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Multi-Robot Nonlinear Model Predictive Control

for Persistent Monitoring
Francesca Pagano , Salvatore Marcellini, Mario Selvaggio , Vincenzo Lippiello , Fabio Ruggiero

Abstract—We present an approach to address a multi-robot
persistent monitoring problem, where a team of agents must
repeatedly survey specific points of interest (POIs) within a 2-D
area. Our approach models the interest value of each POI with
a heat-like dynamics. Each agent then solves online a nonlinear
model predictive control (NMPC) problem to determine feasi-
ble trajectories that minimize the cumulative heat across all
POIs. The trajectories are parameterized with Bézier curves,
whose control points are used as optimization variables; this
parametrization enables agents to efficiently communicate their
optimized motions. An additional quadratic optimization layer
adds safety guarantees while a central unit updates the global
POIs’ map. The method has been validated in simulation and real
experiments, demonstrating that the algorithm can run online
and on computationally limited hardware platforms. In addition,
an extensive simulation campaign compares our NMPC against a
state-of-the-art baseline across 90 randomly generated scenarios
with different numbers of POIs. Our NMPC outperforms the
baseline along the considered metrics, attaining lower robot
velocities.

Index Terms—Multi-robot, monitoring, coverage, Nonlinear
Model Predictive Control.

I. INTRODUCTION

MULTI-ROBOT systems promise increased efficiency

in applications such as environmental monitoring [1],

inspection of industrial plants, precision agriculture [2], and

surveillance [3]. In this context, heterogeneous robotic teams

have gained significant attention [4]–[8], as the deployment

of robots with different capabilities, such as sensor types,

mobility constraints, and endurance, can address complex and

large-scale tasks with enhanced resilience and efficacy.
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Fig. 1. Picture of the envisioned scenario. Two UAVs monitor repeatedly
some POIs. Optimal trajectories and control points are depicted projected on
the ground.

A substantial body of research addresses challenges in

coverage and area search due to their significance in practical

applications. While these tasks differ slightly, they both in-

volve planning motions based on a distribution of information

across the terrain [9], which may reflect physical quantities

or the likelihood of a target’s presence. Indeed, performing

full coverage of an environment, unless strictly required by

the task, is highly inefficient and time-consuming when some

knowledge can be utilized to prioritize certain areas or to

guide motions more effectively. In particular, spatial area

functions are used in various domains: intruder detection and

search-and-rescue missions [10] to represent the probability

of locating or intercepting [11] a target; agricultural spraying

to encode chemical release patterns [12]; cleaning robots to

model dirt accumulation [13]; and environmental monitoring

to indicate pollution levels, debris [14] or hazardous substance

concentrations [15].

Despite significant advancements, deploying multi-robot

systems in real-world scenarios remains challenging. Robots

must adapt dynamically to changing conditions, optimize

motion within safety and operational constraints, and use de-

centralized control for scalability and resilience. Furthermore,

control frameworks should be flexible enough to accommodate

heterogeneous robotic systems.

Within this context, this paper addresses a multi-robot per-

sistent monitoring problem where a team of agents, possibly

heterogeneous, has to survey some points of interest (POIs)

repeatedly (see Fig. 1). These POIs might correspond to

localized spots that must be observed, or the result of a
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non-uniform discretization of areas we want the robots to

traverse [16]–[19]. Whenever the number of the POIs is less

than or equal to the number of agents, the problem can

be regarded as a task allocation or a static coverage. More

interesting is the case in which the number of POIs exceeds

the number of agents; thus, a static deployment [20] would be

inefficient. The agents should then plan motions to maximize

coverage over time, i.e., cover the highest number of POIs

and minimize the time between the visits. In addition, the

time spent on each POI may be affected by the time elapsed

since the last visit. In this sense, the presented application

shares some scopes with surveillance [21] and pursuit-evasion

problems [22].

Based upon our previous work [23], our approach char-

acterizes the POIs by their coordinates and a scalar value

representing application-specific quantities. These values can

correspond to the probability of detecting an intruder, a

missing person, a gas leak, or model and information gain

linked to a time-varying phenomenon to be monitored. The

single POI’s value function is shaped as a 2-D Gaussian that

grows and expands while the agents are far from it; thus, the

entire information distribution can be seen as a heatmap that

dynamically varies depending on the current robots’ locations.

By making these quantities increase over time if no agent is

near a point of interest, persistent monitoring is achieved, as

shown later.

The use of a dynamically evolving quantity to characterize

coverage quality is not new in the state-of-the-art; however,

most approaches do not leverage an optimization horizon

and often ignore the constraints inherent to real robotics

systems. In contrast, we solve the monitoring problem using

a nonlinear model predictive control (NMPC) that predicts

the POI model’s evolution and computes optimized, feasible

motions to accomplish the task. A convenient motion parame-

terization allows the online solution of the nonlinear problem

and additionally facilitates multi-robot coordination, even in

heterogeneous settings. The proposed framework introduces a

fundamentally different approach compared to current state-

of-the-art methods, as detailed below.

A. Related works

Coverage problems usually leverage Voronoi partitioning

of the environment, assigning to each robot a region of

dominance [24]. Agents may be tasked with covering the

whole region of interest either uniformly or with a given

spatial density [25], [26], converging to an optimal deployment

configuration, which may vary if the density changes in

time [27] or if it is linked to a dynamical function [6].

In several works, the robots are then led to the center of

their Voronoi partitions using controllers synthesized through

gradient-based methods [25], model predictive control [28],

and constrained quadratic problems [25]–[27].

However, coverage often assumes that the robots can cover

the whole region, i.e., the union of their sensing areas can

cover the entire domain. When such an assumption does not

hold, more complex motion planning is needed, and the prob-

lem becomes closely related to coverage path planning, where

an optimal sequence of waypoints must be computed [17],

[18]. In these approaches, the visit order of the POIs is

often determined offline using adaptations of the traveling

salesman problem (TSP), which is NP-hard. For example, the

approach in [18] solves a TSP to determine the POIs’ visit

order, performs a greedy optimization to compute the points

observation periods, and then generates B-spline trajectories

to ensure smooth and feasible motion for a single drone.

A variant of the coverage is also the so-called awareness

coverage control, which introduces a dynamic function to

represent robots’ awareness of the domain [29]. This concept

is explored in [30], and with an awareness loss term in [19],

[31]–[34], where the awareness decays in time with a given

constant, and the agents must move persistently over the

domain. In particular, in [33], the awareness function is used

as a time-varying density in a Voronoi-based coverage, and a

local gradient-based control law is derived; a discrete cooper-

ative controller based on the concept of cellular automata is

proposed in [32]; while the work in [31] formulates a linear

optimization problem to derive a periodic speed controller,

still, the approach is not dynamic and only the leader agent

moves along the path. In [19], periodic motions are com-

puted optimizing agents’ speeds and initial locations on a

given closed-path connecting mission points. However, making

robots move sequentially along a single closed path strongly

restricts agents’ mobility. Finally, the approach in [34] consid-

ers an unknown loss of awareness and proposes a combination

of a gradient-based nominal controller and a perturbation one

to balance exploitation and exploration. Similarly, a multi-

robot search and rescue problem is addressed in [16] by

defining a dynamic reward function based on Gaussian radial

basis functions, which is used to generate gradient-based

velocity references. None of the above approaches considers

an optimization horizon nor the use of heterogeneous agents

with different mobility constraints, as the presented work.

