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Abstract—We present an approach to address a multi-robot
persistent monitoring problem, where a team of agents must
repeatedly survey specific points of interest (POIs) within a 2-D
area. Our approach models the interest value of each POI with
a heat-like dynamics. Each agent then solves online a nonlinear
model predictive control (NMPC) problem to determine feasi-
ble trajectories that minimize the cumulative heat across all
POIs. The trajectories are parameterized with Bézier curves,
whose control points are used as optimization variables; this
parametrization enables agents to efficiently communicate their
optimized motions. An additional quadratic optimization layer
adds safety guarantees while a central unit updates the global
POIs’ map. The method has been validated in simulation and real
experiments, demonstrating that the algorithm can run online
and on computationally limited hardware platforms. In addition,
an extensive simulation campaign compares our NMPC against a
state-of-the-art baseline across 90 randomly generated scenarios
with different numbers of POIs. Our NMPC outperforms the
baseline along the considered metrics, attaining lower robot
velocities.

Index Terms—Multi-robot, monitoring, coverage, Nonlinear
Model Predictive Control.

I. INTRODUCTION

ULTI-ROBOT systems promise increased efficiency

in applications such as environmental monitoring [1],
inspection of industrial plants, precision agriculture [2], and
surveillance [3]. In this context, heterogeneous robotic teams
have gained significant attention [4]—[8], as the deployment
of robots with different capabilities, such as sensor types,
mobility constraints, and endurance, can address complex and
large-scale tasks with enhanced resilience and efficacy.
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Fig. 1. Picture of the envisioned scenario. Two UAVs monitor repeatedly
some POIs. Optimal trajectories and control points are depicted projected on
the ground.

A substantial body of research addresses challenges in
coverage and area search due to their significance in practical
applications. While these tasks differ slightly, they both in-
volve planning motions based on a distribution of information
across the terrain [9], which may reflect physical quantities
or the likelihood of a target’s presence. Indeed, performing
full coverage of an environment, unless strictly required by
the task, is highly inefficient and time-consuming when some
knowledge can be utilized to prioritize certain areas or to
guide motions more effectively. In particular, spatial area
functions are used in various domains: intruder detection and
search-and-rescue missions [10] to represent the probability
of locating or intercepting [11] a target; agricultural spraying
to encode chemical release patterns [12]; cleaning robots to
model dirt accumulation [13]; and environmental monitoring
to indicate pollution levels, debris [14] or hazardous substance
concentrations [15].

Despite significant advancements, deploying multi-robot
systems in real-world scenarios remains challenging. Robots
must adapt dynamically to changing conditions, optimize
motion within safety and operational constraints, and use de-
centralized control for scalability and resilience. Furthermore,
control frameworks should be flexible enough to accommodate
heterogeneous robotic systems.

Within this context, this paper addresses a multi-robot per-
sistent monitoring problem where a team of agents, possibly
heterogeneous, has to survey some points of interest (POIs)
repeatedly (see Fig. 1). These POIs might correspond to
localized spots that must be observed, or the result of a



non-uniform discretization of areas we want the robots to
traverse [16]-[19]. Whenever the number of the POIs is less
than or equal to the number of agents, the problem can
be regarded as a task allocation or a static coverage. More
interesting is the case in which the number of POIs exceeds
the number of agents; thus, a static deployment [20] would be
inefficient. The agents should then plan motions to maximize
coverage over time, i.e., cover the highest number of POIs
and minimize the time between the visits. In addition, the
time spent on each POI may be affected by the time elapsed
since the last visit. In this sense, the presented application
shares some scopes with surveillance [21] and pursuit-evasion
problems [22].

Based upon our previous work [23], our approach char-
acterizes the POIs by their coordinates and a scalar value
representing application-specific quantities. These values can
correspond to the probability of detecting an intruder, a
missing person, a gas leak, or model and information gain
linked to a time-varying phenomenon to be monitored. The
single POI’s value function is shaped as a 2-D Gaussian that
grows and expands while the agents are far from it; thus, the
entire information distribution can be seen as a heatmap that
dynamically varies depending on the current robots’ locations.
By making these quantities increase over time if no agent is
near a point of interest, persistent monitoring is achieved, as
shown later.

The use of a dynamically evolving quantity to characterize
coverage quality is not new in the state-of-the-art; however,
most approaches do not leverage an optimization horizon
and often ignore the constraints inherent to real robotics
systems. In contrast, we solve the monitoring problem using
a nonlinear model predictive control (NMPC) that predicts
the POI model’s evolution and computes optimized, feasible
motions to accomplish the task. A convenient motion parame-
terization allows the online solution of the nonlinear problem
and additionally facilitates multi-robot coordination, even in
heterogeneous settings. The proposed framework introduces a
fundamentally different approach compared to current state-
of-the-art methods, as detailed below.

A. Related works

Coverage problems usually leverage Voronoi partitioning
of the environment, assigning to each robot a region of
dominance [24]. Agents may be tasked with covering the
whole region of interest either uniformly or with a given
spatial density [25], [26], converging to an optimal deployment
configuration, which may vary if the density changes in
time [27] or if it is linked to a dynamical function [6].
In several works, the robots are then led to the center of
their Voronoi partitions using controllers synthesized through
gradient-based methods [25], model predictive control [28],
and constrained quadratic problems [25]-[27].

However, coverage often assumes that the robots can cover
the whole region, i.e., the union of their sensing areas can
cover the entire domain. When such an assumption does not
hold, more complex motion planning is needed, and the prob-
lem becomes closely related to coverage path planning, where

an optimal sequence of waypoints must be computed [17],
[18]. In these approaches, the visit order of the POIs is
often determined offline using adaptations of the traveling
salesman problem (TSP), which is NP-hard. For example, the
approach in [18] solves a TSP to determine the POIs’ visit
order, performs a greedy optimization to compute the points
observation periods, and then generates B-spline trajectories
to ensure smooth and feasible motion for a single drone.

