot joint-space inertia matrix, Cm (q, q̇) ∈ R
n×n is the ma-

trix of centrifugal/Coriolis terms, nm (q) ∈ R
n is the gravity

vector, τ ∈ R
n is the vector of joint torques (representing the

overall control input of the robotic system), and τext ∈ R
n is

the joint torque vector corresponding to an external load. In

the envisioned scenario, the external load is attributable to the

presence of an object to be transported, which is in contact

with the robot’s end-effector. The object is assumed to be a

rigid body whose dynamics can be expressed as

Mo (xo) V̇ + Co (xo,V)V + no (xo) = Fo, (2)

where xo = (p, φ) is the object pose composed by the position

p ∈ R
3 and parametrized orientation φ ∈ R

3 or R4 (e.g., ZYX

Euler angles, unit quaternion, etc.), Mo (xo) ∈ R
6×6 is the

object positive-definite mass/inertia matrix, Co (q, q̇) ∈ R
6×6

is the matrix of centrifugal/Coriolis terms, no (q) ∈ R
6 is the

gravity vector, V = (v, ω) ∈ R
6 is the object twist, with

v ∈ R
3, ω ∈ R

3 expressing its linear and angular velocities,

respectively; and Fo = (fo, τo) ∈ R
6 is the object wrench,

with fo, τo ∈ R
3 force and torque vectors, respectively, all

specified with respect to the body reference frame {O} whose

origin is placed at the object’s center of mass.

As long as the contact between the object and the tray is

maintained1, the body wrench Fo can be transformed into the

corresponding manipulator torques τext through the equation

τext = JT
o (q)Fo, (3)

where Jo ∈ R
6×n is the object geometric Jacobian matrix [31].

When the same condition holds, the object parametrized pose

can be retrieved from joint values using the forward kinematic

function, i.e., xo = κ(q). Substituting (2) and (3) into (1), and

using the following differential kinematics equations

V = Jo (q) q̇,

V̇ = Jo (q) q̈ + J̇o (q, q̇) q̇,
(4)

leads to the following combined manipulator-object dynamic

model

M̃ (q) q̈ + C̃ (q, q̇) q̇ + ñ (q, q̇) = τ, (5)

where M̃ ∈ R
6×6 is the symmetric and positive-definite

mass/inertia matrix, C̃ ∈ R
6×6 the Coriolis-centrifugal matrix

and ñ ∈ R
6 the gravitational force of the combined system

that can be written as follows (dropping their arguments)

M̃ = Mm + JT
o MoJo,

C̃ = Cm + JT
o

(

CoJo +MoJ̇o

)

,

ñ = nm + JT
o no.

(6)

As stated above, τ on the right-hand side of (5) represents

the vector of joint torques that are the overall control input

of the robotic system manipulating the object. However, as τ
contributes to the realization of the object body wrench Fo

through contact forces transmitted to the object (as shown

later), its choice must respect manipulation constraints that

prevent the object from sliding. Moreover, τ must also be

chosen to satisfy the inherent robotic system constraints, i.e.,

it must lay within a specific range and generate the evolution

of the manipulator states that is compatible with the allowable

joint range of motion/velocity. Thus, the primary objective of

1It is worth noting that this is not an assumption: it is instead a condition
that will later be formulated as a constraint and enforced by the devised
optimization-based model predictive controller.



Fig. 2. Drawing of the object body wrench Fo = (fo, τo), i−th contact
force fci and friction cone (shaded green). po,ci is the vector defining the
i−th contact position in the body frame {O}.

this work is to find τ that satisfies both robotic system and non-

sliding manipulation constraints, which are better described in

the following sections.

It is worth noting that, inverting (3), the combined dynamic

model (5) can be alternatively derived in the object coor-

dinates, where manipulation constraints (see later) are more

easily handled. However, the approach followed here allows

to more conveniently treat the robotic system’s physical limits

as state constraints and directly calculate the overall system’s

control inputs, i.e., the manipulator torques.

B. Contact model and contact forces parametrization

Let us consider the model of the object dynamics in (2).

The object body wrench Fo can be realized by opportunely

generating contact forces Fc between the object and its ma-

nipulandum. Before explicitly defining Fc, we must introduce

some modelling assumptions. We assume that the object’s

shape and dynamical properties are known and coincident

with a cuboid of known material. Moreover, we assume that

the overall contact surface between the cuboid object and

the tray can be approximated by discretizing it, i.e., using

a finite number of nc contact points located in the vertexes

of the object in contact (thus nc = 4 in the considered

case). The i−th contact point is thus identified by a contact

frame {Ci} whose pose is known and expressed in {O} by

qo,ci = (po,ci , Ro,ci) ∈ SE(3).

The tray/object interaction behaviour can be described intro-

ducing a suitable contact model. In general, the set of wrenches

that can be transmitted across the i−th contact is described

by a wrench basis Bc,i ∈ R
6×mi , where mi denotes the

dimension of the generalized forces at the contact. Bc,i maps

the components of the contact forces, which are transmissible

through the contact point, into the 6-dimensional wrench

space. Assuming a point contact with friction model [32],

only the linear forces fci ∈ R
3 can be transmitted through

the i−th contact, thus mi = 3. The body wrench Fo can thus

be expressed as

Fo = GFc, G =
[

AdT
q
−1

o,c1

Bc,1, . . . ,AdT

q
−1

o,cnc

Bc,nc

]

, (7)

where G ∈ R
6×3nc , usually referred to as grasp matrix in the

robotic grasping literature, maps the stacked vector of contact

forces Fc = [fT
c1
, . . . , fT

cnc
]T ∈ R

3nc to the body wrench Fo

(a) k = 4 (b) k = 6 (c) k = 8

Fig. 3. Approximation of circular friction cones (in shaded green) with
polyhedral cones (black lines) with different number of edges k.

exerted at the object’s center of mass (see Fig. 2). The matrices

involved in the calculation of G in (7) can be expressed as [33]

AdT

q
−1

o,ci

=

[

Ro,ci 0
p̂o,ciRci,o Ro,ci

]

, Bc,i =

[

I3×3

03×3

]

, (8)

where p̂o,ci ∈ so(3) denotes the skew-symmetric matrix

associated with the vector po,ci ∈ R
3 (i.e., the position of

the i−th contact point expressed in {O}).