A combination of reward functions and variable time-step

MPC is proposed in [11] for intercepting multiple targets, but

only with a single UAV. In [9], an online receding horizon

ergodic control approach is proposed for coverage, search,

and target localization. Specifically, the approach leverages a

continuous spatial distribution to represent information. This

distribution is nonparametric and can be constant in time

and known, or estimated by the agents. The methodology

then employs local control computation and globally shared

information so that the agents’ trajectory statistics match the

distribution ones.

B. Contribution

We propose a dynamic online motion planning approach

based on NMPC for persistent monitoring of discrete points.

Unlike most cited works, we propose a more complex control

framework to account for constraints. Differently from [19],

we do not employ closed paths, and we provide a solution

that also allows static deployment cases. Our approach differs

from [9] as we only consider localized spots of the domain

while relying on a dynamical model to quantify and predict

coverage cost evolution. The methodological contributions of

our work are summarized in the following.
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Fig. 2. System architecture—A ground control station (left) updates the global Points of Interest (POIs) values using agents’ positions. The agents (center)
retrieve the global map heat values ξξξ from the central unit and communicate their optimal trajectories through control points on a common network. Trajectories
are obtained by locally solving a NMPC and a QP (right); the blue boxes denote local computation units, and use as inputs the global heats from the GCS,
the shared control points, the robots’ positions (which can either be globally shared or locally sensed), and on-board sensors measurements.

• We present an NMPC to perform persistent POIs mon-

itoring, which generates locally optimal, parametrized

motions for task execution. Building on our previous

work [23], tailored for a single UAV, we propose a novel

formulation that incorporates motion parameterization

to enable efficient computation and broad applicability

across different robotic systems.

• We generalize the approach presented in [23] to enable

coordinated persistent monitoring with a multi-robot sys-

tem. To this end, we: i) modify the POIs heat-like dynam-

ics, making it dependent on multiple robots’ positions; ii)

propose a mixed centralized-decentralized framework in

which all optimization problems are solved locally by

each agent.

The overall framework is tested in realistic simulations across

different case studies, with both homogeneous and hetero-

geneous robotic teams. A statistical analysis of the results

obtained over 90 simulations demonstrates that our approach

outperforms the baseline within different numbers of POIs

in the single-robot scenario. Additionally, it is experimentally

validated with two aerial robots.

II. PROBLEM STATEMENT

Consider a convex area A ⊂ R
3, for simplicity modeled as

a cube of dimensions lx × ly × lz , that has to be surveyed by

a team of N > 0 agents. The area contains M > 0 points of

interest identified by their coordinates µµµi = [µxi
, µyi

]T ∈ R
2

with i = 1, . . . ,M . When M = N , the optimal solution is

trivial, as each agent should cover precisely one point; instead,

for M > N , our objective is to cover all the POIs periodically.

We assume that the POI distribution has been specified by the

user or a higher-level task planning module, depending on the

task, the current environment, and the operative conditions.

We associate a continuous interest value to each point, whose

dynamic depends on the agents’ positions. From now on, such

a value will also be referred to as heat due to the similarity

of the crafted dynamic equation to the heat diffusion model,

as will be detailed in Sec. III-D.

The control objective is to reactively control the agents’

motions to minimize the heat values without violating the area

bounds, the dynamic constraints, and avoiding collisions.

III. METHODOLOGY

This Section details the proposed methodology. Sec-

tion III-A presents the overall architecture, the trajectory

parameterization is introduced in Sec. III-B, while Sec. III-D

presents the dynamic function associated with the points of

interest. The discrete-time optimization problem is formulated

in Sec. III-E and III-F, while the safety layer is presented in

Sec. III-F.

A. System architecture

Figure 2 illustrates the system architecture. We consider

a team of heterogeneous agents that can localize themselves

within a common reference frame and communicate over a

fully connected network. The system assumes the presence

of a ground control station (GCS), serving as a central unit,

that updates the POIs’ values based on the agents’ positions

pr ∈ R
3, r = 1, . . . , N . All agents use the latest available

values retrieved from the GCS, and the information shared by

other agents to solve the NMPC locally, as better explained in

the following sections.

B. Reference Trajectory

Differently from [23], motion trajectories are parameterized

using cubic Bézier curves whose control points are used as

decision variables in the optimization problem outlined in

Sec. III-E. Given the optimized control points, the setpoints

pd(t) ∈ R
3 can be computed at each time instant by sampling

pd(t) =

3
∑

p=0

(

3

p

)(

1−
t

Tf

)3−p(
t

Tf

)p

cp, (1)

and its derivatives ṗd(t), p̈d(t), where t ∈ R is the time

variable, cp ∈ R
3, for p = 0, . . . , 3, are the four control

points that describe the curve,
(

3
p

)

= 3
p!(3−p)! is the binomial

coefficient, and Tf > 0 is the prediction horizon. In the
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Fig. 3. POIs dynamics functions evolutions obtained with lmax = 10, Kσ =
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following, we will refer with C =
[

cT0 , c
T
1 , c

T
2 , c

T
3

]T
∈ R

12

to the stacked control points vector.

The trajectory parameterization reduces the optimization

problem’s dimensionality and introduces a continuously de-

fined motion curve that can then be sampled at any desired

frequency. Additionally, control points optimize intra-agent

communication, as the full optimal reference trajectory can

be communicated through C.

C. Agent model

We assume that each robot is equipped with a low-level

tracking controller and define as agent model the closed-loop

response of the controlled system. Let x ∈ R
n be the robot

state and u ∈ R
m the low-level control input, a generic state

model in affine form can be written as

ẋ = f(x) + g(x)u, (2)

where f : Rn → R
n and g : Rn → R

n×R
m are continuously

differentiable functions. The control input in (2) is computed

by the robot’s low-level controller using the current state

and the reference trajectory. Therefore, by employing the

parameterization described in Sec. III-B, the controller can

be represented as a function k : R+ × R
n × R

p → R
m, i.e.

u = k(t,x,C). (3)

The agent model is then given by (2) and (3), and the control

problem consists of computing the optimized vector of control

points C.

D. POIs dynamic model

The vector ξ = [ξ1, ..., ξM ]T ∈ R
M contains the heat

values associated to the POIs. These values reflect the overall

coverage task performance, and robots must minimize its

norm. Each element of the vector depends on the distances

of the i-th POI from an agent and evolves according to

ξ̇i = hr(l̄i) +

N
∑

j=1

hd(lij , ξi), (4)

where hr and hd denote the heat rise and decrement functions,

respectively, and the dependence on time is omitted for con-

ciseness. The distance of the i-th point from the nearest robot

is given by

l̄i = min
j

lij ,

where lij = ∥ΠΠΠpj −µµµi∥ is the Euclidean distance of the i-th
POI from the j-th agent’s position projected on the ground

through the projector ΠΠΠ ∈ R
2×3.