A variant of the coverage is also the so-called awareness
coverage control, which introduces a dynamic function to
represent robots’ awareness of the domain [29]. This concept
is explored in [30], and with an awareness loss term in [19],
[31]-[34], where the awareness decays in time with a given
constant, and the agents must move persistently over the
domain. In particular, in [33], the awareness function is used
as a time-varying density in a Voronoi-based coverage, and a
local gradient-based control law is derived; a discrete cooper-
ative controller based on the concept of cellular automata is
proposed in [32]; while the work in [31] formulates a linear
optimization problem to derive a periodic speed controller,
still, the approach is not dynamic and only the leader agent
moves along the path. In [19], periodic motions are com-
puted optimizing agents’ speeds and initial locations on a
given closed-path connecting mission points. However, making
robots move sequentially along a single closed path strongly
restricts agents’ mobility. Finally, the approach in [34] consid-
ers an unknown loss of awareness and proposes a combination
of a gradient-based nominal controller and a perturbation one
to balance exploitation and exploration. Similarly, a multi-
robot search and rescue problem is addressed in [16] by
defining a dynamic reward function based on Gaussian radial
basis functions, which is used to generate gradient-based
velocity references. None of the above approaches considers
an optimization horizon nor the use of heterogeneous agents
with different mobility constraints, as the presented work.

A combination of reward functions and variable time-step
MPC is proposed in [11] for intercepting multiple targets, but
only with a single UAV. In [9], an online receding horizon
ergodic control approach is proposed for coverage, search,
and target localization. Specifically, the approach leverages a
continuous spatial distribution to represent information. This
distribution is nonparametric and can be constant in time
and known, or estimated by the agents. The methodology
then employs local control computation and globally shared
information so that the agents’ trajectory statistics match the
distribution ones.

B. Contribution

We propose a dynamic online motion planning approach
based on NMPC for persistent monitoring of discrete points.
Unlike most cited works, we propose a more complex control
framework to account for constraints. Differently from [19],
we do not employ closed paths, and we provide a solution
that also allows static deployment cases. Our approach differs
from [9] as we only consider localized spots of the domain
while relying on a dynamical model to quantify and predict
coverage cost evolution. The methodological contributions of
our work are summarized in the following.
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Fig. 2. System architecture—A ground control station (left) updates the global Points of Interest (POIs) values using agents’ positions. The agents (center)
retrieve the global map heat values £ from the central unit and communicate their optimal trajectories through control points on a common network. Trajectories
are obtained by locally solving a NMPC and a QP (right); the blue boxes denote local computation units, and use as inputs the global heats from the GCS,
the shared control points, the robots’ positions (which can either be globally shared or locally sensed), and on-board sensors measurements.

o We present an NMPC to perform persistent POIs mon-
itoring, which generates locally optimal, parametrized
motions for task execution. Building on our previous
work [23], tailored for a single UAV, we propose a novel
formulation that incorporates motion parameterization
to enable efficient computation and broad applicability
across different robotic systems.

e We generalize the approach presented in [23] to enable
coordinated persistent monitoring with a multi-robot sys-
tem. To this end, we: i) modify the POIs heat-like dynam-
ics, making it dependent on multiple robots’ positions; ii)
propose a mixed centralized-decentralized framework in
which all optimization problems are solved locally by
each agent.

The overall framework is tested in realistic simulations across
different case studies, with both homogeneous and hetero-
geneous robotic teams. A statistical analysis of the results
obtained over 90 simulations demonstrates that our approach
outperforms the baseline within different numbers of POIs
in the single-robot scenario. Additionally, it is experimentally
validated with two aerial robots.

II. PROBLEM STATEMENT

Consider a convex area A C R3, for simplicity modeled as
a cube of dimensions [, x I, x [, that has to be surveyed by
a team of N > 0 agents. The area contains M > 0 points of
interest identified by their coordinates p; = [fiz,, f1y,]T € R?
with ¢ = 1,..., M. When M = N, the optimal solution is
trivial, as each agent should cover precisely one point; instead,
for M > N, our objective is to cover all the POIs periodically.
We assume that the POI distribution has been specified by the
user or a higher-level task planning module, depending on the
task, the current environment, and the operative conditions.
We associate a continuous interest value to each point, whose
dynamic depends on the agents’ positions. From now on, such
a value will also be referred to as heat due to the similarity
of the crafted dynamic equation to the heat diffusion model,
as will be detailed in Sec. III-D.

The control objective is to reactively control the agents’
motions to minimize the heat values without violating the area
bounds, the dynamic constraints, and avoiding collisions.

III. METHODOLOGY

This Section details the proposed methodology. Sec-
tion III-A presents the overall architecture, the trajectory
parameterization is introduced in Sec. III-B, while Sec. III-D
presents the dynamic function associated with the points of
interest. The discrete-time optimization problem is formulated
in Sec. III-E and III-F, while the safety layer is presented in
Sec. III-F.

A. System architecture

Figure 2 illustrates the system architecture. We consider
a team of heterogeneous agents that can localize themselves
within a common reference frame and communicate over a
fully connected network. The system assumes the presence
of a ground control station (GCS), serving as a central unit,
that updates the POIs’ values based on the agents’ positions
pr € R3, r =1,...,N. All agents use the latest available
values retrieved from the GCS, and the information shared by
other agents to solve the NMPC locally, as better explained in
the following sections.

B. Reference Trajectory

Differently from [23], motion trajectories are parameterized
using cubic Bézier curves whose control points are used as
decision variables in the optimization problem outlined in
Sec. III-E. Given the optimized control points, the setpoints
p?(t) € R? can be computed at each time instant by sampling

w050 (-5) () o

p=0

and its derivatives p?(t), p?(t), where ¢ € R is the time
variable, ¢, ¢ R3, for p = 0,...,3, are the four control
points that describe the curve, (i) = sz_w is the binomial
coefficient, and 7y > 0 is the prediction horizon. In the
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Fig. 3. POIs dynamics functions evolutions obtained with l;q, = 10, K5 =
1, omin = 0.25, 0maz = 1.5.

following, we will refer with C = [cT,cT,cf,cF]" € R!2
to the stacked control points vector.