The non-sliding manipulation constraint coincides with

the contact forces belonging to the friction cone space.

This means that, in the i−th contact, the three components

fci,x, fci,y, fci,z of the contact force fci ∈ R
3 must satisfy

the constraint
√

f2
ci,x

+ f2
ci,y

≤ µfci,z, fci,z ≥ 0, (9)

where µ > 0 is the static friction cone coefficient, assumed

to be known and uniform for all the contacts. Whenever the

constraint (9) is satisfied for all the contacts2, the object can

be manipulated, that is, it is transported along the desired

trajectory while preventing it from sliding on the tray.

To enforce this constraint in the controller, it is convenient

to parametrize the contact forces and make the constraint

linear in the chosen parameters. This can be achieved by

conservatively approximating the i−th friction cone as a

polyhedron generated by a finite number k ∈ N of unit vectors

f̂ci,1, . . . , f̂ci,k ∈ R
3. When k = 4, the circular friction cone

is conservatively approximated by an inscribed pyramid [33].

Anyway, to relax the conservativeness of this approach, tighter

approximations of the circular cone can be obtained using

more edges, i.e., increasing k (see Fig. 3).

The procedure for the calculation of the friction cone edges

for a generic k is given by

f̂ci,j = Rz(2πj/k)Ry(θ)ẑ, (10)

where θ = arctanµ and it denotes the pyramid (or cone)

semi-aperture angle. However, it is worth noting that the size,

and thus the computational burden, of the optimal controller

presented later will increase with k. With this choice, Fc can

be conveniently parametrized, i.e., it can be written as

Fc = F̂cΛ, Λ =
(

λc1,1, . . . , λcnc ,k

)

∈ R
knc , (11)

2Note that this is a conservative condition we use throughout the paper.



where

F̂c = diag
(

F̂c,1, . . . , F̂c,nc

)

, F̂c,i =
[

f̂ci,1, . . . , f̂ci,k

]

(12)

is the matrix describing the friction cone space geometry, as

its columns contain the vectors of the friction cone edges

as calculated in (10), while Λ denotes the vector of contact

force parameters, that constitute the components along the

friction cone borders. At this point, for Fc to belong to the

approximated friction cone space, it is sufficient to choose

Λi ≥ 0, ∀ i = 1, . . . , knc, (13)

meaning that Fc must be a non-negative linear combination

of the friction cone boundaries through the vector of the co-

efficients Λ. This constraint will be enforced by the controller

described in the following sections.

IV. CONTACT FORCES AND PARAMETERS COMPUTATION

The quantity that more effectively describes the interaction

state is the contact force. However, measuring forces at the

contact is generally complex, especially for extended contact

geometries. Since our goal is to enforce the friction cone

constraints mentioned earlier, in this section, we introduce

the contact force (and the related parameters) calculation

procedure used throughout this work.

A. Contact forces computation

Considering (7), for a given Fo (usually directly or indi-

rectly measurable), the considered system of equations must

be solved for Fc to retrieve contact forces. The expression

in (7) denotes a system of 6 equations in mi × nc unknowns.

In the considered case (mi = 3 nc = 4), the solution in terms

of Fc is thus indeterminate. Anyway, it is possible to solve and

derive an expression for Fc, solving the following optimization

problem

min
Fc

‖Fc‖
2

(14a)

s.t. GFc = Fo. (14b)

Solving (14) allows finding, among many, the solution vector

having the minimum two-norm. It is worth to note that the

constraint (13), which accounts for the contact forces feasibil-

ity, is not considered in (14). When the constraint (13) is not

binding, it is possible to ignore it and derive a closed-form

solution for Fc applying the method of Lagrange multipliers.

This leads to

Fc = G†Fo, (15)

where † denotes the Moore–Penrose inverse operator, that

constitutes the minimum two-norm result of the contact forces

vector Fc. Of course, as previously stated, this calculation

procedure generates valid results as long as the object is

stationary to the tray, i.e., Fc belongs to the friction cone space

that, in turn, means (13) is satisfied. Indeed, contact forces that

do not belong to the friction cone space, i.e. lead to at least

one Λi < 0, are impossible to be physically realized.

However, from the mathematical point of view, (15) is not

the unique solution of the original system of equations in (7):

in principle, other solutions can potentially be considered. For

instance, the solution

Fc = G†Fo + PFc,0 (16)

where P = PT ∈ R
3nc×3nc ≥ 0 is the projector onto the

null-space of G, i.e., GP = 0, and Fc,0 is a generic vector,

also satisfies (7). It can easily be shown that this solution can

be obtained by modifying the cost function in the previously-

introduced optimization problem (14).

