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Abstract—This paper is focused on simultaneous target de-
tection and angle estimation with a multichannel phased array
radar. Resorting to a linearized expression for the array steering
vector around the beam pointing direction, the problem is formu-
lated as a composite binary hypothesis test where the unknowns,
under the alternative hypothesis, include the target directional
cosines displacements with respect to the array nominal coarse
pointing direction. The problem is handled via the Generalized
Likelihood Ratio (GLR) criterion (both one-step and two-step)
where decision statistics leveraging the Maximum Likelihood Es-
timates (MLEs) of the parameters are compared with a detection
threshold. If crossed, target presence is declared and the MLEs of
the aforementioned displacements directly provide target angular
position with respect to the pointing direction. From the analytic
point of view, ML estimation involves a constrained fractional
quadratic optimization problem whose optimal solution can be
found via the Dinkelbach’s algorithm or approximated through
a fast-converging procedure based on a Coordinate Descent
(CD) optimization. The performance analysis of the proposed
architectures as well as the corresponding discussion is developed
in terms of computational complexity, Constant False Alarm Rate
(CFAR) behavior, detection performance, and angular estimation
accuracy, also in comparison with some counterparts available
in the open literature and theoretical benchmark limits.

I. INTRODUCTION

Multichannel phased array radar systems must comply with
very stressing operational requirements demanding for surveil-
lance at specific ranges, sometimes with different update rates
depending on the different elevation sectors; tracking with
variable update rates that can be different from those adopted
in the search task; 3-D target data measurements; the capability
to manage many tracks simultaneously without decreasing the
search performance and the capability to operate in clutter and
jamming environments [2]–[5]. Agility in beam steering and
adaptive digital beamforming are key ingredients to face the
challenge together with advanced signal and data processing

Augusto Aubry, Antonio De Maio (Corresponding Author) and Massimo
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algorithms aimed at boosting the radar performance [6], [7]. At
the root of all the mentioned processes there is target detection
and its localization within a 3-D coordinate system.

Historically, as testified by the many references available in
the open literature [8]–[17], target angle estimation (usually
performed in the directional cosines domain [8], [10]) is acti-
vated after a detection event is triggered. This also motivates
why detection and target angle estimation are addressed as
two distinct signal processing tasks. First detection of a main-
beam target is performed via an adaptive detector [18]–[27],
chosen to balance different performance tradeoffs (matched
detection performance, rejection of sidelobe targets, robustness
with respect to mismatched targets, computational complex-
ity). Then, if the presence of a target is declared within the
antenna mainbeam, a specific angle estimation technique such
as Maximum Likelihood (ML) [10], monopulse [17], general-
ized monopulse [8], Generalized Adaptive Multidimensional
Monopulse Algorithm (GAMMA) [13] is initiated to localize
the target within the antenna beam.

The approach pursued in this paper relies on the idea
of performing jointly target detection and accurate angular
estimation, namely the angle coordinates are directly provided
with single pulse spatial processing simultaneously with target
detection. If the resulting processing is capable of granting
a computational complexity compatible with real time con-
straints, it can be implemented for every search beam of
a multifunction phased array radar. Otherwise, it turns out
very useful in the target confirmation (verification) process [3]
where, after a first detection is triggered by a standard detector,
one needs to confirm the target presence (lowering the False
Alarm Probability (Pfa)) and to output angular estimates.

Before continuing with the description of the present ap-
proach, it is worth observing that the idea of joint target
detection and localization/estimation has been pursued also
in other studies available in the open literature possibly re-
ferring to different localization domain, such as range [28],
[29], parameters of interest, e.g., motion parameters [30], or
different system configurations, e.g., Multiple Input Multiple
Output (MIMO) radar with widely displaced antennas [31].

For a joint target detection and angle estimation, after a
tailored linearization procedure, the target steering vector is
represented as the superposition of the pointing direction term
plus two contributions that account for the directional cosines
offsets with respect the nominal array steering. Based on this
representation, target detection in the presence of interference
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is cast as a binary composite hypothesis testing problem with
a different number of unknowns under the two alternatives.
In particular, under the H1 hypothesis, i.e., target presence,
the likelihood function exhibits dependence on the complex
target amplitude, the interference covariance matrix, and the
two direction cosine displacement parameters (accounting for
the unknown target location within the array mainbeam). This
formulation paves the way for the development of signal
processing architectures which are able to detect the target
and, at the same time, to determine its angular estimate. In this
respect, the Generalized Likelihood Ratio Test (GLRT) crite-
rion [18], [32] is considered, which under the H1 hypothesis,
after concentration over the unknown interference covariance
and target complex amplitude, demands the solution of an
optimization problem over the unknown direction offsets. For
the special case of 1-D linear array the problem is solved in
closed form by simply computing the roots of a second-order
equation. For the 2-D planar array, the optimization becomes
more challenging and falls within the class of box-constrained
fractional quadratic problems. In this regard, two new solution
methods are proposed. The former provides the optimal solu-
tion and relies on the use of the Dinkelbach’s algorithm [33]–
[35]. The latter is an iterative fast-converging procedure based
on a Coordinate Descent (CD) optimization [36]. However, in
this last case, only convergence to a stationary point can be
claimed.

At the analysis stage, the new GLRT-based signal processing
architectures are compared with classic detectors such as
Kelly’s GLRT [19], Adaptive Matched Filter (AMF) [20],
Subspace Detector (SD) [18], [21], [37] in terms of detection
performance. Besides, the mean square error of the angular
estimates are compared with the Cramer Rao Lower Bound
(CRLB) [10], ML [10], and the adaptive monopulse (devised
in [17] and also described in [9]). The results highlight that
the bespoke new methodology is a very effective candidate to
solve the problem of joint target detection and angular estima-
tion, providing close-to-optimum detection performances and
high quality angular estimates in many scenarios of practical
relevance for modern phased array radar.

The paper is organized as follows. Section II deals with
problem formulation. In Section III, three procedures to
solve the constrained optimization problem are developed.
Section IV addresses the performance analysis and outlines
comparisons for both detection and estimation tasks. Finally,
Section V, summarizes conclusions and outlines possible
future research avenues.

A. Notation

Boldface is used for vectors a (lower case), and matrices
A (upper case). The (k, l)-entry (or l-entry) of a generic
matrix A (or vector a) is indicated as A(k, l) (or a(l)). I
and 0 denote the identity matrix and the matrix with zero
entries, respectively (their size is determined from the context).
The all-ones column vector of size N is denoted by 1N .
The transpose, the conjugate, and the conjugate transpose
operators are denoted by the symbols (·)T , (·)∗, and (·)†,
respectively. The Kronecker and Hadamard (i.e., elementwise)

products are indicated as ⊗ and �, respectively. RN , CN ,
and HN are respectively the sets of N -dimensional vectors of
real numbers, of N -dimensional column vectors of complex
numbers, and of N × N Hermitian matrices. The curled
inequality symbol � (and its strict form �) is used to denote
generalized matrix inequality: for any A ∈ HN , A � 0
means that A is a positive semi-definite matrix (A � 0 for
positive definiteness). The letter j represents the imaginary
unit (i.e., j =

√
−1). For any complex number x, Re{x} and

|x| indicate the real part and the modulus of x, respectively.
Moreover, for any x ∈ CN , ‖x‖ represents the Euclidean
norm of x. Finally, E[·] denotes statistical expectation and
υ ∼ U(−∆,∆) indicates a random variable υ uniformly
distributed over (−∆,∆), ∆ > 0.