The trajectory parameterization reduces the optimization
problem’s dimensionality and introduces a continuously de-
fined motion curve that can then be sampled at any desired
frequency. Additionally, control points optimize intra-agent
communication, as the full optimal reference trajectory can
be communicated through C.

C. Agent model

We assume that each robot is equipped with a low-level
tracking controller and define as agent model the closed-loop
response of the controlled system. Let x € R™ be the robot
state and u € R™ the low-level control input, a generic state
model in affine form can be written as

x = f(x) +9(x)u, 2

where f : R" — R™ and g : R® — R™ x R™ are continuously
differentiable functions. The control input in (2) is computed
by the robot’s low-level controller using the current state
and the reference trajectory. Therefore, by employing the
parameterization described in Sec. III-B, the controller can
be represented as a function k : RT x R” x R? — R™, i.e.

u = k(t,x,C). 3)

The agent model is then given by (2) and (3), and the control
problem consists of computing the optimized vector of control
points C.

D. POIs dynamic model

The vector §& = [¢1,...,&m]T € RM contains the heat
values associated to the POIs. These values reflect the overall
coverage task performance, and robots must minimize its

norm. Each element of the vector depends on the distances
of the ¢-th POI from an agent and evolves according to

N
& =ho(L) + Y halli, &), )
j=1

where h, and h, denote the heat rise and decrement functions,
respectively, and the dependence on time is omitted for con-
ciseness. The distance of the ¢-th point from the nearest robot
is given by
Zi = m,in ll]a
J

where [;; = ||II p; — p;]| is the Euclidean distance of the i-th
POI from the j-th agent’s position projected on the ground
through the projector IT € R?*3,

The rising part is described by

h,(l;) =2 Ki r? l? sechQ(ri2 l?), 5)

where sech(-) is the hyperbolic secant function and K¢,
r; € R are two constants related to the maximum value of the
incremental part. By choosing r; = 1/1"**, with [["** > 0
being the maximum distance that an agent can attain from
the i-th POI, the incremental part in (5) reaches its peak
value before the maximum allowable distance from the point
is reached, and becomes approximately zero at [ = 2{""**. The
values r; are set by design and can be computed easily given
the area size.

The descending part, instead, is maximum when the agent
is positioned on the POI and is given by!

_ ; 1 12412
ha(lij, 1, &) = —(Kg+ &) 552 P\~ 5 | (6)

where 0;(&) = opmin + tanh® (KL&) (Omaz — Omin) is the
i-th Gaussian distribution variance, tanh(-) is the hyperbolic
tangent function, K € R and K! € R are constant gains,
and [0nin, Omaz] € R? are minimum and maximum values.
Equation (6) defines a decrement term that depends on both
the current heat and the agent’s position, with its influence
decaying exponentially with distance. Moreover, the Gaussian
variance—governing the spatial extent over which a robot
affects a POI's heat—increases as the heat grows, thus at-
tracting agents. The model in (4) extends the POIs dynamics
introduced in [23] to the multi-robot setting by making the heat
evolution depend on multiple robots’ positions, and reduces to
the one in [23] when N = 1. In particular, the rise term was
designed to depend only on the nearest agent; in this way a
single robot can prevent a point from heating up. Conversely,
the heat decreases more rapidly when multiple agents converge
on the same zone. The use of the minimum distance ; in the
decreasing function is not strictly necessary for the coverage
task. However, it makes the i—th POI heat decrease more
sensitive to the j—th robot control points variation, if it is the
nearest agent. Although this may reduce the efficiency of heat
decrease, it promotes better domain separation among agents.

In addition, in [23], the heat was constrained to be strictly
positive; here, we allow it to attain negative values by choosing

'In the case N = 1, the term [; is set to zero as it coincides with lij.



KY > 0. As the norm of ¢; is minimized, agents move away
from the point of interest as soon as its value reaches zero. This
mechanism encourages agents to move faster to other points of
interest or areas on the map; consequently, more erratic motion
patterns are generated, as illustrated in Sec. V. For a clearer
understanding, the functions’ evolutions are depicted in Fig. 3,
while further considerations are reported in the Appendix.
Equation (4) depends on all agents’ positions and is utilized
by the GCS to continuously update the global map using the
actual robots’ positions. By periodically retrieving updated
values, agents maintain coherent POIs’ states across the team.
As model (4) describes how the POIs’ heats vary on the
basis of the current state and the agents’ positions, it can
be included in the NMPC to predict the heat evolution and
optimize motions accordingly. However, each agent optimizes
its trajectory in a decentralized way, and it is assumed to be
unaware of the remaining robots’ motion models. Therefore,
single agents can leverage shared control points for decen-
tralized optimization. In fact, these points allow each robot to
reconstruct other agents’ optimized reference trajectories over
the horizon and use them instead of the predicted positions.
Then (4) can be evaluated by the j-th agent using the distances

o= Mpf —pill, Vre{L,...,N}\ {i}

7 . . *
l; = min {lijvm}n liT} ,

where p? is computed according to (1) using C* = {c,;, | =
0,...,3,Vr € {1,...,N} \ {i¢}} that contains the received
control points, while /;; = |II p; — ;|| contains the predicted
position. In this way, other agents’ control points are incorpo-
rated within the optimization horizon, enabling the prediction
of the POIs’ heat evolution due to team-level motions.

E. Optimization problem

This section formulates the NMPC problem solved by
the j-th robot, employing the Bézier curve parametrization
introduced in Sec. III-B, and the prediction models presented
in Sec. III-C and III-D. In the following, the notation (-);
indicates that the quantity refers to the j-th agent, while the
subscript k£ indicates that it is evaluated at time t;. Each
robot computes the optimized control points by solving the
following discrete-time nonlinear problem (NLP)

Ny
xmwggwﬁj Zyﬁwﬂﬁ4wﬁw+#m+Jm )
s.t. discretized versions of (2),(3), (4)
cjp€A for p=0,...,3, (8)
Pk €A ©)
Xk €X (10)
ujr U (1D
Vke{l,...,N;},
P = p;(0), (12)

(13)
(14)

V?,O = Vj(O),
Xjo0 = Xj(o)a €jo= £(0).