In the following, we show that contact forces components

lying in the null-space of the matrix G must not be con-

sidered since they are representative of internal forces that

feasible contact points displacements can not generate in non-

prehensile manipulation settings. Indeed, for contact forces to

be realised, contact points displacements should be generated

through the manipulator’s actuation system according to the

following relation

δFc = KJ(q)δq, (17)

where the contact points Jacobian matrix J(q) ∈ R
3nc×n

relates the contact point velocities to actuators’ velocities,

i.e., vc = J(q)q̇, and K ∈ R
3nc×3nc is a diagonal positive-

definite matrix, that plays the role of a stiffness and relates

contact point displacements to contact forces variation, i.e.,

δFc = Kδpc (see [34] for further details). This shows that

all the contact forces that can be generated/controlled by the

contact points displacements are in the range space of the

J(q) matrix. Neglecting for the moment the presence of the

manipulator, i.e., considering that our tray can be actuated

by linear and rotational rigid body displacements δx in the

Cartesian space, we can construct J(q) = J geometrically as

the following constant matrix (see Fig. 2)

J(q) = J =









...
...

Ro,ci p̂o,ciRo,ci

...
...









.

The fact that J is constant is a consequence that the tray can

only undergo rigid body motions. Consequently, the set of

contact points can only rigidly translate and rotate in space but

not “deform” (i.e. they cannot modify their relative distances).

Considering now the product between columns of the null-

space projector P and J , that appears substituting (17) in the

second term on the right hand side of (16), and observing that

J = GT, we get

PTJ = PTGT = O,

where O is the null matrix of appropriate dimensions. This

result shows that no contact forces lying in the null-space of

the G matrix can be generated/actuated by the tray/contact

points displacements. Alternatively, one may observe that

columns of the null space projector P are linearly independent

from the columns of J . Contrarily, the term G†Fo is the

sole component of the solution that is in the range space of

J , i.e. such that rank([J |G†Fo]) = rank(J) = 6, denoting

that it is the only one that can be theoretically generated. It

is worth remarking that the practical realization of contact

forces depends on the satisfaction of the frictional constraints,

i.e., (13) needs to be satisfied.



B. Contact forces parameters computation

Substituting (11) into (14) allows solving for Λ directly and

enforcing the non-sliding condition (13). In the considered

case, the expression Fo = GF̂cΛ constitutes a system of 6
equations in k×nc unknowns, and the solution in terms of Λ is

again indeterminate in the considered case (k = 4 and nc = 4).

Following similar arguments, it is possible to solve and derive

an expression for Λ, solving a two-norm minimisation problem

analogously to what done for Fc in the previous section

min
Λ

‖Λ‖
2

(18a)

s.t. GF̂cΛ = Fo, (18b)

Λi ≥ 0, ∀ i = 1, . . . , knc, (18c)

where (13) has been introduced in (18c). When the con-

straint (18c) is not binding, a closed-form solution can be

derived applying the method of Lagrange multipliers and, after

exploiting (15), it can be written as follows

Λ =
(

GF̂c

)†

Fo (19)

where † denotes the Moore–Penrose inverse operator and

is used to minimize the two-norm of the contact forces

coefficients. It is worth remarking that our goal is to enforce

the constraint in (13), while acting on the manipulator torque

control inputs, and (19) is essential to derive the relation

between these two quantities. The expression (19), and in

particular its time derivative, tells us how the contact forces

parameters vary when the object wrench varies, and it is

included in the dynamics constraint of our MPNSM controller,

which is introduced in the following sections.

As mentioned above, Fo can usually be directly or indirectly

measured by a force/torque (F/T) sensor. However, in torque-

controlled manipulators, under the assumption of fast motor

dynamics, a more practical way to obtain Fo, to be used

in (19), is to use the commanded torques τ to obtain V̇
using (4), where q̈ can be obtained through (1) using the

measured τext. Most recent manipulators are indeed equipped

with external torque sensing. In both ways, body force (recon-

structed) measurements and the contact forces computed from

them are feedback to the controller that uses these to compute

the subsequent optimal control inputs.

V. MODEL PREDICTIVE NON-SLIDING MANIPULATION

CONTROL

In this section, we derive the optimization-based MPNSM

controller leveraging the nonlinear model predictive control

approach. In general, this approach aims to find the optimal

sequence of control inputs and the corresponding state tra-

jectory over the finite-length prediction horizon, subject to

constraints on the state trajectory and the control inputs. Model

predictive controllers account for the model of the system to

be controlled and find a solution starting from the current state

on each iteration. The first timestep of the computed control

trajectory is applied before the controller runs again, and new

control inputs are computed. Denoting with x the system state

and u the control input, the underlying discrete-time optimal

control problem we aim to solve has the following form

min
x,u

‖x∗
e − xe‖

2
Qe

+

N−1
∑

i=0

‖x∗
i+1 − xi+1‖

2
Qi

+ ‖ui‖
2
Ri

(20a)

s.t. x0 = x̄(0) (20b)

xi+1 = fk(xi, ui) (20c)

¯
x ≤ xi ≤ x̄ (20d)

¯
u ≤ ui ≤ ū (20e)

with N ∈ R>0 indicating the steps of the prediction horizon

and where the function (20a) denotes a least square cost

function to be minimised, composed of two weighted two-

norms: the state difference from the desired values x∗ and

the input u. Here, ‖v‖A = vTAv is the quadratic form with

a suitable weighting matrix, while Qi, Qe ∈ R
nx × R

nx

and Ri ∈ R
nu × R

nu denote the diagonal entries of the

corresponding positive semi-definite weight matrices.

To account for the contact state of the object/tray interaction,

we opted for defining an extended system state including,

besides the proper state q and q̇, the manipulator input torques

τ and the contact force coefficients Λ. In this way, we can more

easily feedback both the manipulator torques and the contact

forces into the controller via (20b). Our extended state vector

thus reads as x =
(

τT, qT, q̇T, ΛT
)T

. With this choice, we

increase the relative degree of our system dynamics and choose

as a control input u = τ̇ . This is convenient since it gives rise

in any case to a continuous torque profile, which constitutes

the real input to our robotic system. The matrix Q in (20)

can thus be partitioned into Qτ , Qq , Qq̇ , QΛ of opportune

dimensions, where the generic Qχ block corresponding to the

related χ quantity.