II. PROBLEM FORMULATION

Let us consider a radar system that collects spatial data
via a narrow-band planar array (see Fig. 1) composed of NM
antennas. After down-conversion, pulse compression, and fast-
time sampling, the echo signal induced by a prospective target
located at range R, azimuth θ0, and elevation φ0 with respect
to array boresight, is given by

ap(u0, v0), (1)

where a is an unknown complex parameter accounting for
target backscattering and channel propagation effects, (u0, v0)
indicates the target angular location in the space of directional
cosines [10], i.e.,

u0 = sin(θ0) cos(φ0), v0 = sin(θ0) sin(φ0), (2)

and p(u0, v0) denotes the spatial steering vector p(u, v) eval-
uated at (u0, v0). For a Uniform Rectangular Array (URA)

p(u, v) = pu(u)⊗ pv(v), (3)

with

pu(u) = [ej
2π
λ0
x0u, ej

2π
λ0
x1u, . . . , ej

2π
λ0
xN−1u]T ∈ CN , (4)

pv(v) = [ej
2π
λ0
y0v, ej

2π
λ0
y1v, . . . , ej

2π
λ0
yM−1v]T ∈ CM , (5)

where (xi, yh), i = 0, . . . , N−1, h = 0, . . . ,M−1, are the
positions1 of the array elements and λ0 is the radar operating
wavelength.

Assuming the potential useful echo signal buried in Gaus-
sian interference with unknown spectral characteristics and
supposing the availability of K ≥ N homogeneous secondary
data (i.e., data vectors, free of useful target returns, exhibiting
the same spectral property as that from the cell under test),

1For a URA, denoting by dx and dy the interelement spacing (usually
given by λ0/2) along the x and y axes, respectively, if the reference system
center is located in the bottom-left corner

xi = dx i, i = 0, 1, . . . , N − 1, yh = dy h, h = 0, 1, . . . ,M − 1.

If instead the reference system center coincides with the array center, then

xi = dx
(
i−
(
N−1

2

))
, i = 0, 1, . . . , N − 1,

yh = dy
(
h−

(
M−1

2

))
, h = 0, 1, . . . ,M − 1.
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Fig. 1. Two dimensional symmetric planar array geometry with equi-spaced
antennas in the x and y directions. (R, θ, φ) are the polar coordinates of
target.

the problem of detecting a target located at (θ0, φ0), i.e., at
(u0, v0) in u − v space, can be formulated as the following
composite binary hypothesis testing problem

H0 :

{
r = n

rk = nk k = 1, . . . ,K

H1 :

{
r = ap(u0, v0) + n

rk = nk k = 1, . . . ,K

, (6)

where the interference plus noise components n and nk,
k = 1, . . . ,K, are modeled as statistically independent,
complex, zero-mean, circularly symmetric Gaussian random
vectors with unknown positive definite covariance matrix

M = E[nn†] = E[nkn
†
k], k = 1, . . . ,K. (7)

Two important remarks are now necessary.
1) The presented framework is developed using a URA, but

it can be easily generalized to deal with different types
of array. Besides, for the special case of a linear array,
i.e., M = 1, the steering vector (3) degenerates into (4).

2) The interference scenario with the assumptions in (7)
defines the so called “homogeneous environment”, well
established and accepted in radar detection-estimation
literature being theoretically justified and representative
of many practical operative contexts [19], [20], [38], [39]
and also explained in many technical books [6], [9], [18].

A. Pointing Errors

An array steering direction is not usually aligned with the
target Direction of Arrival (DOA), especially when the radar
is in search mode. In order to account for this mismatch,
a specific model of the array steering vector is now devel-
oped, leveraging a linearization of the array manifold around
the transmit look-direction (ū, v̄). Specifically, denoting by
(∆u,∆v) the directional cosine offset, i.e., ∆u = u0 −
ū, ∆v = v0− v̄, the target steering vector is approximated as

pa(∆u,∆v) = p(ū, v̄) +
∂p(ū, v̄)

∂u
∆u+

∂p(ū, v̄)

∂v
∆v, (8)

where the explicit dependence of the approximated steering
vector on the pointing direction is omitted to avoid unneces-
sary notational complications. Note that

∂p(ū, v̄)

∂u
=
∂p(u, v)

∂u

∣∣∣∣
u=ū
v=v̄

=

j
2π

λ0

(
pu(ū)� [x0, x1, . . . , xN−1]T

)
⊗ pv(v̄)

(9)

and
∂p(ū, v̄)

∂v
=
∂p(u, v)

∂v

∣∣∣∣
u=ū
v=v̄

=

j
2π

λ0
pu(ū)⊗

(
pv(v̄)� [y0, y1, . . . , yM−1]T

) (10)

represent the partial derivatives with respect to u and v.
To assess the accuracy of the approximation in (8), Fig. 2

reports the magnitude of the normalized correlation (mis-
matched angle cosine) between the actual steering vector and
the approximated one, i.e.,

|pa(∆u,∆v)†p(ū+ ∆u, v̄ + ∆v)|
‖pa(∆u,∆v)‖ ‖p(ū+ ∆u, v̄ + ∆v)‖

, (11)

versus the directional cosines offsets. Specifically, assuming
symmetric array configurations, in Fig. 2(a) the 1-D case is
analyzed, with N = 9 and ū = 0, whereas Fig. 2(b) refers
to the 2-D scenario with M = 5, N = 5, ū = v̄ = 0. The
results clearly highlight the ability of pa(∆u,∆v) to describe
accurately the actual steering vector as long as the target DOA
lies within the 3 dB beamwidth. Indeed, normalized correlation
values higher than 0.83 are achieved2 if |∆u| ≤ 0.891/N and
|∆v| ≤ 0.891/M where 0.891/N and 0.891/M represent the
3 dB single-side beamwidth of a planar array pointing at the
boresight direction.

Hereafter, to simplify notation, the nominal steering vector
p(ū, v̄) is indicated as p whereas the steering derivatives
(at the pointing directions) ∂p(ū, v̄)/∂u and ∂p(ū, v̄)/∂v are
denoted by ṗu and ṗv , respectively. As a result, equation (8)
can be re-written as

pa(∆u,∆v) = p+H∆θ, (12)

with H = [ṗu, ṗv] the Jacobian matrix, and ∆θ =
[∆u,∆v]T ∈ R2. Note that, for the special case of a linear
array, the steering model boils down to

pa(∆u) = pu(ū) +
∂p(ū)

∂u
∆u = p+ ṗu∆u. (13)

Now, leveraging the useful signal model (12), the target
detection problem in the presence of pointing errors can be
cast as 

H0 :

{
r = n

rk = nk k = 1, . . . ,K

H1 :

{
r = apa(∆u,∆v) + n

rk = nk k = 1, . . . ,K

, (14)

where pa(∆u,∆v) represents the approximated steering vec-

2Normalized correlation values larger than or equal to 0.95 are achieved
in 1-D case provided that |∆u| ≤ 0.891/N .
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tor and the entries of (∆u,∆v) indicate the unknown target
direction cosines, with |∆u| ≤ α, |∆v| ≤ β. The choice of the
constraint levels α and β must reflect a compromise between
DOA uncertainty and quality of the linear approximation. A
reasonable choice is the 3 dB single-side beamwidth3.