The rising part is described by

hr(l̄i) = 2 Ki
r r2i l̄2i sech2(r2i l̄2i ), (5)

where sech(·) is the hyperbolic secant function and Ki
r,

ri ∈ R are two constants related to the maximum value of the

incremental part. By choosing ri = 1/lmax
i , with lmax

i > 0
being the maximum distance that an agent can attain from

the i-th POI, the incremental part in (5) reaches its peak

value before the maximum allowable distance from the point

is reached, and becomes approximately zero at l = 2lmax. The

values ri are set by design and can be computed easily given

the area size.

The descending part, instead, is maximum when the agent

is positioned on the POI and is given by1

hd(lij , l̄i, ξi) = −(K
i
d + ξi)

1

2πσ2
i

exp

(

−
l2ij + l̄2i
2σ2

i

)

, (6)

where σi(ξi) = σmin + tanh2
(

Ki
σξi
)

(σmax − σmin) is the

i-th Gaussian distribution variance, tanh(·) is the hyperbolic

tangent function, Ki
d ∈ R and Ki

σ ∈ R are constant gains,

and [σmin, σmax] ∈ R
2 are minimum and maximum values.

Equation (6) defines a decrement term that depends on both

the current heat and the agent’s position, with its influence

decaying exponentially with distance. Moreover, the Gaussian

variance—governing the spatial extent over which a robot

affects a POI’s heat—increases as the heat grows, thus at-

tracting agents. The model in (4) extends the POIs dynamics

introduced in [23] to the multi-robot setting by making the heat

evolution depend on multiple robots’ positions, and reduces to

the one in [23] when N = 1. In particular, the rise term was

designed to depend only on the nearest agent; in this way a

single robot can prevent a point from heating up. Conversely,

the heat decreases more rapidly when multiple agents converge

on the same zone. The use of the minimum distance l̄i in the

decreasing function is not strictly necessary for the coverage

task. However, it makes the i−th POI heat decrease more

sensitive to the j−th robot control points variation, if it is the

nearest agent. Although this may reduce the efficiency of heat

decrease, it promotes better domain separation among agents.

In addition, in [23], the heat was constrained to be strictly

positive; here, we allow it to attain negative values by choosing

1In the case N = 1, the term l̄i is set to zero as it coincides with lij .
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Ki
d > 0. As the norm of ξi is minimized, agents move away

from the point of interest as soon as its value reaches zero. This

mechanism encourages agents to move faster to other points of

interest or areas on the map; consequently, more erratic motion

patterns are generated, as illustrated in Sec. V. For a clearer

understanding, the functions’ evolutions are depicted in Fig. 3,

while further considerations are reported in the Appendix.

Equation (4) depends on all agents’ positions and is utilized

by the GCS to continuously update the global map using the

actual robots’ positions. By periodically retrieving updated

values, agents maintain coherent POIs’ states across the team.

As model (4) describes how the POIs’ heats vary on the

basis of the current state and the agents’ positions, it can

be included in the NMPC to predict the heat evolution and

optimize motions accordingly. However, each agent optimizes

its trajectory in a decentralized way, and it is assumed to be

unaware of the remaining robots’ motion models. Therefore,

single agents can leverage shared control points for decen-

tralized optimization. In fact, these points allow each robot to

reconstruct other agents’ optimized reference trajectories over

the horizon and use them instead of the predicted positions.

Then (4) can be evaluated by the j-th agent using the distances

l∗ir = ∥ΠΠΠpd
r −µµµi∥, ∀r ∈ {1, . . . , N} \ {i}

l̄i = min
{

lij ,min
r

l∗ir

}

,

where pd
r is computed according to (1) using C∗ = {crl, l =

0, . . . , 3, ∀r ∈ {1, . . . , N} \ {i}} that contains the received

control points, while lij = ∥ΠΠΠpj −µµµi∥ contains the predicted

position. In this way, other agents’ control points are incorpo-

rated within the optimization horizon, enabling the prediction

of the POIs’ heat evolution due to team-level motions.

E. Optimization problem

This section formulates the NMPC problem solved by

the j-th robot, employing the Bézier curve parametrization

introduced in Sec. III-B, and the prediction models presented

in Sec. III-C and III-D. In the following, the notation (·)j
indicates that the quantity refers to the j-th agent, while the

subscript k indicates that it is evaluated at time tk. Each

robot computes the optimized control points by solving the

following discrete-time nonlinear problem (NLP)

min
xj,1,...,xj,Nf

,Cj

Nf
∑

k=1

∥ξξξj,k∥
2
H + Jj,v + Jj,u + Jj,r (7)

s.t. discretized versions of (2), (3), (4)

cj,p ∈ A for p = 0, . . . , 3, (8)

pj,k ∈ A (9)

xj,k ∈ X (10)

uj,k ∈ U (11)

∀ k ∈ {1, . . . , Nf},

pd
j,0 = pj(0), (12)

vd
j,0 = vj(0), (13)

xj,0 = xj(0), ξξξj,0 = ξξξ(0). (14)

Algorithm 1 j-th agent NMPC Loop

Require: Initial xj,0

1: Send cjp = pj ∀p = 0, . . . , 3
Require: first C∗, ξξξ0,

2: Initialize state xj,0 ← xj(0),
3: Initialize heats with values from the GCS ξξξj,0 ← ξξξ(0)
4: while running do

5: Update ξξξj,0 with GCS values, and xj,0,

6: if new values then update C∗

7: Solve the NMPC optimization problem to obtain

c∗j,p, ∀p = 0, . . . , 3
8: Compute adj (∆T )
9: end while

where Nf = Tf/∆t with ∆t being the sampling time, H ∈
R

M×M indicates a positive definite weighting matrix, X is

the state set, U the input set, and vj the robot velocity. The

additional terms in the cost function are

Jj,v = kv

Nf
∑

k=1

∥vd
j,k∥

2, (15)

Jj,u = ku

Nf−1
∑

k=1

∥uj,k∥
2
R, (16)

Jj,r = kr

Nf
∑

k=1

∥pd
j,k − p̄d

j,k+1∥
2, (17)

where Jj,v minimizes robot’s desired velocities vd
j,k to avoid

bounds’ saturation, Jj,u is used to minimize the robot’s control

input, and Jj,r is a regularization term, with p̄d
j,k+1 being the

previous optimal reference trajectory, which penalizes devia-

tions from the previously computed optimal solution, thereby

improving other agents’ predictability. Finally, kv, ku, kr are

positive gains.

Notice that (12)–(13) are continuity constraints on the

reference trajectory and that pd
j,0, vd

j,0 can be expressed in

closed form as linear combinations of the control points as

pd
j,0 = cj,0, (18)

vd
j,0 =

3

Tf

(cj,1 − cj,0) , (19)

where (18) constraints cj,0 to coincide with the actual robot’s

position. If smoother accelerations are needed, an additional

constraint in the form of

adj,0 = ādj,1 (20)

can be added on initial reference acceleration, where ādj,1 is

the previously computed optimal value. Equation (14) imposes

initial conditions, using as ξξξ0 the latest available value received

from the central control station. The problem (7)–(14) is solved

with period ∆t, obtaining the optimized control points; from

these, the new position, velocity, and acceleration setpoints can

be computed. Notice that the NLP is solved in a receding hori-

zon fashion, sending to the robot’s low-level control system

only the setpoints evaluated at the next sampling instant. The

overall NMPC execution loop is summarized in Algorithm 1.
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F. Safety

In the NMPC problem (7)–(14), different kinds of con-

straints can be included to address collision avoidance with

other robots. A common choice to avoid inter-robot collisions

in coverage tasks is to introduce a buffered Voronoi-based

constraint [35]. Taking inspiration from this and leveraging

shared control points, half-space constraints can be enforced

as
(

pi −
pd
r,k + pi,0

2

)T

pri + rs∥pri∥ ≤ 0, ∀r ̸= i, (21)

with pri = ∥pd
r,k − pi,0∥ and rs > 0 a positive constant.