It is worth mentioning that our ultimate goal is to transport

the object to the target pose following the desired trajectory

(see Fig. 1), i.e., we aim to realize xo = x∗
o(t) and ẋo =

ẋ∗
o(t), where x∗

o(t), ẋ
∗
o(t) are the desired object states, while

satisfying both non-sliding manipulation and robotic system

constraints. From this, we can calculate the reference values

for the extended state x∗, in particular q∗o , q̇
∗
o using an a stan-

dard inverse kinematics routine, under the assumption that the

object is rigidly attached to the manipulator. For this we used

the closed-loop inverse kinematic (CLIK) algorithm, i.e., a

Jacobian pseudo-inverse-based Newton-Raphson method [35].

With the state/input choice made, the continuous-time dy-

namic evolution of the extended state, which is ultimately used

in (20c), can be thus written as

ẋ = f (x, u) =























τ̇ = u

q̇ = q̇

q̈ = M̃−1(x)(τ − C̃(x)q̇ − ñ(x))

Λ̇ =
(

GF̂c

)†

(Aτ̇ +Bτ + C)

, (21)

where the matrices A, B, and C write as follows

A = MoJM̃
−1, B = MoJ̇M̃

−1, C = −2MoJ̇M̃
−1ñ.

(22)



Fig. 4. Dynamic simulation scenario: a torque-controlled robotic manipulator
(orange) has to transport an object (red cube) along a desired trajectory
(black) on a tray-like end-effector (dark grey) while guaranteeing sticking
behavior, i.e. satisfying both (non-sliding) non-prehensile manipulation and
robotic system constraints such as joint limits, maximum torques, etc.

The equations in (21) describe the dynamic evolution of

the combined manipulator-object system and of parametrized

contact forces between them. It is worth mentioning that the

expression for Λ̇ has been retrieved by differentiating (19),

substituting (2) and (5), under the assumptions that all the

matrices entering the dynamic model hold constant over the

time horizon.

As for the constraints, (20b) denotes the feedback term

read from the system at each time step. Note that while the

measure of q, q̇, τ is readily available in torque-controlled

manipulators, the measure of Λ or Fc must be retrieved

indirectly from the measure of Fo (which can be conveniently

measured through a F/T sensor installed at the end-effector of

the manipulator) and using (19). The constraint on the system

dynamics (20c) is constructed discretizing (21). We denote

with
¯
q = (

¯
q1, . . . ,

¯
qn), ˙

¯
q = ( ˙

¯
q
1
, . . . , ˙

¯
q
n
),

¯
τ = (

¯
τ1, . . . ,

¯
τn),

¯
Λ = (

¯
λ1, . . . ,

¯
λnc,k) the lower bounds on joint positions,

joint velocities, joint torques, and contact force coefficients,

respectively. Similarly q̄ = (q̄1, . . . , q̄n), ¯̇q = (¯̇q1, . . . , ¯̇qn),
τ̄ = (τ̄1, . . . , τ̄n), and Λ̄ = (λ̄1, . . . , λ̄nc,k) denote the

upper bounds on the respective quantities. Thus, in (20d),

¯
x = (

¯
q, ˙
¯
q,
¯
τ,
¯
Λ)T and x̄ = (q̄, ¯̇q, τ̄, Λ̄)T represent the lower

and the upper bounds on the extended system states. These

include both the physical bounds of the robotic system and

the non-sliding manipulation constraints. Similarly, the con-

trol inputs to the system are bounded with lower bound,

¯
u = (

¯
u1, . . . ,

¯
un)

T , and upper bound, ū = (ū1, . . . , ūn)
T ,

which are free to be chosen.

VI. DYNAMIC SIMULATION SETUP

The proposed controller is implemented in C++ using the

ROS middleware. The simulations are performed using the

physics-based Gazebo dynamic simulator. We considered a

TABLE I
SIMULATION MPNSM CONTROL PARAMETERS.

Parameter Value Parameter Value

Qτ 1e−2 Qe 1e−3Q

Qq 1e7 R 1e−4

Qq̇ 1e5 mo 0.5
QΛ 1 I 1e−4

robotic system that consists of a 7-DoF KUKA LBR IIWA

manipulator equipped with a purposely designed tray-like end-

effector and a cube-shaped object (see Fig. 4). The object

of dimension 40 × 40 × 40 mm is placed in contact with

the top of the tray attached to the manipulator flange. In

order to keep the simulation setup as realistic as possible,

we assign the dynamic properties of the KUKA LBR IIWA

manipulator within the simulation environment, corresponding

to those identified for the real robotic manipulator [36]. The

properties associated with the object have been chosen as

follows: mass mo = 0.5 kg and diagonal inertial matrix,

Io = diag(1e−4) kgm2. However, our controller is conceived

for the non-prehensile transportation of a cuboid object with

general dynamic parameters using a robotic manipulator. The

Coulomb static friction coefficient between the tray and the

object was chosen as µ = 0.5. During the simulations, we

placed the object at x = −0.04 m, y = 0.05 m from the

center of the tray.