Algorithm 1 j-th agent NMPC Loop
Require: Initial x; o
1: Send ¢, =p; Vp=0,...,3
Require: first C*, &,
2: Initialize state x;o < x;(0),
3: Initialize heats with values from the GCS &, o < £(0)
4: while running do
5 Update &0 with GCS values, and x; o,
6:  if new values then update C*
7 Solve the NMPC optimization problem to obtain

p Vp=0,...,3
8: Compute aj (AT)
9: end while

where Ny = Ty /At with At being the sampling time, H €
RM*M jndicates a positive definite weighting matrix, X is
the state set, I/ the input set, and v; the robot velocity. The
additional terms in the cost function are

Ny

Jiw = k> IV (15)
k=1

Jju ku Y gl (16)
k=1
Ny

Tiw = ke > _IIPSs =Pl (17)
k=1

where J; , minimizes robot’s desired velocities v ) to avoid
bounds’ saturation, J; ,, is used to minimize the robot s control
input, and Jj ;- is a regularization term, with p%,CJrl being the
previous optimal reference trajectory, which penalizes devia-
tions from the previously computed optimal solution, thereby
improving other agents’ predictability. Finally, k,, k,, k, are
positive gains.

Notice that (12)—(13) are continuity constraints on the
reference trajectory and that p?’o, V}{o can be expressed in
closed form as linear combinations of the control points as

Pl cj0, (18)
3
d
Vie = o (cj1—¢50), (19)
J Tf J J

where (18) constraints c; o to coincide with the actual robot’s
position. If smoother accelerations are needed, an additional
constraint in the form of

ajy = aj, (20)

can be added on initial reference acceleration, where ad1 is

the previously computed optimal value. Equation (14) imposes
initial conditions, using as € the latest available value received
from the central control station. The problem (7)—(14) is solved
with period At, obtaining the optimized control points; from
these, the new position, velocity, and acceleration setpoints can
be computed. Notice that the NLP is solved in a receding hori-
zon fashion, sending to the robot’s low-level control system
only the setpoints evaluated at the next sampling instant. The
overall NMPC execution loop is summarized in Algorithm 1.



F. Safety

In the NMPC problem (7)-(14), different kinds of con-
straints can be included to address collision avoidance with
other robots. A common choice to avoid inter-robot collisions
in coverage tasks is to introduce a buffered Voronoi-based
constraint [35]. Taking inspiration from this and leveraging
shared control points, half-space constraints can be enforced

as
pd) +pio)
kT Pio .
(pi - 7”21> Pri + TsHpriH <0, vr 7é 1, (21)
with p,; = ||pf,k — pioll and s > 0 a positive constant.

The constraint (21) is imposed along the prediction horizon
and is calculated by the i—th agent using its measured initial
position and the predicted trajectory pff’  of the r—th robot,
computed from previously shared control points. This choice
preserves the constraint linearity in the decision variables and
makes the separating plane move along the horizon due to
other robots’ motions only. Nevertheless, although the task
tends to drive agents apart, such constraints can overly restrict
robots’ motions.

Therefore, we propose a cascaded approach where a safety
layer, executed at a higher frequency, allows the system to
react to changes in the environment more effectively. This
safety layer can be applied either with or without avoidance
constraints enforced in the NMPC problem, potentially reduc-
ing the computational complexity, at the cost of disregarding
them in the planning phase. Specifically, the considered safety
layer enforces collision avoidance and boundary constraints
by defining appropriate higher-order control barrier functions
(HOCBFs) [36] and projecting the reference acceleration onto
the safe set through the quadratic problem (QP)

min ||lu — adH2 (22)
s.t. a'u<b, Vren, (Avoidance) (23)
Ayu<by (Boundary) 24)
Amin S u S Amax (25)

where a,., b, A, and by, can be computed from the CBFs, as
in [37], [38], the model, and depend on the measured state,
while a,,;, and a,,q, are input limits. Finally, the reference
acceleration a? is obtained by sampling the second derivative
of the Bézier curve. The resulting optimization problem is
minimally invasive [39], convex, and can be solved online
at a higher rate than the nonlinear one, possibly employing
obstacle measures obtained with onboard sensors, or sampling
the reference acceleration at a higher frequency.

In the following simulations and experiments, CBFs have
been computed assuming that the other robots’ velocity is
unknown and thus resorting only to current position values.
We highlight that the QP in (22) can also be used to enforce
additional safety constraints, such as obstacle/area avoidance,
as shown in Sec. V-A, where the avoidance task (23) has been
reformulated to operate outside of a no-flight zone.

IV. CASE STUDIES MODELS

To validate the proposed methodology, the nonlinear prob-
lem outlined in Sec. III-E is applied to two mobile robot

platforms: a flat quadrotor, as uncrewed aerial vehicle (UAV),
and a unicycle, as uncrewed ground vehicle (UGV). In both
cases, the subscript j, indicating the robot index, is omitted for
the ease of notation. These two robots are introduced below
and subsequently utilized in various scenarios in Sec. V.

A. Uncrewed Aerial Vehicle

Among UAVs, flat quadrotors utilize reference trajectories
to control both position and yaw angle. Since our primary
focus is on agents’ positions, we neglect the yaw angle: this
simplification is justified in cases where the orientation is not
critical to the task at hand, such as when a downward-facing
camera on a gimbal is mounted.

Introducing the full nonlinear model [40] and the controller
expression in (7) would not only complicate the problem,
making it challenging to solve online, but also add unnecessary
complexity for our purposes; thus, we opt for a simplified
approach, assuming that the closed-loop response of the posi-
tional part can be described by a double integrator model.
Moreover, such a model is suitable for every vehicle not
subjected to nonholonomic constraints. Let x € R® with
x = [p* VT]T be the state vector, where p € R? and
v € R? are the drone’s position and velocity, respectively.
The closed-loop model is then given by

(26)
27)

p = v,
K (p'—p) + Ko (p? — v) +p%,

where p?, p? and p? € R? are the desired position, velocity,
and acceleration vectors, respectively, as computed from (1),
while K1 = dlag (kl,la kLQ, kl_’g), K2 = diag(k;l, k272, k273)
are definite positive gain matrices.