The constraint (21) is imposed along the prediction horizon

and is calculated by the i−th agent using its measured initial

position and the predicted trajectory pd
r,k of the r−th robot,

computed from previously shared control points. This choice

preserves the constraint linearity in the decision variables and

makes the separating plane move along the horizon due to

other robots’ motions only. Nevertheless, although the task

tends to drive agents apart, such constraints can overly restrict

robots’ motions.

Therefore, we propose a cascaded approach where a safety

layer, executed at a higher frequency, allows the system to

react to changes in the environment more effectively. This

safety layer can be applied either with or without avoidance

constraints enforced in the NMPC problem, potentially reduc-

ing the computational complexity, at the cost of disregarding

them in the planning phase. Specifically, the considered safety

layer enforces collision avoidance and boundary constraints

by defining appropriate higher-order control barrier functions

(HOCBFs) [36] and projecting the reference acceleration onto

the safe set through the quadratic problem (QP)

min
u
∥u− ad∥2 (22)

s.t. aTr u ≤ br ∀r ∈ Nr (Avoidance) (23)

Abu ≤ bb (Boundary) (24)

amin ≤ u ≤ amax (25)

where ar, br, Ab and bb can be computed from the CBFs, as

in [37], [38], the model, and depend on the measured state,

while amin and amax are input limits. Finally, the reference

acceleration ad is obtained by sampling the second derivative

of the Bézier curve. The resulting optimization problem is

minimally invasive [39], convex, and can be solved online

at a higher rate than the nonlinear one, possibly employing

obstacle measures obtained with onboard sensors, or sampling

the reference acceleration at a higher frequency.

In the following simulations and experiments, CBFs have

been computed assuming that the other robots’ velocity is

unknown and thus resorting only to current position values.

We highlight that the QP in (22) can also be used to enforce

additional safety constraints, such as obstacle/area avoidance,

as shown in Sec. V-A, where the avoidance task (23) has been

reformulated to operate outside of a no-flight zone.

IV. CASE STUDIES MODELS

To validate the proposed methodology, the nonlinear prob-

lem outlined in Sec. III-E is applied to two mobile robot

platforms: a flat quadrotor, as uncrewed aerial vehicle (UAV),

and a unicycle, as uncrewed ground vehicle (UGV). In both

cases, the subscript j, indicating the robot index, is omitted for

the ease of notation. These two robots are introduced below

and subsequently utilized in various scenarios in Sec. V.

A. Uncrewed Aerial Vehicle

Among UAVs, flat quadrotors utilize reference trajectories

to control both position and yaw angle. Since our primary

focus is on agents’ positions, we neglect the yaw angle: this

simplification is justified in cases where the orientation is not

critical to the task at hand, such as when a downward-facing

camera on a gimbal is mounted.

Introducing the full nonlinear model [40] and the controller

expression in (7) would not only complicate the problem,

making it challenging to solve online, but also add unnecessary

complexity for our purposes; thus, we opt for a simplified

approach, assuming that the closed-loop response of the posi-

tional part can be described by a double integrator model.

Moreover, such a model is suitable for every vehicle not

subjected to nonholonomic constraints. Let x ∈ R
6 with

x =
[

pT vT
]T

be the state vector, where p ∈ R
3 and

v ∈ R
3 are the drone’s position and velocity, respectively.

The closed-loop model is then given by

ṗ = v, (26)

v̇ = K1

(

pd − p
)

+K2

(

ṗd − v
)

+ p̈d, (27)

where pd, ṗd and p̈d ∈ R
3 are the desired position, velocity,

and acceleration vectors, respectively, as computed from (1),

while K1 = diag (k1,1, k1,2, k1,3), K2 = diag(k2,1, k2,2, k2,3)
are definite positive gain matrices.

In the case of UAVs, if the flight height is not fixed after

the optimization, another term in the cost function can account

for a nominal flight height zd

Jz = kz

Nf
∑

k=1

(

eT3 p
d
j,k − zd

)2
, with e3 = [0, 0, 1]

T
. (28)

B. Uncrewed Ground Vehicle

UGVs are mainly wheeled robots subject to nonholonomic

constraints whose kinematic model can be described by

ẋ =
[

ẋ, ẏ, θ̇
]T

=
[

v cos θ, v sin θ, ω
]T

, (29)

where x, y ∈ R are the Cartesian coordinates of the contact

point of the wheel with the ground, θ ∈ R is the orientation

and v ∈ R and ω ∈ R are the driving and steering veloc-

ities, respectively [41]. Different control laws are available

for trajectory tracking [41], both for first and second-order

kinematics models. A second-order model (26)–(27) could be

used, for example, in the case of a dynamic feedback lineariza-

tion controller [42]; however, this control approach requires

persistent trajectories (v ̸= 0) which could not be optimal in

the problem here addressed. We therefore assume the presence

of a tracking controller based on input/output linearization,

obtaining as linear and angular command velocities (26)-(27)

v = u1 cos θ + u2 sin θ, ω =
u2 cos θ − u1 sin θ

b
, (30)
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with

u1 = ẋd
P + k1

(

xd
P − xP

)

, u2 = ẏdP + k2
(

ydP − yP
)

,

where xP , yP ∈ R are the cartesian coordinates of a point P

located along the sagittal axis of the unicycle at a distance

|b| from the contact point of the wheels on the ground [41],

and k1, k2 are strictly positive gains. With this choice, (29)

corresponds to the robot model (2), equations (30) replace (3),

while the term Ju in the cost function is given by

Ju =

Nf
∑

k=1

kuv
2
k + kωω

2
k. (31)

Unlike the aerial robot, evaluating the POIs cost function at

(x, y), which corresponds to the wheel contact point, may be

inefficient for visual monitoring tasks, as UGVs usually mount

forward-facing cameras. Thus, a better choice is to evaluate

the cost function at P, and plan motions referred to this point.

V. SIMULATIONS

This section presents simulation results in both single-robot

and multi-robot scenarios, including cases with homogeneous

and heterogeneous teams. The scenarios explored are:

• a single quadrotor,

• a team of a quadrotor and a unicycle,

• a team of three quadrotors.

Additional tests are shown in the accompanying video2. Sim-

ulations are performed in a ROS2 Humble-Gazebo Garden

environment, employing the PX4 firmware software in the

loop (SITL) for the quadrotor simulation and the Trutlebot3

model3. The nonlinear optimization problems described in

Sec. III-E, III-F, IV-A, IV-B are formulated with CasAdi [43]

and solved with Ipopt4 and HSL MA575 linear solver. The QP

presented in Sec. III-F is instead formulated and solved with

the OSQP library [44].