The desired trajectory for the state of the object,

x∗
o(t), ẋ

∗
o(t), is obtained using a quintic polynomial with

rest-to-rest object velocity and acceleration. The beginning

of the desired trajectory coincides with the initial posi-

tion of the object’s geometric center, that is po(0) =
[

0.59 −0.31 0.52
]T

m in the robot base frame. Unless

otherwise stated, the desired trajectory completion time is set

T = 1.5 s and the final desired position of the object is

po(T ) =
[

0.59 0.31 0.52
]T

m. The object is, thus, required

to cover a distance of 62 cm along the y-axis of the robot base

frame. During the simulation, the manipulator is controlled

at the joint torque level to track the desired trajectory. The

solution of the problem in (20) (i.e., the time rate of change

of the joint torques) is used to obtain the required updated

torque at each simulation step i according to the following

update rule

τi+1 = τi + τ̇i∆t, (23)

with ∆t being the control loop cycle time. In the MPNSM

controller, we close the feedback loop of the joint values,

joint velocities, joint torques and contact forces by reading the

entire extended system state from the simulation environment.

It is worth noting that the contact forces cannot be directly

measured in the real case instead. In the next section, we will

retrieve them by plugging the reading of the body wrench

measurements into (19).

The controller has been implemented using acados [37]

which is a high-performance software package for non-

linear optimization problems. The package inherently uses

CasADi [38] to formulate nonlinear functions as a front

end. The controller was first implemented in MATLAB, which

was later used to generate the C/C++ code library of our

optimal control problem (OCP). The generated library was

TABLE II
SIMULATED ROBOTIC SYSTEM JOINT LIMITS.

Joint # 1 2 3 4 5 6 7

q [deg] ±170 ±120 ±170 ±120 ±170 ±120 ±170
q̇ [deg/s] ±98 ±98 ±100 ±98 ±140 ±180 ±180
τ [Nm] ±176 ±176 ±110 ±110 ±110 ±40 ±40



then included within our software framework written in C++.

We used the Sequential Quadratic Programming (SQP) ap-

proach, where the quadratic programs (QPs) resulting from

the approximation of the nonlinear model predictive con-

trol (NMPC) problem (20) are solved sequentially to obtain

Newton directions leading to the solution starting from the

provided guess. To obtain faster convergence of the NMPC

problem, we relied on the real-time iteration (RTI) scheme

of the SQP method [39]. The RTI scheme exploits the fact

that the OCPs obtained at two consecutive time instants are

closely related, and thus it performs only one complete Newton

step per sampling time. In order to provide a reasonable

guess at time instant i, we employ a warm-started SQP that

utilizes the shifted solution obtained at time instant i − 1.

We further use the condensing approach to solve the resulting

QPs by reducing the variable space of a QP and forwarding

simulation of the system dynamics. The resulting QP sub-

problem can be solved much faster using dense general-

purpose QP solvers. We perform partial condensing of the QP

before calling the solver [40].This exploits the structure of the

QP resulting from the reformulation of an NMPC problem.

After the implementation of the controller using acados, with

an NMPC horizon length N = 10, the solver takes 5.4 ms on

an average (1.3 ms standard deviation) to solve one step of the

problem on a Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.

The simulation cycle time is then set to 5 ms, using the pre-

vious time step solution if the computation takes longer. The

simulation code can be downloaded from the following link:

https://github.com/prisma-lab/nonprehensile-object-transp

VII. DYNAMIC SIMULATION RESULTS

In this section, we present the dynamic simulation re-

sults obtained using our MPNSM control approach for non-

prehensile object transportation tasks.

A. Validation of the contact forces calculation procedure

In this subsection, we present the validation of contact force

calculation procedure introduced in Section IV. We compared

the forces calculated from the readings of the body wrench

Fo using (15) and the one directly extracted from the Gazebo

dynamic simulation environment. This is possible since, in the

simulation environment (as also considered in our model), the

contact surface is discretized with nc = 4 contact points, and

the friction cone is approximated with a pyramid. According

to the simulator documentation, the default Open Dynamic

Engine (ODE) internal solver calculates the contact forces

using the quick step method that relies upon an iterative

Projected Gauss-Seidel procedure whose accuracy depends on

the number of iterations set. The friction parameter between

the object and the tray is set to µ = 0.5. For this simulation,

we used the quintic-polynomial desired trajectory explained in

Sec. VI, and employed the proposed MPNSM control method

to track the desired trajectory. The comparison between the

calculated (continuous line) and the measured (dashed line)

contact force components for each contact point is shown in

Fig. 5 for a L = 0.62 m long linear trajectory performed in

1.5 s. It is possible to note that the computed contact forces
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Fig. 5. Validation of the contact forces calculation procedure: comparison
between calculated (continuous line) and measured (dashed line) contact force
components for each contact point (ci) along a L = 0.62 m long linear
trajectory performed in T = 1.5 s.

Fig. 6. Evaluation of the contact forces calculation procedure tracking
performance: trend of the mean (black squares) and max (grey dots) norm
of the instantaneous error vector for each contact point (ci) along a linear
trajectory with variable length L performed in T = 1.5 s.

closely follow the measured ones with a maximum discrepancy

of less than 0.1 N, which can be attributed to the different

calculation procedures. This result validates our contact force

calculation routine, which can now be effectively used in a

practical case where direct contact force measurement is not

possible. In the following sections, we show that our approach

works robustly in simulated/real setups using body wrench

measurements despite the simplified model considered here.

To additionally evaluate the tracking performance of mea-

sured versus calculated forces, we performed a set of dynamic

simulation experiments with varying trajectory length L in-

volving the same setup. In more details, we considered the

trajectory length L varying from a minimum value of 0.48 m

to a maximum value of 0.8 m with increments of 0.01 m (33

simulations). The trajectory duration has been kept 1.5 s, such

that longer trajectories involve higher accelerations, which in
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Fig. 7. Validation of the tracking performance along a slow (T = 2.5 s)
linear trajectory. The norm of the error terms ep and eo is contained as no
manipulation and robotic system constraints are met.

turn changes the required contact forces. Figure 6 shows for

each contact point (ci) the mean (black squares) and max (grey

dots) norm of the error vector, which is constructed as follows

eFci
=









(

Fmeas
ci

(0)− Fci (0)
)T

...
(

Fmeas
ci

(T )− Fci (T )
)T









,

where Fmeas
ci

(t) ∈ R
3 denotes the contact force measured

at the instant t in the i-th contact, T denotes the trajectory

duration and the norm operator is intended to be applied

row-wise. As noted from the figure, both the mean and

the maximum error norm are low for shorter (thus slower)

trajectories while they increase for longer (faster) trajectories.