Before concluding this section, it is worth stressing the
major differences between our model and the classic sub-
space framework [21]. Both characterize the useful signal
contribution as the superposition of three components, i.e.,
st = α1p+ α2p2 + α3p3, with αi ∈ C, i = 1, 2, 3. However,
unlike the subspace model, the useful-signal uncertainty set
in (14) is non-convex and the weights are structured so that
their values are representative directly of the target DOA
displacements in u− v space. Specifically, α2/α1 and α3/α1

provide the DOA offset along the u and v axis, respec-
tively. Furthermore, capitalizing the a-priori information on
the sensing system, namely the transmit beamwidth size, the
feasible values of the unknowns DOA displacements can be
appropriately constrained, laying the ground for an improved
angular estimation.

III. SYSTEM DESIGN: JOINT DETECTION AND ANGLE
ESTIMATION

The optimum solution to the hypotheses testing prob-
lem (14) (in the Neyman-Pearson sense) is the likelihood
ratio test (LRT). However, its practical implementation is
precluded as the knowledge of the parameters ∆u, ∆v, a
and M is required. In detection theory jargon this means
that a Uniformly Most Powerful (UMP) test does not exist.
Thus, to come up with a practically implementable receiver,
the GLR criterion is exploited, where the unknown parameters
are replaced by their ML estimates under each hypothesis.
Specifically, the following constrained GLRT decision rule is
proposed

max
M,a,

|∆u|≤α |∆v|≤β

fH1
(r, r1, . . . , rk|M , a,∆θ)

max
M

fH0
(r, r1, . . . , rk|M)

H1

≷
H0

T, (15)

where fH1
(·) and fH0

(·) represent the probability density
functions of the observations under the two hypotheses, and
T is the detection threshold4 set to ensure a desired Pfa.
Besides, the AMF version of (15) (also known as two-step
GLRT because it can be obtained computing the GLRT from
the primary data vector (step 1) and then substituting the ML
estimate of the interference covariance matrix in place of the
exact one (step 2)) is considered

max
a,

|∆u|≤α |∆v|≤β

fH1(r|M = K−1S, a,∆θ)

fH0
(r|M = K−1S)

H1

≷
H0

T1, (16)

3The developed model can be easily extended to control the array manifold
approximation accuracy. Specifically, a set {(ūi, v̄i)}Di=1 of reference look-
directions can be considered together with the corresponding linearized
models. Hence, the detection problem can be framed as a generalized union-
of-subspace hypothesis test [40], [41], where each hypothesis corresponds to
the non-convex set associated with a specific linearized model.

4With a slight abuse of notation, the same symbol is used to denote
the detection threshold and its possible modifications introduced later, see,
e.g., (18).

where

S =
K∑
k=1

rkr
†
k (17)

is proportional, via K, to the conventional secondary data
sample covariance matrix. The motivation for considering
both (15) and (16) stems from the observation that none of
them can be a-priori claimed to be better than the other.

Following the same line of reasoning as in [19] and [20], it is
not difficult to show that (15) and (16) can be cast respectively
as

max
|∆u|≤α
|∆v|≤β

1

1 + r†S−1r

∣∣r†S−1(p+H∆θ)
∣∣2

(p+H∆θ)†S−1(p+H∆θ)

H1

≷
H0

T, (18)

and

max
|∆u|≤α
|∆v|≤β

∣∣r†S−1(p+H∆θ)
∣∣2

(p+H∆θ)†S−1(p+H∆θ)

H1

≷
H0

T1. (19)

Remarkably, once the presence of a target is declared, i.e.,
the decision statistic on left hand side of (18) exceeds the
detection threshold T , its angular estimate is obtained as a by-
product from the decision statistic computation (18) and (19).
Note that the evaluation of the decision rule in (18) as well as
in (19) involves a non-convex fractional quadratic optimization
problem. To handle it, different solution techniques are now
devised, which represent the main technical contribution of
this work from an optimization theory point of view. The 1-
D case is studied in Subsection III-A whereas the 2-D case
is analyzed in Subsection III-B. Before proceeding further, it
is worth observing that the decision statistic in (18) is upper
bounded by

t̂upper(r,S) = max
∆θ∈C2

1

1 + r†S−1r

∣∣r†S−1(p+H∆θ)
∣∣2∣∣S−1/2(p+H∆θ)
∣∣2 =

=
r†S−1HSD

(
H†SDS

−1HSD

)−1

H†SDS
−1r

1 + r†S−1r
,

with HSD = [p,H], namely,

max
|∆u|≤α
|∆v|≤β

1

1 + r†S−1r

∣∣r†S−1(p+H∆θ)
∣∣2∣∣S−1/2(p+H∆θ)
∣∣2 < t̂upper(r,S).

(20)

Being the probability density function of t̂upper(r,S), under
the H0 hypothesis, functionally independent of M , it follows
that the decision rule in (18) ensures the bounded Constant
False Alarm Rate (CFAR) property. Indeed, for any given
upper bound to the desired false alarm probability, a universal
threshold, namely, just depending on the system parameters
(i.e., pointing direction, number of antennas, and sample
support size), can be set in (18) to fulfill the upper bound
constraint. Leveraging (20), this property holds true even if
a sub-optimal maximization is performed in (18) and thus an
approximated implementation of the decision statistic in (18)
is considered. Finally, following the same line of reasoning as
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Fig. 2. Normalized correlation versus direction cosine offset, assuming symmetric array: (a) 1-D case with N = 9 and ū = 0; (b) 2-D case with N = M = 5
and ū = v̄ = 0. Dashed red lines delimitate the 3 dB beamwidth.

before, it is not difficult to show that the two-step detector (19)
and its possible sub-optimal implementations, i.e., relying on
sub-optimal solution techniques to handle the involved max-
imization problem, still exhibit the bounded CFAR property.

A. Constrained GLRT Detector for 1-D Scenario
Handling the optimization problem involved in (18)

and (19) for the 1-D case is tantamount to solving

max
|∆u|≤α

(p+ ṗu∆u)† S−1r r† S−1(p+ ṗu∆u)

(p+ ṗu∆u)† S−1(p+ ṗu∆u)
. (21)

In order to proceed, let us define the “whitened” quantities

p̄ = S−1/2p, ˙̄pu = S−1/2ṗu, r̄ = S−1/2r, (22)

and recast Problem (21) as

max
|∆u|≤α

(p̄+ ˙̄pu∆u)† r̄ r̄† (p̄+ ˙̄pu∆u)

(p̄+ ˙̄pu∆u)† (p̄+ ˙̄pu∆u)
. (23)

The following proposition establishes a procedure to obtain a
closed-form optimal solution to (23).

Proposition 1. An optimal solution ∆u? to (23) is

∆u? = arg max
∆u∈{∆u1,∆u2}∪B

(p̄+ ˙̄pu∆u)† r̄ r̄† (p̄+ ˙̄pu∆u)

(p̄+ ˙̄pu∆u)† (p̄+ ˙̄pu∆u)
,

(24)

where ∆ui = (−1)i α, i = 1, 2, and B is the finite set
(whose cardinality is at most 2) containing the real roots (with
absolute value less than α) of the quadratic equation

a′∆u2 + b′∆u+ c′ = 0, (25)

with

a′ =
∣∣r̄† ˙̄pu

∣∣2 Re{p̄† ˙̄pu} − ‖ ˙̄pu‖2 Re{p̄†r̄ r̄† ˙̄pu}, (26)

b′ = ‖p̄‖2
∣∣r̄† ˙̄pu

∣∣2 − ‖ ˙̄pu‖2
∣∣r̄†p̄∣∣2 , (27)

c′ = ‖p̄‖2 Re{p̄†r̄ r̄† ˙̄pu} −
∣∣r̄†p̄∣∣2 Re{p̄† ˙̄pu}. (28)

Proof: the interested reader may refer to Appendix B of
the supplementary material to this paper.