A. Case study: single UAV

The first simulations involve a single drone tasked with

covering five points of interest within a map with dimensions

lx = 2.5 m ly = 4.5 m, lz = 3 m. The NMPC is solved

with Tf = 1.5 s and ∆t = 0.05 s for both the control and

the prediction steps; the QP is instead solved with sampling

time dt = 0.005 s. The maximum acceleration is constrained

by imposing |ax,y,z| ≤ 2.0 m/s2, while the planar velocity

|vx,y| ≤ 0.7 m/s. The gains are K1 = 50I3, K2 = 10I3,

kz = 1.0, kv = 0.2, H = IM . The regularization term is not

employed in the single robot case, while ku is set to zero.

Finally, continuity of acceleration is imposed through (20).

The heat dynamics parameters are chosen as σmin = 0.1,

σmax = 0.5, Kr = Kd = 1M , Kσ = 0.3141M , ξξξ0 = 51M .

The resulting motion is depicted in Fig. 4a, while Fig. 4b

and 4c contain the time evolutions of the heats and of the cost

function, respectively. As visible in Fig. 4a, the simulation

2https://youtu.be/F9CRAGYzKzo
3https://github.com/ROBOTIS-GIT/turtlebot3
4https://coin-or.github.io/Ipopt/
5https://licences.stfc.ac.uk/product/coin-hsl
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Fig. 4. (a) Path covered by the drone with the initial and final position marked
with a cross and a dot, respectively. The POIs are marked with circumferences
of radius σmax. (b) Heat values time evolution. (c) NMPC Cost function time
evolution. (d) Time evolution of the metric Tn(i) ∀i = 1, . . . , 5, compared to
T ∗

n (top); time evolution of the metric max(Tf (i)) ∀i = 1, . . . , 5 (bottom).

results show the emergence of a period-like motion that

covers the five POIs sequentially. This is also evident by

evaluating the evolution of Tn(i), ∀i = 1, . . . ,M , which

corresponds to the time spent by the agent near each point

(i.e., l̄i < σmax). This metric, depicted in Fig. 4d (top), shows

a linear increase in time that is comparable with the one

given by T ∗
n = t

(

1
M
− Tmin

T

)

, where T = 150 s, M = 5,

Tmin = Lmin

∥v̄x,y∥
, and indicating with ∥v̄x,y∥ the norm of the

mean planar velocity, and with Lmin the length of the optimal

path connecting all POIs with rectilinear segments. The term

1/M corresponds to an equal time division among the POIs,

while Tmin

T
accounts for the time needed to travel from one

point to another in the optimal visit order—computed by

solving a TSP—at the same mean velocity of the simulation.

Conversely, the metric max(Tf (i)), defined as the maximum
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Fig. 5. (a) Path covered by the drone with a no-fly zone indicated by the
red circled area. (b) Heat values time evolution. (c) CBF time evolution with
d = 1.0 m, gains γ1 = 0.7, γ2 = 0.7. (d) Desired (dashed) and actual
(continuous) reference acceleration.

time interval in which the agent is far from the i-th POI

(l̄i > σmax), converges to a constant value after the transitory,

as visible in Fig. 4d (bottom). These results indicate that all

points are persistently and effectively monitored over time.

Another simulation is carried out imposing a no-fly zone

in the map that occludes a point of interest. This test aims

to simulate the impact of an unforeseen operational constraint

that interferes with the primary task. The avoidance of this

area is obtained only through the safety layer, employing a

double integrator model and the CBF

ho(p) = ∥Πp− o∥2 − d2, (32)

where o ∈ R
2 is the center of the area and d is the minimum

distance. Since the relative degree of the system is two, the

higher-order CBF can be defined as

h1
o = ḣo + γ1ho, (33)
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Fig. 6. (a) Path covered by the drone and the rover with the initial and final
position marked with a cross and a dot, respectively. The POIs are marked with
circumferences of radius σmax (top). Heat values time evolution (bottom).
(b) Time evolution of the control inputs v and ω.

and the avoidance task achieved by enforcing the constraint

ḣ1
o(p) ≥ −γ2

(

h1(p)
)3

, (34)

with γ1 and γ2 strictly positive constants. Fig. 5a shows how

the no-fly zone modifies the path; notice that the NMPC

is unaware of the constraint and that the task performance

consequently degrades, as visible in the heats’ evolution in

Fig. 5c. The CBF value is depicted in Fig. 5b while Fig. 5d

shows the desired acceleration references and the safe ones

computed from the QP.

B. Case study: UAV and UGV

Simulative results with an unicycle and a drone are pre-

sented in the same scenario outlined in the previous section,

employing equal coefficients for the POIs’ dynamics. The

quadrotor NMPC parameters are those employed in the single-

robot case, except for kr = 0.05. Unlike the UAV, the

unicycle’s NMPC is solved with prediction horizon Tf = 1.5 s

and sampling time ∆t = 0.1 s. It is important to note that

the agents are required to share only the prediction horizon

value, while they may use different prediction steps due to the

parametrization. The parameters used for unicycle’s NMPC

are kv = 40, kω = 2.0 |v| ≤ 0.5 m/s, kr = 0, |ω| ≤ 1.5 rad/s,

k1 = 2, k2 = 2, b = 0.35 m. Figure 6a shows the path

covered by the two robots, without imposing constraints (21),

and the time evolution of the POIs values. The rover position
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TABLE I
UAV AND UGV

Metric POI 1 POI 2 POI 3 POI 4 POI 5

Tn/T 0.300 0.310 0.340 0.247 0.204
max(Tf )/T 0.150 0.126 0.140 0.101 0.128
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Fig. 7. 3 UAVs – 3 POIs: ξ values time evolution (top), agents’ positions
converge to POIs’ centers (bottom).

is referred to its center. Figure 6b contains instead the rover

control inputs, while the drone’s ones are omitted for brevity.

Notice that in the reported simulation, the QP layer was not

applied to the rover as it was not necessary to address the

collision avoidance problem.

Table I reports the final values of the normalized metrics

Tn/T and max(Tf (i))/T . Also in this scenario, the agents

spend a comparable amount of time near each POI, indicating

that all points are covered persistently.

C. Case study: three UAVs

Finally, the results of the three-drones case study are pre-

sented. We first show that the proposed algorithm can result

in a static deployment in the trivial case of M = N , as zero-

velocity trajectories can be achieved through coincident con-

trol points. Figure 7 illustrates that the heat values are driven

to zero and that the agents converge to static deployment

positions, in which each agent is exactly over one POI6. In

this scenario, Kd gains are set to zero as any positive value

would prevent the drones from maintaining a static hovering

on the POIs’ centers. Differently, when the number of agents

exceeds the number of points of interest, a subset of robots

remains stationary.

Figure 8 depicts instead the drones’ motions with M > N
and Kd gains set to zero; the figure shows that two agents

converge on a periodic motion on a subset of the POIs, while

the third remains stationary. The peak values observed in

Fig. 8a (bottom) for ξ3 and ξ5 are linked to local configurations

in which the two agents are equally distant from a POI; since

the algorithm runs asynchronously, the agents move either

when the heat value exceeds a certain threshold or when

another POI’s heating breaks the symmetry. However, in none

of the simulations performed did the agents get indefinitely

blocked in any deadlock configuration.