The explanation is readily available: the proposed calculation

procedure does not account for the physical friction cone

constraints becoming binding along trajectories requiring high

accelerations.

B. Tracking performance - no constraints

In this subsection, the devised MPNSM control approach’s

tracking performance is showcased when no manipulation and

robotic system constraints are met, i.e., they are satisfied with

strict inequality sign. This case is reproduced by slowing down

the trajectory execution, i.e. by setting the desired trajectory

completion time to T = 2.5 s. In Fig. 7 we show the

tracking error E = (ep, eo), with ep(t) = ||p∗o(t) − po(t)||
and eo(t) = ||φe(t)||, where φe is the vector of Euler Angles

extracted from the rotation matrix error, i.e. R∗T
o Ro, where

R∗
o and Ro are is the desired and the current rotation matrix,

respectively. In the considered case, the motion executed by

the object closely follows the desired one with a maximum

position error norm of emax
p = 6 × 10−3 m and a maximum

orientation error norm of emax
o = 1.5 × 10−3 m. It is worth

noting that the errors decrease to zero before the trajectory

ends, thanks to the predictive capabilities of the controller.

Moreover, the shape of the error can be attributed to the

particular choice of the cost function and its weights in the

optimal control problem (20) and may be further reduced by

refined tuning. The result shown here can be used as a baseline

to compare how the tracking performance results are affected

when constraints are met or when external disturbance torques

are applied, as considered in the following subsections.
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Fig. 8. Validation of the tracking performance along a fast (T = 1.5 s)
trajectory. The norm of the error terms (ep and eo – top graph) is higher as
manipulation (Λ – middle graph) and input constraints (τ̇ – bottom graph)
are met.
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Fig. 9. Validation of the tracking performance along a fast (T = 1.5 s)
trajectory. The norm of the error terms (ep and eo – top graph) is higher as
manipulation (Λ – middle graph) and robotic system velocity constraints (q̇
– bottom graph) are met.



Fig. 10. Evaluation of the tracking performance: trend of the mean (black
squares) and max (grey dots) norm of the error along a variable length L
linear trajectory performed in T = 1.5 s.

C. Tracking performance - non-sliding and robot constraint

In this subsection, the tracking performance of the devised

MPNSM control approach is showcased when both input and

manipulation/robotic system constraints are met. This case is

reproduced by re-scaling down to T = 1.5 s the completion

time of the desired linear trajectory considered in the previous

sections. This makes the non-sliding manipulation constraints

binding, i.e., the inequality constraint Λ ≥ 0 holds with

equality for some Λi at the optimal point in some portions

of the trajectory as shown in Fig. 8 and Fig. 9. As it is

possible to note, this is in general associated to higher tracking

errors when compared to the baseline case (i.e., no constraints)

previously shown in Sec. VII-B.

In addition, to show the influence of input and state

constraints on the tracking performance, we restrict the up-

per/lower bounds on τ̇ to ±200 and relax those on joint

positions, velocities and torques in the case considered in

Fig. 8, while we re-apply the original robotic system bounds

and relax those on the input in the case considered in Fig. 9.

In the first case, τ̇1 is saturating to the upper limit in some

portions of the performed trajectory. In the second case, q̇4 is

saturating to the upper/lower limits in some portions of the

performed trajectory. In both cases, the tracking error is larger

of the baseline case (no constraints) reaching a maximum

of emax
p = 0.06 m, emax

o = 0.09 rad and emax
p = 0.07 m,

emax
o = 0.12 rad, respectively, along the performed trajectory.

Finally, we evaluated the tracking performance when the

trajectory length is varied as done in Sec. VII-A. Figure 10

shows the trends of the mean (black squares) and max (grey

dots) norm of the position (ep) and orientation (eo) errors.

These are constructed as follows

ep =







(p∗o (0)− po (0))
T

...

(p∗o (T )− po (T ))
T






, eo =







(φe (0))
T

...

(φe (T ))
T






,

where p∗o denote the desired position extracted from the desired

path, φe is the vector of Euler Angles extracted from the

rotation matrix error, and T is the trajectory duration. The

norm operator is intended to be applied row-wise. As noted

from the figure, both the mean and the maximum error norm

are low for shorter (thus slower) trajectories, while they

increase for longer (faster) trajectories. The explanation is

readily available: the tracking performance is penalized by the

robotic and manipulation constraints becoming binding along

trajectories requiring high accelerations.
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Fig. 11. Validation of the tracking performance along a slow (T = 2.5 s)
trajectory. The norm of the error terms (ep and eo – top graph) is higher as
the torque disturbance is applied between t = 1 s and t = 1.5 s. Manipulation
force coefficients (Λ – middle graph) and input (τ̇ – bottom graph) trends are
shown.

The variation of the object dynamic properties, initial posi-

tion and dimension is not causing significantly different results

in terms of tracking performance, as also shown in [41].

D. Tracking performance - external disturb applied

Torque-controlled robots have the advantage of ensuring

a compliant behaviour to external environment interactions.

This is an advantage compared to position control robots

since compliance avoids giving rise to high contact forces

when unintended interactions occur. To demonstrate the ability

of our torque-based MPNSM control approach to handle

this situation, we applied a disturbance torque in simulation,

emulating an unwanted collision of the end-effector along

with the x̂-direction (orthogonal to the performed motion).