Exploiting the above results, it follows that the decision
rule (18) for the 1-D case, referred to in the following as
GLRT for Linearized Array Manifold (GLRT-LAM), can be
expressed in closed form as

tGLRT-LAM =
1

1 + ‖r̄‖2

∣∣∣r̄†(p̄+ ˙̄pu∆̂u?)
∣∣∣2∥∥∥p̄+ ˙̄pu∆̂u?

∥∥∥2

H1

≷
H0

T, (29)

where ∆̂u? is given by Proposition 1 (therein denoted by
∆u?) and represents the output estimate of the target DOA
displacement, provided that a detection is declared. The com-
putational complexity required to implement the GLRT-LAM
is O(KN2), namely it is dominated by Sample Covariance
Matrix (SCM) evaluation. Finally. the AMF counterpart to
(29), denoted as GLRT-LAM-AMF, is given by

tGLRT-LAM-AMF =

∣∣∣r̄†(p̄+ ˙̄pu∆̂u?)
∣∣∣2∥∥∥p̄+ ˙̄pu∆̂u?

∥∥∥2

H1

≷
H0

T1, (30)

B. Constrained GLRT Detector for 2-D Scenario

For the 2-D array sensing scenario, the optimization prob-
lem to solve boils down to

max
|∆u|≤α
|∆v|≤β

(p+H∆θ)† S−1r r† S−1(p+H∆θ)

(p+H∆θ)† S−1(p+H∆θ)
, (31)

which can be equivalently expressed as

max
|∆u|≤α
|∆v|≤β

(p̄+ H̄∆θ)† r̄ r̄† (p̄+ H̄∆θ)

(p̄+ H̄∆θ)† (p̄+ H̄∆θ)
, (32)

where p̄ and r̄ are defined in (22), whereas H̄ is given by

H̄ = S−1/2H. (33)
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In the following, two optimization procedures are considered
to handle Problem (32), which allow to localize the target
within the antenna beam if its presence is declared. The former
reaches the global optimum via the Dinkelbach algorithm [33].
The latter relies on a CD method [42] and converges to a
stationary point without any theoretical guarantee to end up
in a global maximizer of Problem (32). The second possibly
sub-optimal approach exhibits in general a faster convergence
than the Dinkelbach-based procedure, which can be a valuable
feature from a practical point of view.

1) Dinkelbach-based DOA displacements estimate: To ob-
tain the global optimal solution to Problem (32) some results
from the fractional programming theory [33], [34], [35] are
exploited, which are summarized here in the form of a lemma.

Lemma III.1. [33] Consider the fractional programming
problem

max
x∈S

Q(x) = N(x)/D(x), (34)

where S ⊆ Rn is a nonempty and compact set and
N(x), D(x) : S → R are continuous functions, with D(x)
strictly positive. Then x? is an optimal solution to (34) if and
only if it maximizes

N(x)−Q(x?)D(x). (35)

Furthermore, the function

F (q) = max
x∈S

N(x)− qD(x), q ∈ R. (36)

is continuous, convex, and strictly decreasing on R with
F (q) > 0 if q < q? = Q(x?) and F (q) < 0 if q > q?. �

Based on Lemma III.1, an optimal solution to (34) can be
found determining the unique root of (36), possibly via the bi-
section method, and computing the corresponding maximizer.
This procedure, proposed by Dinkelbach [33], is summarized
in Algorithm 1. Evidently, Problem (32) fulfils the conditions
of Lemma III.1 with

x = ∆θ ∈ R2, (37)

N(x) = (p̄+ H̄x)† r̄ r̄† (p̄+ H̄x), (38)

D(x) = (p̄+ H̄x)† (p̄+ H̄x), (39)

and
S = {x ∈ R2 : |x(1)| ≤ α, |x(2)| ≤ β}. (40)

In fact, the feasible set (40) is nonempty and compact, (38)
and (39) are continuous functions with (39) strictly5 greater
than zero over S. As a result, Algorithm 1 can be applied to

5 Note that the vectors in (9) and (10) can be re-written as ṗu =
p(ū, v̄) � vu, and ṗv = p(ū, v̄) � vv respectively, where vu =
j 2π
λ0

[x0, x1, . . . , xN−1]T ⊗1M and vv = j 2π
λ0

1N⊗[y0, y1, . . . , yM−1]T .
Being S−1 � 0, D(x) = 0 if and only if p̄ + H̄x = 0, namely
p(ū, v̄) � (1NM + ξvu − χvv) = 0, with ξ, χ ∈ R. Being p(ū, v̄)
unimodular, this is tantamount to (1NM + ξvu − χvv) = 0, ξ, χ ∈ R,
which is impossible because Re{1NM + ξvu − βvv} = 1NM ∀ξ, χ ∈ R.

solve Problem (32), where step 4 becomes

∆θ?n = arg max
∆θ ∈ S

(p̄+ H̄∆θ)† r̄ r̄† (p̄+ H̄∆θ)

− qn (p̄+ H̄∆θ)† (p̄+ H̄∆θ).
(41)

The procedure devised to determine an optimal point ∆θ?n
is summarized in Algorithm 2 (analytical details are reported
in Appendix C of the supplementary material to this paper).
Specifically, in step 2 the candidate optimal solutions that lie
within the interior of the feasible set are determined. Besides,
in steps 3 and 4 the candidate optimal solutions belonging to
the boundary of the feasible set, i.e., the four edges of the
box, are computed. Finally, Step 5 derives the global optimal
solution, selecting the best among all the obtained candidates.

Note that F (0) > 0 and F (‖r̄‖2) < 0 with probability
one6 provided that NM > 3. As a consequence, the bisection
method involved in Algorithm 1 can be initialized with qlb =
0 and qub = ‖r̄‖2 to solve Problem (32).

Algorithm 1 Dinkelbach’s Optimization Algorithm
Input: S ⊆ Rn, N(x), D(x), qub, qlb and εDO.
Output: A solution x? to (34).

1: set n = 0.
2: do
3: qn = (qlb + qub)/2;
4: find x?n = arg maxx∈S{N(x)− qnD(x)};
5: let F (qn) = {N(x?n)− qnD(x?n)};
6: if F (qn) ≥ 0 set qlb = qn, otherwise qub = qn;
7: n = n+ 1;
8: until F (qn) = 0 or (qub − qlb)/2 < εDO
9: output x? = x?n.

Now, denoting by ∆̂θ?DO the DOA displacements estimated
via Algorithm 1 tailored to the problem at hand, the decision
rule (18) becomes

tGLRT-LAM-DO =
1

1 + ‖r̄‖2

∣∣∣r̄†(p̄+ H̄∆̂θ?DO)
∣∣∣2∥∥∥p̄+ H̄∆̂θ?DO

∥∥∥2

H1

≷
H0

T, (42)

which will be denoted hereafter as GLRT-LAM with Dinkel-
bach Optimization (GLRT-LAM-DO). Finally, the AMF ver-
sion of (42), referred to as GLRT-LAM-DO-AMF, is given
by

tGLRT-LAM-DO-AMF =

∣∣∣r̄†(p̄+ H̄∆̂θ?DO)
∣∣∣2∥∥∥p̄+ H̄∆̂θ?DO

∥∥∥2

H1

≷
H0

T1. (43)

GLRT-LAM-DO and GLRT-LAM-DO-AMF involve
O(K(NM)2 + Nit,b) operations, where Nit,b is the number
of iterations required by the bisection algorithm to converge.
In fact, the complexity of the SCM inverse computation is
O(K(NM)2) and O(1) operations are necessary at each
execution of Algorithm 2.