6If there is a subset of narrowly spaced POIs, and their dynamics are slow,
one robot could still cover more than one POI.
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Fig. 8. (a) Kd = 0 – Three UAVs paths with the initial and final position
marked with a cross and a dot, respectively (top). Heat values time evolution
(bottom). (b) Same scenario with Ki

d
= 1 ∀i = 1, . . . ,M .

Differently, Fig. 8b shows the motions obtained with Kd =
1M . A non-zero value of Kd acts as a perturbation, as agents

are pushed away from the currently covered POI towards

nearby ones. This behaviour results in less periodic and more

explorative solutions, as visible comparing Fig. 8a and Fig. 8b.

All simulations have been performed without constraint (21)

to highlight the motions resulting from the proposed POIs dy-

namics. In this case study, the inter-robot collision avoidance

was obtained only through the safety layer. With the described

simulation setup, we obtained a solution time Ts for the NMPC

with mean(Ts) = 2.2·10−2 s and std(Ts) = 7.6·10−3 s, taking

the highest value among the three drones.

Finally, Tab. II reports the normalized metrics Tn(i) and

Tf (i) ∀i, and for both values of Kd. From the reported

results, we can notice the connection between the considered

metrics, and the heat values, as higher peaks of ξ correspond

to lower values of Tn and higher Tf . Overall, all points are

visited periodically with a coverage homogeneity that may

vary depending on the chosen parameters.



10

TABLE II
3 DRONES

Metric POI 1 POI 2 POI 3 POI 4 POI 5

Kd = 0
Tn/T 0.981 0.592 0.193 0.689 0.272

max(Tf )/T 0.019 0.064 0.207 0.051 0.173

Kd = 1
Tn/T 0.564 0.440 0.231 0.512 0.234

max(Tf )/T 0.196 0.130 0.206 0.132 0.173

VI. EXPERIMENTS

A. Experimental Setup

Experiments have been conducted in a flight arena with

Optitrack7 motion capture system employing two quadrotor

drones. The platforms utilized Pixhawk 6C and Orange Cube

flight controllers with PX4 v1.14 autopilot firmware and a

LattePanda 3 Delta8 as a companion computer. A ROS2 node

handled the communication with the PX4 flight controller

using the uXRCE-DDS middleware to send trajectory set-

points and handle the takeoff and landing phases. All the

NMPC communications among agents and with the GCS were

performed through ROS2-Humble with a publish-subscribe

paradigm, and the optimization problems were solved on the

onboard computers. A standard laptop was used instead as

central ground station to update the POIs values. Due to the

limited arena dimensions, only five POIs were considered.

B. Results

The experimental tests were performed with POIs gains

Kd = 0.71M , Kr = 1M , σmin = 0.1, σmax = 0.5,

Kσ = 3.141M , ξξξ0 = 21M . The NMPC are solved with

∆t = 0.05 s and Tf = 1.5 s, while the QP was solved with

dt = 0.005 s. The maximum acceleration was constrained by

|ax,y,z| ≤ 2.0 m/s2, while the velocity is |vx,y| ≤ 0.7 m/s,

|vz| ≤ 1.0 m/s. The gains are K1 = 50I3, K2 = 10I3,

kz = 1.0, kv = 0.2, kr = 0.05, H = IM . The quadratic

layer presented in Sec. III-F is used for collision avoidance,

while boundary constraints are imposed for additional safety.

A planar version of the constraints (21) is imposed.

The resulting paths for both drones are visible in Fig. 9a,

where the reference positions are depicted with dashed lines,

and the visual odometry ones with continuous lines. Starting

locations, indicated with a cross, were chosen naively. The

dots correspond to the position at the end of the experiments.

Fig. 9a shows that all points are periodically covered by the

agents, which approximately equally cover the POIs. Figure 9b

depicts the heats’ time evolution, showing that the heat values

vary periodically over the experiment.

Experimental results demonstrate that the proposed frame-

work performs effectively on standard UAV platforms. Specif-

ically, the optimization problems were solved on CPU-based

companion computers, while a commercial autopilot with

default parameters was employed as the low-level tracking

controller. For additional experiments, refer to the accompa-

nying video.

7https://optitrack.com/
8https://www.lattepanda.com/lattepanda-3-delta
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Fig. 9. (a) Desired and actual path with the initial and final position marked
with a cross and a dot, respectively. The POIs are marked with circumferences
of radius σmax. (b) POIs heats time evolution.

VII. COMPARISON

This section presents a statistical comparison of our ap-

proach with the methodology proposed in [16] for a search and

rescue application. The latter was selected among the state-

of-the-art methods because it implements the most similar

dynamic function for the points of interest. More in detail, a

potential field is defined in [16] by summing a set of Gaussian

radial basis functions for each region of interest. Each function

depends on the agent’s position and a time-varying reward,

which increases the weights of areas that have not been visited

recently and decreases those of areas that have. A velocity

command is chosen in the direction of steepest descent of this

potential field and saturated by a maximum speed. The reader

can refer to [16] for a complete overview of the approach.

Being based on an artificial potential field, this method will

be referred to as PTF from now on.

Statistical analysis is here adopted to discover if significant

enhancements in task performance are obtained across control

methods in multiple scenarios. Recent papers reported valuable

insights thanks to statistical considerations in fields such as

robotic manipulation [45] or shared control of robotic sys-

tems [46], [47], where variability must be taken into account.

We compared our proposed solution with [16] in the single

drone scenario, tuning both functions to obtain similar scaling

and dynamics. We consider as factors in our study the control

modality, exhibiting two levels (NMPC, PTF), and the number

of points of interest M , exhibiting three levels (5, 7, 9). Our

aim is to characterize whether a given performance metric has

a statistically significant dependence on the considered factors.

To this end, we consider the following metrics (T denotes the
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task duration):

• Tf = 1/M
∑M

i=1 maxi (Tf (i)) is the mean over the POIs

of the maximum time intervals Tf (i) in which the i−th

POI is not covered by the robot (distance > 0.4 m);

This metric is representative of how much time the POI

can remain uncovered during the task given the control

modality and the number of POIs.

• Tn = 1/M
∑M

i=1 Tn(i)/T , is the mean over the POIs of

all time intervals Tn(i) in which the robot is in proximity

(distance ≤ 0.4 m) of the i−th POI; this metric is

representative of how well the robotic system is covering

the POIs given the control modality.

• To = ∥1M/M − Tn/T∥ is the norm of the difference

with respect to an optimal policy in which each POI is

covered equally for 1/M normalized time. This metric

is representative of the covering homogeneity attained

by the robotic system under the control modality for the

specified number of POIs.

• V = 1/T
∑T

tk=0 ∥vx,y(tk)∥ is the mean in time of the

norm of the velocity exhibited by the robot. This metric is

representative of the energetic behaviour requested by the

robotic system to accomplish the task, given the control

modality and the number of POIs.

A balanced two-factor factorial design of the simulations

was used to check the significance of factors on the control

performance metrics. For each combination of factors, we

performed 30 replicates by randomly sampling from a uniform

distribution POIs locations over the interval [1,5), and initial

ξξξ0 values over the interval [0, 10).