In the case of UAVs, if the flight height is not fixed after
the optimization, another term in the cost function can account
for a nominal flight height z¢

v =

Ny
Jo=kY (efpl, —2%)°, with e;=10,0,1". (28)
k=1

B. Uncrewed Ground Vehicle

UGVs are mainly wheeled robots subject to nonholonomic
constraints whose kinematic model can be described by

% = [:1'77 v, H]T = [vcos@, vsiné, w]T, (29)

where z,y € R are the Cartesian coordinates of the contact
point of the wheel with the ground, 8 € R is the orientation
and v € R and w € R are the driving and steering veloc-
ities, respectively [41]. Different control laws are available
for trajectory tracking [41], both for first and second-order
kinematics models. A second-order model (26)—(27) could be
used, for example, in the case of a dynamic feedback lineariza-
tion controller [42]; however, this control approach requires
persistent trajectories (v # 0) which could not be optimal in
the problem here addressed. We therefore assume the presence
of a tracking controller based on input/output linearization,
obtaining as linear and angular command velocities (26)-(27)

Ug cos @ — uy sin 6
b b

v=1uycosf +ussinfh, w=

(30)



with

ulzfvji;+k1(x}iafﬂfp)7 U2:y'§13+k'2(y§i3*yP)’

where zp,yp € R are the cartesian coordinates of a point P
located along the sagittal axis of the unicycle at a distance
|b| from the contact point of the wheels on the ground [41],
and ki, ko are strictly positive gains. With this choice, (29)
corresponds to the robot model (2), equations (30) replace (3),
while the term J, in the cost function is given by

Ny

Ju = Z k‘uv,zC + kww,%.
k=1

€29

Unlike the aerial robot, evaluating the POIs cost function at
(z,y), which corresponds to the wheel contact point, may be
inefficient for visual monitoring tasks, as UGVs usually mount
forward-facing cameras. Thus, a better choice is to evaluate
the cost function at P, and plan motions referred to this point.

V. SIMULATIONS

This section presents simulation results in both single-robot
and multi-robot scenarios, including cases with homogeneous
and heterogeneous teams. The scenarios explored are:

« a single quadrotor,

« a team of a quadrotor and a unicycle,

« a team of three quadrotors.
Additional tests are shown in the accompanying video’. Sim-
ulations are performed in a ROS2 Humble-Gazebo Garden
environment, employing the PX4 firmware software in the
loop (SITL) for the quadrotor simulation and the Trutlebot3
model®. The nonlinear optimization problems described in
Sec. III-E, III-F, IV-A, IV-B are formulated with CasAdi [43]
and solved with Ipopt* and HSL MA57° linear solver. The QP
presented in Sec. III-F is instead formulated and solved with
the OSQP library [44].

A. Case study: single UAV

The first simulations involve a single drone tasked with
covering five points of interest within a map with dimensions
lg =25 ml, =45 m, [, =3 m The NMPC is solved
with Ty = 1.5 s and At = 0.05 s for both the control and
the prediction steps; the QP is instead solved with sampling
time dt = 0.005 s. The maximum acceleration is constrained
by imposing |ag, .| < 2.0 m/s?, while the planar velocity
|vgy| < 0.7 m/s. The gains are K; = 5013, Ko = 1013,
k., =1.0, k, = 0.2, H = I,,;. The regularization term is not
employed in the single robot case, while k, is set to zero.
Finally, continuity of acceleration is imposed through (20).
The heat dynamics parameters are chosen as o, = 0.1,
Omazx — 0.5, K,. = Kd = 1M» KU = 0.3141M, 60 = 51M~

The resulting motion is depicted in Fig. 4a, while Fig. 4b
and 4c contain the time evolutions of the heats and of the cost
function, respectively. As visible in Fig. 4a, the simulation

Zhttps://youtu.be/FOCRAGYzKzo
3https://github.com/ROBOTIS-GIT/turtlebot3
“https://coin-or.github.io/Ipopt/
Shttps://licences.stfc.ac.uk/product/coin-hsl
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Fig. 4. (a) Path covered by the drone with the initial and final position marked
with a cross and a dot, respectively. The POIs are marked with circumferences
of radius oy, q2. (b) Heat values time evolution. (¢) NMPC Cost function time
evolution. (d) Time evolution of the metric 75, (¢) Vi = 1,..., 5, compared to
T,y (top); time evolution of the metric max (7 (4)) Vi = 1,...,5 (bottom).

results show the emergence of a period-like motion that
covers the five POIs sequentially. This is also evident by
evaluating the evolution of T,,(i), Vi = 1,..., M, which
corresponds to the time spent by the agent near each point
(.e., l; < Opmaz). This metric, depicted in Fig. 4d (top), shows
a linear increase in time that is comparable with the one
given by T = t(ﬁ — T’%""), where 7" = 150 s, M = 5,
Trin = HL#;H’ and indicating with |7, .|| the norm of the
mean planar velocity, and with L,,;, the length of the optimal
path connecting all POIs with rectilinear segments. The term
1/M corresponds to an equal time division among the POls,
while % accounts for the time needed to travel from one
point to another in the optimal visit order—computed by
solving a TSP—at the same mean velocity of the simulation.
Conversely, the metric max (7 (¢)), defined as the maximum
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Fig. 5. (a) Path covered by the drone with a no-fly zone indicated by the

red circled area. (b) Heat values time evolution. (¢) CBF time evolution with
d = 1.0 m, gains y; = 0.7, 72 = 0.7. (d) Desired (dashed) and actual
(continuous) reference acceleration.

time interval in which the agent is far from the ¢-th POI
(E > Opmaa ), CONVerges to a constant value after the transitory,
as visible in Fig. 4d (bottom). These results indicate that all
points are persistently and effectively monitored over time.