We again consider a T = 2.5 s trajectory duration to show the

effect of the disturbance isolated from those of the potential

constraint violation. The considered disturbance torque τd is

computed as follows

τd = JT
e

[

A

(

sin

(

td
D
π

))

, 0, 0, 0, 0, 0

]T

, 0 < td < D,

(24)

where td = t − tmin and D = 0.5 s is the duration of the

disturbing torque signal and A = 20 N denotes its amplitude.

During the time frame tmin = 1 s and tmin + D = 1.5 s,

the robotic system control input is computed as τ(t) =

τmpc(t)+τd(t), with τmpc being the controller output calculated

as in (23). Results are shown in Fig. 11. As it is possible to

note, the system is perturbed by the applied disturbance torque
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Fig. 12. Comparison of the tracking performance and control torques between
acceleration- and jerk-based MPNSM controllers along a T = 1.5 s linear
trajectory. The norm of the error terms (ep and eo – top graph) is comparable
in the two cases while smoother torques (τ – bottom graph) can be obtained
by the jerk-based one.

and the tracking performance is significantly deteriorated when

compared to the baseline experiment (Sec. VII-B). Moreover,

when disturbance torque is applied, contact force parameters

touch their lower bound. However, our controller can readily

compensate for and recover from the perturbed state using

the optimal control input shown in the bottom graph. Further

simulations results can be seen in the video accompanying this

paper.

E. Comparison with acceleration-based controller

In this section, we compared the performance of our jerk-

based MPNSM controller with an acceleration-based one. This

is derived reducing the system state to x =
(

qT, q̇T
)T

, and

considering τ as output of the controller. Robotic system

constraints are thus imposed as state/input bounds while non-

sliding manipulation constraints are easily formulated as an

inequality relation on a nonlinear function of the two.

Results of the comparison are shown in Fig. 12 where

we report the tracking error and the torque control input

for the two controllers along the same T = 1.5 s linear

trajectory where only manipulation constraints are becoming

binding. The superscript a or j denotes the terms related to

the acceleration and the jerk case, respectively. Despite the

two controllers show comparable tracking performance (ep
and eo – top graph) with our jerk-based MPNSM controller

we obtained smoother control torques (τ – bottom graph) that

is sometimes beneficial when vibration and actuators’ stress

reduction is of interest. This is due to the integration rule

shown in (23) and to the additional constraints on control

torques variations that can be imposed in our jerk-based

controller.

It is worth to mention that the acceleration-based MPNSM

controller is slightly more efficient exhibiting an average

computation time of 0.048 ms along the considered trajectory.

However, comparing acceleration- and jerk-based control ap-

proaches is beyond the scope of this paper.

VIII. REAL EXPERIMENTS SHOWCASE

To demonstrate the validity of our approach, we conducted

additional simulations and real experiments employing the

RoDyMan humanoid robot. It is a 21-DoF robot made of

a custom-built mobile base, a two-DoFs torso, two one-

Dof shoulders, and two six-DoFs Shunk Powerball arms.

Additional construction details can be found in [42]. For our

experiments, we employed only the kinematic chain starting

at the torso and ending at the tip of the robot’s right arm

(9 DoFs). A plastic tray-like end-effector was attached to it

through a 3D printed support, which embedded a Shunk 6-

Axis F/T sensor. A calibrated Intel RealSense Depth Camera

D415 was mounted on the tray with the purpose of tracking

and recording the object displacement thanks to a QR-code

pattern and the VISP auto tracker module [43]. The object is

a steel hollowed cuboid of dimensions 60 × 60 × 70 mm,

whose inertial properties are: mass mo = 0.236 kg and

diagonal inertial matrix, Io = diag(4.5375×10−5) kgm2. The

friction coefficient between the object and the tray has been

experimentally identified in µ = 0.2. The robot was position-

controlled, and its set point was extracted from the output

trajectory solution of the MPNSM controller given in (20).

The robot control cycle time is set to 8 ms. Table III contains

the real system control parameters while the robot physical

limits are given in Table IV. A picture of the experimental

setup is given in Fig. 1.

We compared the system’s performance while tracking

the reference trajectory using the robot-embedded position

control and the MPNSM controller. The first object trajectory

chosen for the real experiment is a quintic polynomial rest-

to-rest linear Cartesian trajectory with initial point pi =
[0.7, −0.5, 1.34] m, and final point pe = [0.7, 0.15, 1.34] m

expressed in the robot base frame, whose duration is T =
1.5 s. As in the simulation, the desired orientation is kept con-

stant and corresponding to the tray facing the upward direction.

The corresponding joint trajectory was computed using the

Jacobian pseudo-inverse CLIK routine. A timed sequence of

key frames taken during the performed experiments is shown

in Fig. 13 (a) – (d). At the same time, quantitative data are

plotted in Fig. 14 in terms of tracking error E , manipulation

constraint Λ and object displacement D for the two cases. The

MPNSM controller performance trends in the real experiments

are close to what was achieved and widely discussed in the

previous sections. In summary, when manipulation (or robotic

system) constraints become binding (one or multiple Λi = 0
in the middle graph), tracking performance (ep,m and eo,m in

the top graph) are penalized with respect to the reference case

(ep,r and eo,r in the same graph) in favor of safety, i.e. the

manipulator does not exceed its limits and the object does not

slide and fall from the tray. This can be seen from the norm of

the object displacement d(t) = ||po(0)− po(t)|| in the bottom

graph shown for the two cases. Better insights can be captured

from the complete video of the experiments3.