6Both F (0) = arg max∆θ ∈ S ‖r̄
†(p̄+H̄∆θ)‖2 = 0 and F (‖r̄‖2) =

arg max∆θ ∈ S ‖r̄
†(p̄+ H̄∆θ)‖2−‖r̄‖2‖p̄+ H̄∆θ‖2 = 0 force r̄ to

lie in a specific subspace whose dimension is less than NM . This is an event
that occurs with zero probability.
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Algorithm 2 Solution to Problem (41)
Input: r̄, p̄, ˙̄pu, ˙̄pv, qn, α, β.
Output: A solution ∆θ?n to (41).

1: let V = ∅;
2: compute the unconstrained stationary point ∆θ1 of (41)

(see equation (57) reported in the supplementary material
to this paper) and set

V = V ∪ {∆θ1} ∩ S;

3: restrict the objective of (41) to the right (left) edge
of S, i.e., ∆u = α (∆u = −α), and compute the
corresponding stationary point ∆θ2 (∆θ3) (see equation
(65) reported in the supplementary material to this paper);
hence, set

V = V ∪ {∆θ2,∆θ3};

4: restrict the objective of (41) to the upper (lower) edge
of S, i.e., ∆v = β (∆v = −β), and compute the
corresponding stationary point ∆θ4 (∆θ5) (see equation
(66) reported in the supplementary material to this paper);
hence, set

V = V ∪ {∆θ4,∆θ5};

5:
∆θ?n = arg max

∆θ ∈ V
N(∆θ)− qnD(∆θ),

where N(∆θ) and D(∆θ) are given in (38) and (39),
respectively, and V is a set with cardinality at most 5;

6: output ∆θ?n.

Algorithm 3 Coordinate Descent Optimization Algorithm
Input: r̄, p̄, ˙̄pu, ˙̄pv, qn, α, β, εCDO.
Output: A solution ∆̂θ?CDO to Problem (32).

1: set n = 0, ∆θ(n) = [∆u(n),∆v(n)]T = 0,
p̄

(n)
∆v = p̄+ ˙̄pv∆v

(n),

obj(n) =
(p̄+ H̄∆θ(n))† r̄ r̄† (p̄+ H̄∆θ(n))

(p̄+ H̄∆θ(n))† (p̄+ H̄∆θ(n))
;

2: repeat
3: n = n+ 1;
4: ∆u optimization, i.e.,

∆u? = arg max
|∆u|≤α

(p̄
(n−1)
∆v + ˙̄pu∆u)†r̄ r̄†(p̄

(n−1)
∆v + ˙̄pu∆u)

(p̄
(n−1)
∆v + ˙̄pu∆u)†(p̄

(n−1)
∆v + ˙̄pu∆u)

,

and set p̄(n)
∆u = p̄+ ˙̄pu∆u?;

5: ∆v optimization, i.e.,

∆v? = arg max
|∆v|≤β

(p̄
(n)
∆u + ˙̄pv∆v)†r̄ r̄†(p̄

(n)
∆u + ˙̄pv∆v)

(p̄
(n)
∆u + ˙̄pv∆v)†(p̄

(n)
∆u + ˙̄pv∆v)

,

and set p̄(n)
∆v = p̄+ ˙̄pv∆v

?;
6: ∆θ(n) = [∆u?,∆v?]

T and

obj(n) =
(p̄+ H̄∆θ(n))† r̄ r̄† (p̄+ H̄∆θ(n))

(p̄+ H̄∆θ(n))† (p̄+ H̄∆θ(n))
;

7: until |obj(n) − obj(n−1)| < εCDO
8: output ∆̂θ?CDO = ∆θ(n).

2) Coordinate Descent DOA displacements estimate: Ex-
ploiting the CD framework, in this subsection another method
is proposed to handle Problem (32). The idea is to alternate be-
tween the maximizations over each entry of ∆θ = [∆u,∆v]T ,
namely optimizing one variable at a time while keeping the
other fixed. Note that in the presence of two blocks/variables
the alternating update rule involved in the CD approach
is equivalent to the Maximum Block Improvement (MBI)
policy [36]. As a result, any limit point of the sequence of
solutions produced by the CD procedure is a stationary point
for Problem (32). In Algorithm 3, the CD-based solution
technique specific for Problem (32) is reported. Note that
the optimizations required at steps 4 and 5 can be performed
resorting to Proposition 1. Otherwise stated, closed-form opti-
mal solutions are available. Leveraging the output ∆̂θ?CDO of
Algorithm 3, the following approximated versions of (42) and
(43), referred to as GLRT-LAM with CD optimization (GLRT-
LAM-CDO) and GLRT-LAM-CDO-AMF, are obtained

tGLRT-LAM-CDO =
1

1 + ‖r̄‖2

∣∣∣r̄†(p̄+ H̄∆̂θ?CDO)
∣∣∣2∥∥∥p̄+ H̄∆̂θ?CDO

∥∥∥2

H1

≷
H0

T, (44)

and

tGLRT-LAM-CDO-AMF =

∣∣∣r̄†(p̄+ H̄∆̂θ?CDO)
∣∣∣2∥∥∥p̄+ H̄∆̂θ?CDO

∥∥∥2

H1

≷
H0

T1. (45)

The implementation of GLRT-LAM-CDO and GLRT-LAM-
CDO-AMF require O(K(NM)2 +Nit,CD) operations, where
Nit,CD denotes the number of iterations of the CD method
up to convergence. Precisely O(K(NM)2) are due to SCM
and O(1) operations are necessary for each iteration of the
CD method.

IV. PERFORMANCE ANALYSIS

This section is aimed at assessing the performance of
the proposed strategies for joint target detection and angle
estimation in comparison with some counterparts available in
the open literature specifically designed either for detection or
DOA evaluation. In the reported case studies the disturbance
covariance matrix is modeled as M = MJ + σ2

aI where
σ2
a is the white noise power level (assumed without loss of

generality equal to 0 dB) and MJ refers to the jamming
signals covariance contribution. Specifically, denoting by JNB
and JWB the number of narrow-band and wide-band jammers,
MJ = M1 +M2, where

M1 =

JNB∑
j=1

σ2
jpJ(uj , vj)pJ(uj , vj)

†, (46)

with pJ(uj , vj) the steering vector and σ2
j the power of the

j-th jammer, while

M2 =

JWB∑
h=1

σ̄2
h

1

Bh

∫ Bh
2

−Bh2
pJ(uh, vh)pJ(uh, vh)† df (47)
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Fig. 3. Detection performance for a ULA with 16 antennas in Scenario 1 for different mismatches, assuming K = 32 and α = 0.5. The actual DOA
displacement is drawn from a uniform distribution over [−∆,∆]: (a) ∆ = 0, (b) ∆ = 0.1, (c) ∆ = 0.25, and (d) ∆ = 0.5.

with pJ(uh, vh), σ̄2
h, (uh, vh), and Bh, the steering vector,

the power, the DOA parameters, and the actual bandwidth
associated with the h-th interferer, respectively.

In the following, three different interfering environments are
analyzed:

• Scenario 1: two narrow-band jammers located at u1 =
v1 = 0.1 and u2 = v2 = 0.3, with Jammer to Noise Ratio
(JNR) given by JNR1 = 30 dB and JNR2 = 40 dB,
respectively (σ2

j = JNRj σ
2
a, j = 1, 2).