Another simulation is carried out imposing a no-fly zone
in the map that occludes a point of interest. This test aims
to simulate the impact of an unforeseen operational constraint
that interferes with the primary task. The avoidance of this
area is obtained only through the safety layer, employing a
double integrator model and the CBF

ho(p) = [[TIp — o> — &2, (32)

where o € R? is the center of the area and d is the minimum
distance. Since the relative degree of the system is two, the
higher-order CBF can be defined as

hl = h + Y1 ho, (33)

100 150

t [s]

(b)
Fig. 6. (a) Path covered by the drone and the rover with the initial and final
position marked with a cross and a dot, respectively. The POIs are marked with
circumferences of radius o,z (top). Heat values time evolution (bottom).
(b) Time evolution of the control inputs v and w.

and the avoidance task achieved by enforcing the constraint

hi(p) > —7 (K (p))°,

with v, and ~y, strictly positive constants. Fig. 5a shows how
the no-fly zone modifies the path; notice that the NMPC
is unaware of the constraint and that the task performance
consequently degrades, as visible in the heats’ evolution in
Fig. 5c. The CBF value is depicted in Fig. 5b while Fig. 5d
shows the desired acceleration references and the safe ones
computed from the QP.

(34)

B. Case study: UAV and UGV

Simulative results with an unicycle and a drone are pre-
sented in the same scenario outlined in the previous section,
employing equal coefficients for the POIs’ dynamics. The
quadrotor NMPC parameters are those employed in the single-
robot case, except for k. = 0.05. Unlike the UAYV, the
unicycle’s NMPC is solved with prediction horizon Ty = 1.5 s
and sampling time At = 0.1 s. It is important to note that
the agents are required to share only the prediction horizon
value, while they may use different prediction steps due to the
parametrization. The parameters used for unicycle’s NMPC
are k, = 40, k, = 2.0 |v] < 0.5 m/s, k. =0, |w| < 1.5 rad/s,
k1 = 2, ko = 2, b = 0.35 m. Figure 6a shows the path
covered by the two robots, without imposing constraints (21),
and the time evolution of the POIs values. The rover position



TABLE I
UAV AND UGV
Metric POI1 POI2 POI3 POI4 POIS
T,./T 0.300  0.310 0.340  0.247 0.204
max(Ty)/T  0.150  0.126 0.140  0.101 0.128
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Fig. 7. 3 UAVs — 3 POlIs: £ values time evolution (top), agents’ positions
converge to POIs’ centers (bottom).

is referred to its center. Figure 6b contains instead the rover
control inputs, while the drone’s ones are omitted for brevity.
Notice that in the reported simulation, the QP layer was not
applied to the rover as it was not necessary to address the
collision avoidance problem.

Table I reports the final values of the normalized metrics
T,/T and max(T¢(i))/T. Also in this scenario, the agents
spend a comparable amount of time near each POI, indicating
that all points are covered persistently.

C. Case study: three UAVs

Finally, the results of the three-drones case study are pre-
sented. We first show that the proposed algorithm can result
in a static deployment in the trivial case of M = N, as zero-
velocity trajectories can be achieved through coincident con-
trol points. Figure 7 illustrates that the heat values are driven
to zero and that the agents converge to static deployment
positions, in which each agent is exactly over one POI°. In
this scenario, K4 gains are set to zero as any positive value
would prevent the drones from maintaining a static hovering
on the POIs’ centers. Differently, when the number of agents
exceeds the number of points of interest, a subset of robots
remains stationary.

Figure 8 depicts instead the drones’ motions with M > N
and K, gains set to zero; the figure shows that two agents
converge on a periodic motion on a subset of the POIs, while
the third remains stationary. The peak values observed in
Fig. 8a (bottom) for 5 and 5 are linked to local configurations
in which the two agents are equally distant from a POI; since
the algorithm runs asynchronously, the agents move either
when the heat value exceeds a certain threshold or when
another POI’s heating breaks the symmetry. However, in none
of the simulations performed did the agents get indefinitely
blocked in any deadlock configuration.

SIf there is a subset of narrowly spaced POIs, and their dynamics are slow,
one robot could still cover more than one POI.

X [m]

& —& &5
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Fig. 8. (a) K4 = 0 — Three UAVs paths with the initial and final position
marked with a cross and a dot, respectively (top). Heat values time evolution
(bottom). (b) Same scenario with K =1Vi=1,..., M.

Differently, Fig. 8b shows the motions obtained with K4 =
157. A non-zero value of K acts as a perturbation, as agents
are pushed away from the currently covered POI towards
nearby ones. This behaviour results in less periodic and more
explorative solutions, as visible comparing Fig. 8a and Fig. 8b.

All simulations have been performed without constraint (21)
to highlight the motions resulting from the proposed POIs dy-
namics. In this case study, the inter-robot collision avoidance
was obtained only through the safety layer. With the described
simulation setup, we obtained a solution time 75 for the NMPC
with mean(T}) = 2.2-1072 s and std(T%) = 7.6-10~2 s, taking
the highest value among the three drones.

Finally, Tab. II reports the normalized metrics T, (i) and
T (i) Vi, and for both values of Ky. From the reported
results, we can notice the connection between the considered
metrics, and the heat values, as higher peaks of & correspond
to lower values of T}, and higher T;. Overall, all points are
visited periodically with a coverage homogeneity that may
vary depending on the chosen parameters.



TABLE 11

3 DRONES
Metric POI1 POI2 POI3 POI4 POIS
Ko =0 T./T 0.981 0.592  0.193 0.689  0.272
= max(Ty)/T  0.019 0.064  0.207 0.051 0.173
Ko=1 T./T 0.564  0.440  0.231 0.512  0.234
d= max(Ty)/T  0.196 0130 0206 0.132  0.173

VI. EXPERIMENTS
A. Experimental Setup

Experiments have been conducted in a flight arena with
Optitrack’ motion capture system employing two quadrotor
drones. The platforms utilized Pixhawk 6C and Orange Cube
flight controllers with PX4 v1.14 autopilot firmware and a
LattePanda 3 Delta® as a companion computer. A ROS2 node
handled the communication with the PX4 flight controller
using the uXRCE-DDS middleware to send trajectory set-
points and handle the takeoff and landing phases. All the
NMPC communications among agents and with the GCS were
performed through ROS2-Humble with a publish-subscribe
paradigm, and the optimization problems were solved on the
onboard computers. A standard laptop was used instead as
central ground station to update the POIs values. Due to the
limited arena dimensions, only five POIs were considered.