To additionally prove the robustness of our controller we

consider two additional trajectories: (i) a rectangular path in

the horizontal plane, shown at the top of Fig. 15, featuring

3https://github.com/prisma-lab/nonprehensile-object-transp



TABLE III
REAL ROBOTIC SYSTEM JOINT LIMITS.

Joint # 1 2 3 4 5 6 7 8 9

q [deg] ±170 ±120 ±120 ±170 ±120 ±170 ±170 ±170 ±170
q̇ [deg/s] ±57 ±57 ±57 ±57 ±57 ±57 ±57 ±57 ±57
τ [Nm] ±176 ±176 ±110 ±110 ±110 ±40 ±40 ±40 ±40

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 13. Experiments using the proposed model-predictive non-sliding manipulation control approach. The desired trajectory is shown as a white dashed line.
(a) – (d) Key frames of RoDyMan robot tracking a 1.5 s linear trajectory. (e) – (h) Key frames of RoDyMan robot tracking a 5.5 s Lemniscate-like trajectory.
(i) – (l) Key frames of RoDyMan robot tracking a 4.5 s rectangular trajectory featuring three via points.

three via points obtained imposing trapezoidal velocity profiles

with acceleration time equal to 0.2 seconds at the transitions

between segments; (ii) a Lemniscate-like path in the vertical

plane, shown at the top of Fig. 16, obtained employing a

piecewise cubic B-spline curve enclosed by its control points.

The validation of the performance using the proposed MPNSM

control onto the Rodyman robot is shown in the graphs of

Fig. 15 and Fig. 16, respectively. A timed sequence of key

frames taken during the performed experiments is shown in

Fig. 13 (e) – (h), (i) – (l), where the desired trajectory is

shown in overlay. In both cases, it can be noted that when the

robotic system constraints become binding (q̇ - bottom graph),

the tracking performance is penalised (E - top graph), while

the contact force coefficients (Λ - middle graph) are still kept

greater than zero.

TABLE IV
REAL MPNSM CONTROL PARAMETERS.

Parameter Value Parameter Value

Qτ 1e−4 Qe 5e−4Q

Qq 1e7 R 1e−4

Qq̇ 1e5 mo 0.236
QΛ 13− 3 I 4.54e−5

IX. DISCUSSION

The proposed MPNSM controller relies on the knowledge

of the manipulated object dynamic model and its friction coef-

ficient. While in industrial settings, it is reasonable to assume

knowledge about the manipulated objects, this is generally

not the case in unknown environments. One interesting future

research direction can be exploring online dynamic parameter

estimation procedures for non-prehensile manipulation setups,

such as the one considered in this paper. However, to solve

this problem, one must account for the dichotomy between

moving safely (i.e. avoid sliding) and exciting the object

dynamics (required to identify its parameters). To this end,

the naturally smooth object transportation task considered in

this work can easily become hybrid in view of the stick and

slip phenomenon: uncertainties in the transported object model

can indeed trigger the transition between static and viscous

friction. In this case, the advantages of using jerk-based MPC

to obtain smoother torque profiles for manipulation will be

even more evident.

Although our controller achieved encouraging results over-

all, several points need to be better discussed. Regarding the

mathematical formulation of our controller, it is worth men-
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Fig. 14. Comparison of the trajectory tracking performance along a 1.5 s
reference trajectory using RoDyMan robot. The norm of the error terms (ep
and eo – top graph) is higher when the MPNSM control is used. Evolution
of the non -sliding manipulation coefficients (Λ – middle graph) and norm of
the object displacement (d – bottom graph) in the two cases.

tioning that in the extended state, we could have considered

adding only τ . Indeed, the object wrench, the contact forces,

and their coefficients (on which we formulate the non-sliding

constraint) can all be expressed as a function of the proper

manipulator state plus τ . However, including Λ in the extended

state allowed to more easily formulate its constraint as a state

constraint and more straightforwardly feedback the contact

force measurement [8]. This redundancy, however, increased

the number of states and thus the solving time of our controller.

In the future, we aim to investigate the gain in terms of

accuracy and solving time by removing Λ from the extended

state. Moreover, matrices appearing in the time derivative of

Λ in (22) were derived under the assumption that the dynamic

model holds constant over the time horizon. This might not

always be true, e.g., for longer prediction horizons, and needs

further attention.

From the experimental point of view, the solver convergence

time is decreased when a shorter horizon length is utilized;

however, the solver’s trajectory tracking performance also

decreases. A trade-off between the solution time, the tracking

performance, and the computational complexity involved must

be found depending on the task requirements. We experi-

mentally found a good trade-off using a prediction horizon

N = 10. This choice makes the proposed controller suitable

for online implementation with a real robotic manipulator.

However, the success of the solver in finding a solution at

each time step heavily depends on the selected cost function

and its gains.
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Fig. 15. Validation of the tracking performance along the rectangular, 4.5 s
duration trajectory. The black dot denotes the start/end point, the arrows
indicate the direction. The norm of the error terms (ep and eo – top graph)
is higher as manipulation (Λ – middle graph) and system constraints (q̇ –
bottom graph) are met.

X. CONCLUSION

This paper proposed a model-predictive non-sliding ma-

nipulation control approach for non-prehensile object trans-

portation using robot manipulators. We derived the combined

manipulator/object dynamic model and formulated the associ-

ated non-sliding constraints that are enforced by the controller.

The proposed optimization-based controller has been shown

capable of safely accomplishing a trajectory tracking task with

an object being transported in a non-prehensile way on a tray-

like manipulator end-effector. The controller imposes that the

manipulation and physical constraints of the robotic system are

always respected during the executed trajectory at the expense

of tracking performances. Extensive dynamic simulations and
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real-world experiments validated our approach and provided

interesting insights for future research directions on this topic.
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