• Scenario 2: one narrow-band jammer at u1 = v1 = 0.1,
with JNR1 = 30 dB (σ2

1 = JNR1 σ
2
a), and one wide-

band jammer (Bf = 0.3) at u2 = v2 = 0.3 with
JNR2 = 40 dB (σ̄2

2 = JNR2 σ
2
a).

• Scenario 3: two narrow-band jammers located at u1 =
v1 = 0.2 and u2 = v2 = 0.3, with JNR1 = 30 dB
and JNR2 = 40 dB, respectively (σ2

j = JNRj σ
2
a, j =

1, 2)7.

As already claimed, both detection and angle estimation
capabilities of the proposed processors are analyzed. As to
the former, the metric used to assess the performance is the
Probability of Detection (PD) estimated via standard Monte
Carlo counting techniques over 104 independent trials. The

7Note that other interfering environments have also been considered con-
firming the general performance behavior shown in the next two sub-sections.
The results are not reported for obvious reasons of brevity.

threshold is set in order to guarantee a Pfa of 10−4 and it
is evaluated using 100/Pfa independent trials. The decision
statistics

tGLRT =

∣∣r†S−1p
∣∣2

(1 + r†S−1r) p†S−1p
,

tAMF =

∣∣r†S−1p
∣∣2

p†S−1p
,

tSD =
r†S−1HSD

(
H†SDS

−1HSD

)−1

H†SDS
−1r

1 + r†S−1r
,

tSD-AMF = r†S−1HSD

(
H†SDS

−1HSD

)−1

H†SDS
−1r,

referred to as GLRT [19], AMF [20], SD [21], and SD-
AMF [18], [37], respectively, are considered for comparison
purposes. GLRT and AMF detectors consider the nominal
steering vector p as useful signal directions (they usually
operate in mismatched conditions and are thus also referred to
as mismatched detectors), while SD and SD-AMF assume as
useful signal directions those given by the columns of HSD.
Finally, to assess the limits of the proposed algorithms, the
GLRT and the AMF receivers with a perfect knowledge of the
target DOA parameters (indicated as GLRT-bench and AMF-
bench, respectively) are included as benchmarks.

In regard to the estimation performance, the Mean Square
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Fig. 4. Estimation performance for a ULA with 16 antennas in Scenario 1
assuming α = 0.2 and considering different sample support sizes, i.e., K =
[16, 32, 48,∞], and several target locations: (a) ∆u = 0, (b) ∆u = 0.05,
(c) ∆u = 0.1, and (d) ∆u = 0.5.

Error (MSE) is considered as the figure of merit. Again, Monte
Carlo counting techniques are used to compute the MSE as

M̂SE =
1

MC

MC∑
i=1

∥∥∥∆θ0 − ∆̂θi

∥∥∥2

, (48)

where MC = 104 indicates the number of Monte Carlo in-
dependent trials, ∆θ0 ∈ R2 is the actual DOA displacements
vector and ∆̂θi refers to the estimate provided at the i-th trial
by a given technique. As performance benchmark, the CRLB
for DOA displacements (the interested reader may refer to
Appendix D of the supplementary material to this paper) is
reported too.

Two different simulation setups are considered in the fol-
lowing subsections to shed light on the performance limit of
the proposed radar processors: a) linearized array manifold
signal model; b) actual array manifold. Finally, the Signal to
Interference plus Noise Ratio (SINR) is defined as

SINR = |a|2p†M−1p. (49)

A. Linearized Array Manifold Signal Model

The performance of a radar system equipped with either
a 1-D or a 2-D array pointing at the boresight direction is
studied. The former employs a Uniform Linear Array (ULA)
with N = 16 and dx = λ0/2. The latter exploits a URA
with N = M = 5 and dx = dy = λ0/2; in both cases the
reference system is centered at the bottom-left corner. Within
this subsection, the data from the cell under test are modeled
as

r = a (p+ ṗu∆u+ ṗv∆v) + n, (50)

namely according to the linearized array manifold8, in order
to assess the capabilities of the devised signal processing
techniques under nominal design conditions.

Fig. 3 shows the PD curves for the 1-D case, assuming the
interference environment of Scenario 1, with K = 2N = 32
secondary data. Therein, the design parameter α is set at 0.5.
The actual DOA displacement is drawn from a uniform distri-
bution over [−∆,∆] and each subfigure refers to a specific
value of ∆. Specifically, Fig. 3(a) considers ∆ = 0, i.e.,
the target is exactly matched to the array pointing direction,
whereas Figs. 3(b), 3(c), and 3(d), consider ∆ = 0.1, 0.25,
and 0.5, respectively.

Inspection of the figures highlights that the GLRT-LAM de-
tector exhibits performance very close to the GLRT-bench and
outperforms all the other counterparts (including the AMF-
bench) regardless of the operating conditions. Besides, GLRT-
LAM-AMF experiences a performance degradation (about 0.5
dB at PD = 0.9, in the worst case) with respect to the
corresponding benchmark. However, it achieves higher PD
levels than the mismatched detectors (of course apart from
the case of ∆ = 0) and the subspace receivers in all the
configurations, revealing the effectiveness of the method to
estimate the actual steering vector.

8In the 1-D case the useful signal contribution becomes r =
a (p+ ṗu∆u) + n.
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Fig. 5. Detection performance for a URA with 5 × 5 antennas, K = 50 secondary data, and different mismatch conditions, in Scenario 2. The constraint
parameters α and β are set at 0.5. The target’s location (∆u,∆v) is modeled as a pair of statistically independent uniform random variables in the region
[−∆1,∆1]× [−∆2,∆2]: (a) (∆1,∆2) = (0, 0), (b) (∆1,∆2) = (0, 0.05), (c) (∆1,∆2) = (0.05, 0.05), and (d) (∆1,∆2) = (0.5, 0.5).

To assess the estimation capabilities of the proposed con-
strained MLE ∆̂u? (see Proposition 1), the MSE versus
SINR is displayed in Fig. 4 for different sample support
sizes9, i.e., K = [16, 32, 48,∞], and target locations, i.e.,
∆u ∈ {0, 0.05, 0.1, 0.5}. In this case, α = 0.2 and the
interfering setup of Scenario 1 is analyzed. Figs. 4(a), 4(b),
4(c), and 4(d) refer to ∆u = 0, ∆u = 0.05, ∆u = 0.1, and
∆u = 0.5, respectively. As expected, the MSE curves decrease
with the SINR and the higher K the lower the estimation error
(in the mean square sense), being better and better the accuracy
of interference covariance matrix estimate.

The results clearly show the effectiveness of the proposed
estimator. Indeed, in the high SINR regime, the performance
becomes closer to the CRLB benchmark as K increases;
of course, this happens when the actual target displacement
belongs to the assumed uncertainty region. Otherwise, see
Fig. 4(d), the MSE curves reach an error-floor of (0.5 −
0.2)2 = −10.4576 dB. In this last situation, the devised
technique reaches the feasible value closest to the actual target
displacement, further corroborating the estimation capabilities
of the devised strategy. At low SINR, smaller values than the
CRLB benchmark are observed indicating that the proposed
estimator exhibits a bias under this SINR regime as well

9K =∞ is tantamount to considering the exact covariance matrix.

as an upper bound to the mean square values induced by
the enforced constraint. Indeed, the MSE of the proposed
estimator complies with

E[(θ̂ − θ)2] ≤ max[(θ − α)2, (θ + α)2], (51)

namely, the MSE exhibits a SINR-independent upper bound.
On the contrary, equation (77) reported in the supplementary
material to this paper shows that the CRLB is unbounded
above as the SINR goes to zero. As a result, the performance
of our estimator is always better than the CRLB at low SINR.
Similar considerations hold true for the MSE behaviour at low
SINR, in all the subsequent case studies. Finally, it is also
worth noting that the box-and-whisker plots [43] of the two
estimation errors reported in Fig. 4(a), reveal the presence of
a large number of outliers (points above and below the black
whiskers) at low SINR. This behaviour provides a further
explanation of the increasing departure of the MSE curves
from the CRLB when the SINR ranges in the so called “below
threshold region”.