The results obtained by the series of simulations are reported

for visual comparison in terms of box plot (blue), with

median values (red line), confidence intervals (black lines),

and outliers (red crosses) in Fig. 10. In this figure, each

tick of the x-axis represents the given combination of control

modality/number of points. To a very close approximation, two

estimates being compared are significantly different if their

intervals are disjoint, and are not significantly different if their

intervals overlap. All the collected data passed the one-sample

Kolmogorov-Smirnov test. The analysis of the results is carried

out leveraging a two-way ANOVA using a significance level

p = 0.05. The main effects can be difficult to interpret when

the model includes significant interactions between factors,

and pairwise comparisons are needed to evaluate the simple

main effects of the factors’ changes. In our analysis, we have

found the statistically significant interactions shown in Fig. 11.

The metric Tf shows a disordinal interaction (p < 0.01,

F = 6.43) with the trend being inverted when changing the

control mode from NMPC to PTF, passing from 5 to 9 POIs.

The pairwise comparison revealed a statistically significant

change in the metric for the control modality (p < 0.01) only

when the number of POIs is 5. Instead, for the larger number

of POIs the two control modalities perform the same.

The metric Tn also shows an ordinal interaction (p = 0.01,

F = 4.19) with a greater change in the metric when changing

the control mode from NMPC to PTF, passing from 5 to 9

POIs. The pairwise comparison revealed a statistically signifi-

cant change in the metric for the number of POIs (p < 0.01) in
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Fig. 10. Visual representation of the statistical evaluation of the results. Left:
box plots of the metrics Tf , Tn, To, and V for all the possible combinations
of control modality–number of POIs.
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Fig. 11. Interaction plots for the Tf , Tn, To, and V metrics.

both control modalities, showing that the covering time metric

Tn is influenced only by the number of points.

The metric To shows an ordinal interaction (p < 0.01,

F = 4.61) with a less marked change in the metric changing

the control mode from NMPC to PTF, passing from 5 to 9

POIs. The pairwise comparison revealed a statistically signifi-

cant change in To for the control modality and the number of

POIs except when M = 5. This denotes a more homogeneous

coverage for NMPC when the number of POIs is large, with

equal homogeneity for M = 5.

The metric V shows an ordinal interaction (p < 0.01, F =
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43.03) with a greater difference changing the control mode

from NMPC to PTF, passing from 5 to 9 POIs. The pairwise

comparison revealed a statistically significant change in V for

the control modality and the number of POIs, except when

M = 5. This outcome is expected, as the PTF control method’s

gains were specifically tuned to achieve similar velocities for

the case M = 5.

The results listed above require special consideration of

the existing relationship between the velocity achieved by the

robot (expressed by the metric V) and the overall performance

(expressed by the remaining metrics). It is worth noting that

the notable increase of V with the number of POIs for the

PTF method explains why Tf does not show a clear increasing

trend. Intuitively, by moving faster, the robot will spend less

time far from the POIs.

Despite the significant increase in the mean velocity with

the number of POIs in the PTF method—always within the

imposed limits—the NMPC still performs comparatively or

better in the cases highlighted above. It is worth noting that

limits imposed on velocity are by design more permissive in

the PTF method because we chose to saturate the norm instead

of limiting the single components, as done in the NMPC.

Thus, we can conclude that adopting the proposed NMPC is

advantageous for the considered control objectives, especially

with regard to the limited effort required in terms of velocity.

Moreover, the NMPC also attains smoother velocities along

the task with respect to the PTF approach. These performance

improvements arise from integrating both model constraints

and POIs’ heat evolution in a prediction horizon, a feature

that is absent in the gradient-based approach implemented in

the benchmark.

VIII. DISCUSSION

The proposed method introduces an innovative approach to

persistently monitor a set of POI with a multi-robot system.

A key distinction from existing state-of-the-art methodologies

lies in the different underlying dynamics, which may render

direct comparisons less straightforward as agents move to

optimize costs that evolve differently in time. For this reason,

task-related metrics were introduced in Sec. VII; however,

these metrics were defined by the authors and have not been

evaluated in other works.

One limitation of our approach is its focus on local op-

timality, as global, team-level optimality was not explicitly

addressed. However, the use of a decentralized and asyn-

chronous implementation allows greater flexibility. Moreover,

currently we cannot exclude the occurrence of deadlocks due

to POIs attracting a single robot in opposite directions or

multiple robots in the same one. Nevertheless, in the extensive

simulation campaign performed in this paper, such conditions

were never permanent. Future work could integrate an online

deadlock detection mechanism to guarantee escape using, for

instance, a prioritization rule.

Additionally, the system architecture is only partially de-

centralized. While this design choice may limit scalability, the

GCS remains essential in most practical scenarios. Moreover,

the central unit can retain global information that is otherwise

inaccessible from local measurements, as in the application

in [13]. However, the proposed architecture has the potential

to be fully decentralized, implementing a dynamic consensus

algorithm [48] on the heat values, as done in [33].

The NMPC can potentially achieve enhanced task perfor-

mances by utilizing a higher degree Bézier curve, or multiple,

concatenated curves, to allow more complex maneuvers. The

impact of this aspect on the computational complexity could

be investigated, along with recursive feasibility properties.

Finally, the evolution of the POIs’ dynamic depends on the

chosen gains; while this aspect allows for significant versatility

and adaptability, it requires proper parameter tuning of the heat

dynamics if precise task requirements, such as a minimum visit

time on the point, must be met. Furthermore, initial heat values

can be set according to the monitoring task requirements; for

example, points that are more critical in the initial phase can

be assigned higher initial heat values.

IX. CONCLUSIONS AND FUTURE WORK

We presented a novel framework for a multi-robot area mon-

itoring problem, considering both homogeneous and hetero-

geneous teams. Simulations and experimental results demon-

strated that the proposed architecture is adaptable to various

types of mobile robots and that the optimization problem

can be solved online on computationally limited platforms.

Moreover, an extensive simulation campaign reported that our

NMPC approach outperforms a baseline method in terms of

task-related performance and required system velocities in a

number of randomly generated scenarios. Future work will

focus on removing the central unit by running a dynamic

consensus algorithm on the heat values to achieve fully decen-

tralized control. Furthermore, time-varying scenarios, where

the number and positions of points of interest are dynamically

updated, could be explored. Future work might also investigate

the incorporation of energy constraints, such as battery levels,

into the CBF layer, as well as explore teams of variable size

to enhance energy-aware operations and system scalability.
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APPENDIX

A. POIs dynamic equation

The heat-like dynamic equation behaviour can be better

understood by looking at the function’s stationary points in

specific cases. If the agent is on the POI’s center, fixing l = 0,

(4) becomes

ξ̇i = f(ξi) = −

(

Ki
d + ξi

)

2πσ2(ξi)
, (35)

and ξ̇i = 0⇐⇒ ξ = −Ki
d; thus, Ki

d also acts as a lower bound

on the values attained by ξi. Moreover, the equilibrium is

stable if σ(ξi) is selected properly. The choice of the variance

function σ (ξi) affects agents’ motion and the balance between

exploitation and exploration, intended here as the permanence
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over the current POI or the movement towards a nearby one.