B. Results
The experimental tests were performed with POIs gains
Kd = 0.71M, KT = ]-M, Omin — 0.1, Omaxr — 05,

K, = 3.141,;, & = 21,;. The NMPC are solved with
At = 0.05 s and Ty = 1.5 s, while the QP was solved with
dt = 0.005 s. The maximum acceleration was constrained by
|az.y 2| < 2.0 m/s®, while the velocity is |v,,,| < 0.7 m/s,
|[v.] < 1.0 m/s. The gains are K; = 50I3, Ky = 1013,
k., =10, k, = 0.2, k., = 0.05, H = I,;. The quadratic
layer presented in Sec. III-F is used for collision avoidance,
while boundary constraints are imposed for additional safety.
A planar version of the constraints (21) is imposed.

The resulting paths for both drones are visible in Fig. 9a,
where the reference positions are depicted with dashed lines,
and the visual odometry ones with continuous lines. Starting
locations, indicated with a cross, were chosen naively. The
dots correspond to the position at the end of the experiments.
Fig. 9a shows that all points are periodically covered by the
agents, which approximately equally cover the POIs. Figure 9b
depicts the heats’ time evolution, showing that the heat values
vary periodically over the experiment.

Experimental results demonstrate that the proposed frame-
work performs effectively on standard UAV platforms. Specif-
ically, the optimization problems were solved on CPU-based
companion computers, while a commercial autopilot with
default parameters was employed as the low-level tracking
controller. For additional experiments, refer to the accompa-
nying video.

https://optitrack.com/
8https://www.lattepanda.com/lattepanda- 3-delta
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Fig. 9. (a) Desired and actual path with the initial and final position marked
with a cross and a dot, respectively. The POIs are marked with circumferences
of radius omaz. (b) POIs heats time evolution.

VII. COMPARISON

This section presents a statistical comparison of our ap-
proach with the methodology proposed in [16] for a search and
rescue application. The latter was selected among the state-
of-the-art methods because it implements the most similar
dynamic function for the points of interest. More in detail, a
potential field is defined in [16] by summing a set of Gaussian
radial basis functions for each region of interest. Each function
depends on the agent’s position and a time-varying reward,
which increases the weights of areas that have not been visited
recently and decreases those of areas that have. A velocity
command is chosen in the direction of steepest descent of this
potential field and saturated by a maximum speed. The reader
can refer to [16] for a complete overview of the approach.
Being based on an artificial potential field, this method will
be referred to as PTF from now on.

Statistical analysis is here adopted to discover if significant
enhancements in task performance are obtained across control
methods in multiple scenarios. Recent papers reported valuable
insights thanks to statistical considerations in fields such as
robotic manipulation [45] or shared control of robotic sys-
tems [46], [47], where variability must be taken into account.

We compared our proposed solution with [16] in the single
drone scenario, tuning both functions to obtain similar scaling
and dynamics. We consider as factors in our study the control
modality, exhibiting two levels (NMPC, PTF), and the number
of points of interest M, exhibiting three levels (5, 7, 9). Our
aim is to characterize whether a given performance metric has
a statistically significant dependence on the considered factors.
To this end, we consider the following metrics (1" denotes the



task duration):

e Ty =1/M sz\i1 max; (Tr (7)) is the mean over the POIs
of the maximum time intervals T;(¢) in which the i—th
POI is not covered by the robot (distance > 0.4 m);
This metric is representative of how much time the POI
can remain uncovered during the task given the control
modality and the number of POlIs.

e Tn=1/M Zf\il T, (i)/T, is the mean over the POIs of
all time intervals 7}, (¢) in which the robot is in proximity
(distance < 0.4 m) of the i—th POI; this metric is
representative of how well the robotic system is covering
the POIs given the control modality.

o To = ||[1p/M — T, /T is the norm of the difference
with respect to an optimal policy in which each POI is
covered equally for 1/M normalized time. This metric
is representative of the covering homogeneity attained
by the robotic system under the control modality for the
specified number of POlIs.

« V=1/T Z;Fk:o |vg,y(te)|l is the mean in time of the
norm of the velocity exhibited by the robot. This metric is
representative of the energetic behaviour requested by the
robotic system to accomplish the task, given the control
modality and the number of POlIs.

A balanced two-factor factorial design of the simulations
was used to check the significance of factors on the control
performance metrics. For each combination of factors, we
performed 30 replicates by randomly sampling from a uniform
distribution POIs locations over the interval [1,5), and initial
&o values over the interval [0, 10).

The results obtained by the series of simulations are reported
for visual comparison in terms of box plot (blue), with
median values (red line), confidence intervals (black lines),
and outliers (red crosses) in Fig. 10. In this figure, each
tick of the x-axis represents the given combination of control
modality/number of points. To a very close approximation, two
estimates being compared are significantly different if their
intervals are disjoint, and are not significantly different if their
intervals overlap. All the collected data passed the one-sample
Kolmogorov-Smirnov test. The analysis of the results is carried
out leveraging a two-way ANOVA using a significance level
p = 0.05. The main effects can be difficult to interpret when
the model includes significant interactions between factors,
and pairwise comparisons are needed to evaluate the simple
main effects of the factors’ changes. In our analysis, we have
found the statistically significant interactions shown in Fig. 11.

The metric 7y shows a disordinal interaction (p < 0.01,
F' = 6.43) with the trend being inverted when changing the
control mode from NMPC to PTF, passing from 5 to 9 POls.
The pairwise comparison revealed a statistically significant
change in the metric for the control modality (p < 0.01) only
when the number of POlIs is 5. Instead, for the larger number
of POIs the two control modalities perform the same.

The metric 7, also shows an ordinal interaction (p = 0.01,
F = 4.19) with a greater change in the metric when changing
the control mode from NMPC to PTF, passing from 5 to 9
POIs. The pairwise comparison revealed a statistically signifi-
cant change in the metric for the number of POIs (p < 0.01) in
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Fig. 10. Visual representation of the statistical evaluation of the results. Left:
box plots of the metrics 7¢, Tn, To, and V for all the possible combinations
of control modality-number of POIs.
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Fig. 11. Interaction plots for the Ty, Tn, To, and V metrics.

both control modalities, showing that the covering time metric
T, is influenced only by the number of points.