Fig. 5 displays PD curves for the 2-D case, assuming
K = 2MN = 50, α = β = 0.5, and Scenario 2.
Therein, the displacements vector (∆u,∆v) is drawn from
a uniform distribution over [−∆1,∆1] × [−∆2,∆2]. Specif-
ically, Figs. 5(a), 5(b), 5(c), and 5(d) refer to (∆1,∆2) =
(0, 0), (∆1,∆2) = (0, 0.05), (∆1,∆2) = (0.05, 0.05), and
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Fig. 6. Estimation performance for a URA with 5× 5 antennas in Scenario 2 for different sample support sizes, i.e., K = [30, 50, 70,∞] and several target
locations, i.e., (a) (∆u,∆v) = (0, 0), (b) (∆u,∆v) = (0, 0.05), (c) (∆u,∆v) = (0.05, 0.05), and (d) (∆u,∆v) = (0.5, 0.5). Therein α = β = 0.2. In
Fig. (b) are also reported two box-and-whisker plots at 13 dB and 20 dB, respectively.

(∆1,∆2) = (0.5, 0.5), respectively. The results show the
power of the GLRT-LAM-DO and GLRT-LAM-CDO detector.
Indeed, the two algorithms attain the same PD levels with
performance very close to the clairvoyant GLRT-bench, with
a loss smaller than 1 dB. Furthermore, apart from the case of
(∆1,∆2) = (0, 0), GLRT-LAM-DO and GLRT-LAM-CDO
outperform the mismatched detector with performance gains
higher and higher as the actual DOA offset region enlarges.
Finally, they achieve PD levels higher than the SD in all the
configurations, revealing the capabilities of the new methods
to benefit from the underlying structure of the weights. Similar
results are achieved by the AMF version of the proposed
detectors with respect to their relative counterparts.

Fig. 6 reports the MSE versus SINR for different sample
support sizes, i.e., K = [30; 50; 75;∞], and α = β = 0.2, with
reference to Scenario 2. The target is located at (∆u,∆v)
and Figs. 6(a), 6(b), 6(c), and 6(d) refer to (∆u,∆v) =
(0, 0), (∆u,∆v) = (0, 0.05), (∆u,∆v) = (0.05, 0.05), and
(∆u,∆v) = (0.5, 0.5), respectively. As already seen in the
1-D case, the MSE curves decrease with the SINR and
the higher K the lower the estimation error (in the mean
square sense). In the high SINR regime, the performance
approaches the CRLB benchmark as K increases, provided
that the actual target displacement lies within the assumed

uncertainty region. However, it is also worth pointing out
that the MSE lower bound in the scenario of Fig. 6(d) is
equal to (0.5 − 0.2)2 + (0.5 − 0.2)2 = −7.4473 dB and
coincides with the error-floor level achieved by the devised
techniques. Otherwise stated, in this case at high SINR the
feasible point closer to the actual target displacement vector
is returned as estimate. Besides, Fig. 6(c) outlines a departure
of the MSE curves of GLRT-LAM-CDO and GLRT-LAM-DO.
Not surprisingly, they pinpoint the limits of the sub-optimal
optimization approach used in GLRT-LAM-CDO with respect
to the optimal one used in GLRT-LAM-DO. Finally, the MSE
behaviour at low SINR, where smaller values than the CRLB
benchmark are achieved, indicates the presence of a bias. As
in the 1-D case, the box-and-whisker plots for two operating
SINR points, obtained via GLRT-LAM-DO with K =∞ and
reported in Fig. 6(b), confirm the role played by the outliers
in the departure of the MSE curves from the CRLB.

A computational complexity comparison between GLRT-
LAM-DO and GLRT-LAM-CDO is addressed in terms of the
average number of iterations involved in the computation of
the decision statistics. Assuming as exit condition εDO =
10−5 and εCDO = 10−5, the average number of iterations over
100 trials, related to the simulation setup of Fig. 6(b), is given
by 20 and 10 for GLRT-LAM-DO and GLRT-LAM-CDO,
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Fig. 7. Detection performance for the actual array manifold assuming the interfering environment of Scenario 3. Figs. (a) and (b) report detection performance
for a symmetric ULA with 9 antennas with K = 18, target location uniformly distributed over [−∆,∆], and α = ∆: (a) ∆ = 0.0523 and (b) ∆ = 0.891/N .
Figs. (c) and (d) correspond to a symmetric URA with 5 × 5 antennas, with K = 75, target location offset ∆u and ∆v modeled as a pair of statistically
independent uniformly distributed random variables over [−∆1,∆1] and [−∆2,∆2], respectively, and α = ∆1, β = ∆2: (c) ∆1 = ∆2 = 0.1 and (d)
∆1 = ∆2 = 0.891/5 = 0.1782.

Methods Computational Costs
GLRT O(KL2)
AMF O(KL2)
SD O(KL2)
SD-AMF O(KL2)
GLRT-LAM O(KN2)
GLRT-LAM-AMF O(KN2)
GLRT-LAM-DO O(K(NM)2 +Nit,b)
GLRT-LAM-DO-AMF O(K(NM)2 +Nit,b)
GLRT-LAM-CDO O(K(NM)2 +Nit,CD)
GLRT-LAM-CDO-AMF O(K(NM)2 +Nit,CD)

TABLE I
COMPUTATIONAL COMPLEXITY OF THE CONSIDERED PROCESSORS.

respectively. As a consequence, GLRT-LAM-CDO exhibits a
reduced computational burden as compared with GLRT-LAM-
DO, at the price of a slight performance degradation. Finally,
the computational complexity of all the analyzed architectures
is provided in Table I, where L = N for the 1-D case whereas
L = NM , for the 2-D case of the GLRT, AMF, SD, and SD-
AMF receivers. Table I emphasizes that the growth curve of

the number of operations with respect to the problem size is
ruled by the law KL2.

B. Actual Array Manifold

The considered radar system employs either a ULA of N =
9 elements or a URA with 25 elements arranged in a 5 × 5
square matrix. For both 1-D and 2-D setup, the array points
the beam in the boresight direction and the spacing among
the elements of the array is λ0/2. Moreover, the reference
system center coincides with the center of the array. The useful
signal contribution is generated according to the actual array
manifold, i.e., the steering vector is

p(ū+ ∆u, v̄ + ∆v), (52)

with ū = v̄ = 0.
For a comparative analysis in terms of angular estimation,

the following competitors are considered in the sequel:

• Adaptive Monopulse Estimator, referred to in the follow-
ing as A-Monopulse and reported in the supplementary
material to this paper as Algorithm 4.
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Fig. 8. Estimation performance for a symmetric ULA with 9 antennas in Scenario 3 assuming K =∞ and α = 0.0523. The target is located at ∆u with
(a) ∆u = 0, (b) ∆u = 0.01745, (c) ∆u = −0.01745, and (d) ∆u = 0.02618.

• MLE implementation via grid search (only in the 1-D
case), defined as follow

∆̂uML = arg max
∆u∈G

∣∣r†S−1p(ū+ ∆u)
∣∣2

p†(ū+ ∆u)S−1p(ū+ ∆u)
, (53)

where

G = {−α+ i α/200, i = 0, . . . , 400}. (54)

For comparison purposes, the CRLB [10, p. 927, eq. 8.34] is
also considered.