Different choices are possible; e.g., by selecting

σ (ξi) = σmin + tanh2
(

Ki
σξi
)

(σmax − σmin), (36)

σ (ξi) = σmin ⇐⇒ ξi = 0,

the variance also increases as ξi becomes negative, pushing

an agent away from the POI. Instead, when the agent is at

maximum distance l = lmax from the POI, (4) becomes

ξ̇i = 2Ki
r sech(1)− (Ki

d + ξi)
1

2πσ2
max

exp

(

−
l2max

2σ2
max

)

,

and the heat upper bound is mainly influenced by the ratio

lmax/σmax.
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[14] F. Nekovář et al., “Multi-vehicle dynamic water surface monitoring,”
IEEE Robot. Autom. Lett., vol. 8, no. 10, pp. 6323–6330, 2023.

[15] K. Jakkala et al., “Probabilistic Gas Leak Rate Estimation Using
Submodular Function Maximization With Routing Constraints,” IEEE

Robot. Autom. Lett., vol. 7, no. 2, pp. 5230–5237, Apr. 2022.
[16] J. R. Cooper, “Optimal Multi-Agent Search and Rescue Using Potential

Field Theory,” in AIAA Scitech 2020 Forum. Orlando, FL: American
Institute of Aeronautics and Astronautics, Jan. 2020.

[17] S. K. K. Hari et al., “Optimal uav route planning for persistent
monitoring missions,” IEEE Trans. Robot., vol. 37, no. 2, pp. 550–566,
2021.

[18] M. Ostertag et al., “Trajectory planning and optimization for minimizing
uncertainty in persistent monitoring applications,” J. Intell. Robot. Syst.,
vol. 106, 08 2022.

[19] C. Song et al., “Optimal control for multi-agent persistent monitoring,”
Automatica, vol. 50, no. 6, pp. 1663–1668, 2014.

[20] M. Saska et al., “Autonomous deployment of swarms of micro-aerial
vehicles in cooperative surveillance,” in 2014 Int. Conf. on Unmanned

Aircraft Systems, 2014, pp. 584–595.

[21] N. Nigam et al., “Control of multiple uavs for persistent surveillance:
Algorithm and flight test results,” IEEE Trans. Contr. Syst. Technol.,
vol. 20, no. 5, pp. 1236–1251, 2012.

[22] T. Chung et al., “Search and pursuit-evasion in mobile robotics,” Auton.

Robots, vol. 31, 11 2011.
[23] S. Marcellini et al., “Nonlinear model predictive control for repetitive

area reconnaissance with a multirotor drone,” in 2023 Int. Conf. on

Unmanned Aircraft Systems, 2023, pp. 515–522.
[24] J. Cortes et al., “Coverage control for mobile sensing networks,” IEEE

Trans. Robot. and Automation, vol. 20, no. 2, pp. 243–255, 2004.
[25] Y. Bai et al., “Safe adaptive multi-agent coverage control,” IEEE Control

Systems Letters, vol. 7, pp. 3217–3222, 2023.
[26] R. Funada et al., “Visual coverage control for teams of quadcopters via

control barrier functions,” in 2019 Int. Conf. Robot. Autom., 2019, pp.
3010–3016.

[27] M. Santos et al., “Decentralized minimum-energy coverage control for
time-varying density functions,” in 2019 International Symposium on

Multi-Robot and Multi-Agent Systems, 2019, pp. 155–161.
[28] A. Carron et al., “Model predictive coverage control,” IFAC-

PapersOnLine, vol. 53, no. 2, pp. 6107–6112, 2020.
[29] Y. Wang et al., “Awareness coverage control over large-scale domains

with intermittent communications,” IEEE Transactions on Automatic

Control, vol. 55, no. 8, pp. 1850–1859, 2010.
[30] C. Song et al., “Decentralized adaptive awareness coverage control for

multi-agent networks,” Automatica, vol. 47, no. 12, pp. 2749–2756,
2011.

[31] ——, “Persistent awareness coverage control for mobile sensor net-
works,” Automatica, vol. 49, no. 6, pp. 1867–1873, 2013.

[32] E. J. Rodrı́guez-Seda et al., “Decentralized persistent area coverage
control with loss of awareness,” in 2020 IEEE Conference on Control

Technology and Applications (CCTA), 2020, pp. 528–535.
[33] X. Xu et al., “Persistent awareness-based multi-robot coverage control,”

in 2020 59th IEEE Conf. Decis. Control., 2020, pp. 5315–5320.
[34] T.-H. Cheng et al., “Awareness coverage control with uncertain loss of

awareness,” in 2018 Annual Am. Control Conf., 2018, pp. 4912–4917.
[35] D. Zhou et al., “Fast, on-line collision avoidance for dynamic vehicles

using buffered voronoi cells,” IEEE Robot. Autom. Lett., vol. 2, no. 2,
pp. 1047–1054, 2017.

[36] W. Xiao et al., “Control barrier functions for systems with high relative
degree,” in IEEE 58th Conf. Decis. Control., 2019, pp. 474–479.

[37] L. Wang et al., “Safety barrier certificates for collisions-free multirobot
systems,” IEEE Trans. Robot., vol. 33, no. 3, pp. 661–674, 2017.

[38] S. Wilson et al., “The robotarium: A remotely-accessible, multi-robot
testbed for control research and education,” IEEE Open Journal of

Control Systems, vol. PP, pp. 1–13, 01 2022.
[39] A. D. Ames et al., “Control barrier functions: Theory and applications,”

in 2019 18th European Control Conference, 2019, pp. 3420–3431.
[40] D. Mellinger et al., “Minimum snap trajectory generation and control

for quadrotors,” in 2011 IEEE Int. Conf. Robot. Autom., 2011, pp. 2520–
2525.

[41] B. Siciliano et al., Robotics: Modelling, Planning and Control, ser.
Advanced Textbooks in Control and Signal Processing. Springer
London, 2010.

[42] A. De Luca et al., “Stabilization of the unicycle via dynamic feedback
linearization,” IFAC Proceedings Volumes, vol. 33, no. 27, pp. 687–692,
2000.

[43] J. A. E. Andersson et al., “CasADi – A software framework for nonlinear
optimization and optimal control,” Math. Program. Comput., vol. 11,
no. 1, pp. 1–36, 2019.

[44] B. Stellato et al., “OSQP: an operator splitting solver for quadratic
programs,” Math. Program. Comput., vol. 12, no. 4, pp. 637–672, 2020.

[45] V. Morlando et al., “Nonprehensile object transportation with a legged
manipulator,” in 2022 Int. Conf. Robot. Autom., 2022, pp. 6628–6634.

[46] M. Selvaggio et al., “Shared-control teleoperation methods for a cable-
suspended dual-arm unmanned aerial manipulator,” in 2024 Int. Conf.

on Unmanned Aircraft Systems, 2024, pp. 1132–1139.
[47] ——, “A shared-control teleoperation architecture for nonprehensile

object transportation,” IEEE Trans. Robot., vol. 38, no. 1, pp. 569–583,
2022.

[48] S. S. Kia et al., “Tutorial on dynamic average consensus: The problem,
its applications, and the algorithms,” IEEE Control Systems Magazine,
vol. 39, no. 3, pp. 40–72, 2019.