The metric 7, shows an ordinal interaction (p < 0.01,
F = 4.61) with a less marked change in the metric changing
the control mode from NMPC to PTF, passing from 5 to 9
POIs. The pairwise comparison revealed a statistically signifi-
cant change in 7, for the control modality and the number of
POIs except when M = 5. This denotes a more homogeneous
coverage for NMPC when the number of POIs is large, with
equal homogeneity for M = 5.

The metric V shows an ordinal interaction (p < 0.01, F' =



43.03) with a greater difference changing the control mode
from NMPC to PTF, passing from 5 to 9 POIs. The pairwise
comparison revealed a statistically significant change in ) for
the control modality and the number of POIs, except when
M = 5. This outcome is expected, as the PTF control method’s
gains were specifically tuned to achieve similar velocities for
the case M = 5.

The results listed above require special consideration of
the existing relationship between the velocity achieved by the
robot (expressed by the metric V) and the overall performance
(expressed by the remaining metrics). It is worth noting that
the notable increase of V' with the number of POIs for the
PTF method explains why 7; does not show a clear increasing
trend. Intuitively, by moving faster, the robot will spend less
time far from the POIs.

Despite the significant increase in the mean velocity with
the number of POIs in the PTF method—always within the
imposed limits—the NMPC still performs comparatively or
better in the cases highlighted above. It is worth noting that
limits imposed on velocity are by design more permissive in
the PTF method because we chose to saturate the norm instead
of limiting the single components, as done in the NMPC.
Thus, we can conclude that adopting the proposed NMPC is
advantageous for the considered control objectives, especially
with regard to the limited effort required in terms of velocity.
Moreover, the NMPC also attains smoother velocities along
the task with respect to the PTF approach. These performance
improvements arise from integrating both model constraints
and POIs’ heat evolution in a prediction horizon, a feature
that is absent in the gradient-based approach implemented in
the benchmark.

VIII. DISCUSSION

The proposed method introduces an innovative approach to
persistently monitor a set of POI with a multi-robot system.
A key distinction from existing state-of-the-art methodologies
lies in the different underlying dynamics, which may render
direct comparisons less straightforward as agents move to
optimize costs that evolve differently in time. For this reason,
task-related metrics were introduced in Sec. VII; however,
these metrics were defined by the authors and have not been
evaluated in other works.

One limitation of our approach is its focus on local op-
timality, as global, team-level optimality was not explicitly
addressed. However, the use of a decentralized and asyn-
chronous implementation allows greater flexibility. Moreover,
currently we cannot exclude the occurrence of deadlocks due
to POIs attracting a single robot in opposite directions or
multiple robots in the same one. Nevertheless, in the extensive
simulation campaign performed in this paper, such conditions
were never permanent. Future work could integrate an online
deadlock detection mechanism to guarantee escape using, for
instance, a prioritization rule.

Additionally, the system architecture is only partially de-
centralized. While this design choice may limit scalability, the
GCS remains essential in most practical scenarios. Moreover,
the central unit can retain global information that is otherwise

inaccessible from local measurements, as in the application
in [13]. However, the proposed architecture has the potential
to be fully decentralized, implementing a dynamic consensus
algorithm [48] on the heat values, as done in [33].

The NMPC can potentially achieve enhanced task perfor-
mances by utilizing a higher degree Bézier curve, or multiple,
concatenated curves, to allow more complex maneuvers. The
impact of this aspect on the computational complexity could
be investigated, along with recursive feasibility properties.

Finally, the evolution of the POIs’ dynamic depends on the
chosen gains; while this aspect allows for significant versatility
and adaptability, it requires proper parameter tuning of the heat
dynamics if precise task requirements, such as a minimum visit
time on the point, must be met. Furthermore, initial heat values
can be set according to the monitoring task requirements; for
example, points that are more critical in the initial phase can
be assigned higher initial heat values.

IX. CONCLUSIONS AND FUTURE WORK

We presented a novel framework for a multi-robot area mon-
itoring problem, considering both homogeneous and hetero-
geneous teams. Simulations and experimental results demon-
strated that the proposed architecture is adaptable to various
types of mobile robots and that the optimization problem
can be solved online on computationally limited platforms.
Moreover, an extensive simulation campaign reported that our
NMPC approach outperforms a baseline method in terms of
task-related performance and required system velocities in a
number of randomly generated scenarios. Future work will
focus on removing the central unit by running a dynamic
consensus algorithm on the heat values to achieve fully decen-
tralized control. Furthermore, time-varying scenarios, where
the number and positions of points of interest are dynamically
updated, could be explored. Future work might also investigate
the incorporation of energy constraints, such as battery levels,
into the CBF layer, as well as explore teams of variable size
to enhance energy-aware operations and system scalability.
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APPENDIX
A. POIs dynamic equation

The heat-like dynamic equation behaviour can be better
understood by looking at the function’s stationary points in
specific cases. If the agent is on the POI’s center, fixing [ = 0,
(4) becomes ( ‘ )

. Kj+¢&

&=f(&)= Sm02(&) (35)
and§; = 0 = ¢ = —K; thus, K, also acts as a lower bound
on the values attained by &;. Moreover, the equilibrium is
stable if o(&;) is selected properly. The choice of the variance
function o (;) affects agents” motion and the balance between
exploitation and exploration, intended here as the permanence



over the current POI or the movement towards a nearby one.
Different choices are possible; e.g., by selecting

o (51) = Omin T tal’lh2 (Kg-gz) (Umax -
o(&) = = &L=0,

the variance also increases as &; becomes negative, pushing
an agent away from the POI. Instead, when the agent is at
maximum distance | = [,,,,, from the POI, (4) becomes
1
2o

12
exp <—2 Soh ) ,
max U’maw

and the heat upper bound is mainly influenced by the ratio

Umin)a (36)

Omin

&= 2 K} sech(1) — (K} + &)
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