Fig. 7 presents detection performance both for the 1-D and
2-D scenarios. The former is considered in Figs. 7(a) and
7(b) under the interfering setup described in Scenario 3 and
assuming K = 18. The actual DOA displacement is drawn
from a uniform distribution over [−∆,∆], where in Fig. 7(a)
α = ∆ = sin(3π/180) = 0.0523 while in Fig. 7(b) α = ∆ =
0.891/9 = 0.099. The 2-D case is displayed in Figs. 7(c)
and 7(d) assuming K = 75 and the disturbance environment
corresponding to Scenario 3. The target location offsets ∆u
and ∆v are modeled as statistically independent random
variable with ∆u ∼ U(−∆1,∆1) and ∆v ∼ U(−∆2,∆2).
Fig. 7(c) refers to α = β = ∆1 = ∆2 = 0.1 and Fig. 7(d)
considers α = β = ∆1 = ∆2 = 0.891/5 = 0.1782,
respectively. Otherwise stated, in all the figures the design
parameters α and β are matched to actual DOA uncertainty.

Inspection of the results shows that the proposed one-step
GLRT detectors (GLRT-LAM for the 1-D case, GLRT-LAM-
DO and GLRT-LAM-CDO for the 2-D case) ensure a perfor-
mance level very close to the clairvoyant GLRT and outper-
form the counterparts for the considered simulation scenarios.
Specifically, the PD curves of the GLRT-LAM and GLRT-
LAM-AMF almost overlap with the corresponding benchmark
limits. For the 2-D case, GLRT-LAM-DO and GLRT-LAM-
CDO experience a slight performance degradation lower than
1 dB at PD = 0.9 with respect to the optimal receiver. Before
proceeding further, it is worth pointing out that the proposed
joint detection and estimation strategies can be interpreted
as two-stage architectures, where first the target direction of
arrival is estimated and then a bespoke adaptive detector is
applied. For completeness, in the supplementary material the
comparison with other two-stage processors (in the sense of
performing first the angle estimation with a given technique
and then exploiting the resulting estimate within a decision
statistic) is reported and discussed.

In Fig. 8 the DOA estimation capabilities of GLRT-LAM,
A-Monopulse, and MLE via grid search, are analyzed for the
1-D case, assuming K =∞, α = 0.0523, and the interference
environment of Scenario 3. Figs. 8(a), 8(b), 8(c), and 8(d) refer
to ∆u = 0, ∆u = 0.01745, ∆u = −0.01745, and ∆u =
0.02618, respectively. The exploration of the curves reveals
that GLRT-LAM outperforms the A-Monopulse for a wide
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Fig. 9. Estimation performance for a symmetric URA with 5 × 5 antennas
in Scenario 3 assuming K = ∞, α = 0.1, β = 0.1, and target located at
(∆u,∆v), with (a) (∆u,∆v) = (0, 0), (b) (∆u,∆v) = (0.0349, 0), (c)
(∆u,∆v) = (−0.01745, 0), and (d) (∆u,∆v) = (0.0349,−0.001218).

range of SINR values and provides estimation performance
almost overlapped to that of the MLE via grid search method
up to a SINR of 20 dB, corroborating the strength of the new
devised method. Furthermore, the higher the SINR the lower
the MSE of all the estimators regardless of the setup (but for
the A-Monopulse in Fig. 8(d) at low SINR) and performance
levels comparable with the CRLB benchmark are achieved
at the high SINR regime. In this respect, note that possible
deviations from the CRLB of the MSE curves (at high SINR)
may arise due to the bias of the estimators. Indeed, in the
presence of a biased estimator, the general bound to consider
is given in [44, p. 147], which can be also lower than the
conventional CRLB for unbiased estimators.

Finally, GLRT-LAM and the MLE via grid search achieve
MSE values smaller than the CRLB at low SINR, reflecting
the presence of a bias in the estimators as well as the limit to
the error imposed by the constraint.

The estimation performance for the 2-D case of GLRT-
LAM-DO, GLRT-LAM-CDO, and A-Monopulse is analyzed
in Fig. 9, considering K = ∞, α = 0.1, β = 0.1, where
each subfigure refers to a specific target location in the
u − v plane. It can be observed that in all the reported case
studies GLRT-LAM-DO and GLRT-LAM-CDO achieve the
same MSE values and exhibit better estimation capabilities
than the A-Monopulse (apart from Fig. 9(b) where a slight loss
appears), showing the benefits of the new signal processing
strategies. Remarks similar to those made for Fig. 8 hold true
with reference to the comparison of the estimators with the
CRLB benchmark performance.

Finally, the average number of iterations (over 100 trials)
required by GLRT-LAM-DO and GLRT-LAM-CDO in order
to converge is 20 and 10, respectively, assuming εDO =
εCDO = 10−5 and the simulation setup of 9(b). These results
confirm that Algorithm 3 is usually less demanding than
Algorithm 1, whilst ensuring satisfactory performance.

To further shed light on Algorithm 1 estimation perfor-
mance, Fig. 10 displays the bias and variance ellipses granted
by the proposed angle estimator for a grid of 16 displacements
between the actual pointing direction and the array steering.
The ellipses corresponding to the CRLB are also reported for
comparison purposes. The simulation assumes the interference
environment of Scenario 3, with K =∞. The results highlight
that for (u, v)-displacement in the left bottom corner of the
grid (i.e., angle directions far from the jamming DOAs) the
variance and CRLB ellipses match quite well. However, when
displacements belongs to the upper right corner of the grid,
some departures of the variance ellipse from the CRLB are
experienced. Besides, as the pointing vector moves towards
the jamming DOA, also the bias of the estimator increases.

V. CONCLUSION

This paper has considered simultaneous detection and target
angle localization for a multichannel phased array radar. Sig-
nal processing architectures have been proposed which, after
target detection, are able to provide directly estimates of the
target angular offsets from the array pointing direction. Two
estimation procedures respectively based on the Dinkelbach’s
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Fig. 10. Bias and variance for a URA with 5 × 5 elements in Scenario 3
assuming K = ∞ and α = β = 0.1. Dashed black ellipses refer to CRB
limit, variances are shown with solid red ellipses whereas the bias vectors are
represented by solid blue arrows.

algorithm and a CD method have been devised. The former
provides the optimal ML estimates of the unknown displace-
ments. The latter generally exhibits a faster convergence than
the former but the optimality of the solution (in the ML sense)
cannot be claimed. A comparative analysis has been conducted
with other techniques available in the open literature which
are either tailored for detection or target angle localization.
Benchmark limits have been also considered. The results high-
light the interplay of the different design parameters and show
that the new algorithms provide adequate performance, thus
representing viable solutions for practical implementations.

Possible future research developments might concern the
following issues.

1) An analytic study on the bias of the proposed estimation
procedure together with the design of techniques (pos-
sibly based on multiple iterations) aimed at reducing its
effects.

2) The extension of the framework to the polarimetric-
spatial domain processing where other degrees of freedom
resulting from the use of polarimetric information can
possibly boost the performance.

3) The extension of the approach to account for some
deviations from the proposed homogeneous disturbance
model: i.e., non-Gaussian interference, presence of clutter
discretes and/or multiple targets (some possibly fake)
within a specific range cell.

4) Design of alternative decision criteria such as the Wald
test [32], [45], [46] possibly accounting for rejection of
signals outside a specific region in the u− v space [47],
[48].
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