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Abstract—This paper addresses the joint design of the trans-
mit parameters (i.e., radar code/frequency increments) and the
receive filter in a Frequency Diverse Array (FDA)-Multiple-Input
Multiple-Output (MIMO) radar system. The operating environ-
ment includes clutter, namely signal-dependent interference tied
up to the FDA transmitted waveforms and the antenna array
features, along with conventional thermal noise. The chosen
optimization policy relies on the constrained maximization of
the Signal-to-Interference-plus-Noise Ratio (SINR) which for
Gaussian interference is tantamount to maximizing the radar
detection performance. In this context, a bespoke Minorization-
Maximization (MM)-Maximum Block Improvement (MBI) al-
gorithm is proposed to tackle the resulting constrained non-
convex optimization problem. The convergence properties of
the resulting procedure are rigorously proven, along with a
thorough investigation of the computational complexity for its
implementation. Finally, numerical results are provided to show
the effectiveness of the new technique under diverse clutter
scenarios of practical relevance and in comparison with some
counterparts.

Index Terms—FDA-MIMO radar, joint transmit and receive
optimization, signal-dependent interference, clutter, MBI.

I. INTRODUCTION

Amid the ever-evolving landscape of radar technology,
the development of advanced techniques capable of ensuring
adequate performance, even in adverse operating conditions,
is noteworthiness. In this context, the presence of signal-
dependent interference (environmental reverberation, i.e., clut-
ter) stands out as a primary issue worthy of research efforts
[1]–[5]. In particular, to cope with this challenging self-
induced disturbance, the design of bespoke transceivers is
a pivotal strategy, employed by plenty of literature works
aimed at maximizing the Signal-to-Interference-plus-Noise
Ratio (SINR) at the receiving end, encompassing some a
priori knowledge about the operating environment [3], [6]–
[10]. Precisely, appropriate waveform design problems, with
the goal of optimizing the radar code and the receive filter,
are proposed to enhance the detection performance while
guaranteeing the fulfillment of specific key requirements, in
terms of constraints about waveforms modulus and similarities
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to some reference signals [11]–[13], Peak-to-Average-power
Ratio [14], and finite energy [2].

Notably, the waveform design task typically involves solv-
ing an NP-hard optimization problem due to the numerous
constraints. To devise practically implementable procedures
capable of yielding good quality solutions with a limited
resource demand, several solution strategies based on the
Majorization-Minimization (MM) method [15], sequential op-
timization [16], relaxation and matrix decomposition [17],
and Coordinate Descent (CD) [18], have been proposed in
the open literature [2], [7], [19]–[22]. Remarkably, such
optimization techniques have also been successfully applied
to waveform design problems using Multiple-Input Multiple-
Output (MIMO) radars operating in the presence of signal-
dependent interference, exploiting the underlying waveform
diversity [23]–[30].

Aside from the conventional radar (such as the phased array
and MIMO), the Frequency Diverse Array (FDA) radar has
recently emerged as a novel and promising technology. In a
nutshell, by leveraging proper carrier shifts at each transmit
array element, such radar encompasses a range-angle-time-
dependent transmit beampattern [31]. Capitalizing on this
characteristic, suitable resource allocation strategies have been
proposed in the open literature. Specifically, the joint design
of transmit and receive weights for coherent FDA radar is
investigated in [32], considering both energy and similarity
constraints, to maximize the power toward a specific area in
the range-angle domain. The problem is then solved via a
sequential optimization method based on SemiDefinite Relax-
ation. Furthermore, in [33], by optimizing both the weight
vector and the frequency increments, an adaptive approach for
target localization with an FDA radar is developed according
to a bespoke Bayesian criterion.

To overcome some challenges of the legacy FDA tech-
nology, its combination with the MIMO paradigm has been
conceived giving rise to the so-called FDA-MIMO radar [34],
[35], widely investigated in the open literature for solving
important issues such as suppression of mainlobe deceptive
jammers [36] and clutter [37], just to mention a few. Different-
ly from traditional Space-Time Adaptive Processing (STAP)-
based methods, the FDA-MIMO can distinguish echoes from
different range ambiguity regions, allowing it to cope with
the problem of range-dependent and range-ambiguous clutter
suppression [37]–[39]. Indeed the dependency of the steering
vector on the incremental range, i.e., the target displacement
with respect to (w.r.t.) the center of the occupied range cell,
is a peculiarity of the FDA-MIMO architecture [34]. It paves
the way to new processing frontiers and it does not arise in a
conventional colocated MIMO radar. Along this line, in [37],
an enhanced Three-Dimensional (3D) localization technique,
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with limited processing complexity, is proposed in an airborne
FDA-MIMO radar. In addition, a two-stage adaptive clutter
suppression method is developed in [38], encompassing a
multi-waveform based adaptive beamforming followed by a
tailored STAP processing that capitalizes on auxiliary beams.
In [39], an FDA-MIMO-based bistatic radar configuration
is considered, thereby addressing the clutter discrimination
and suppression tasks using a 3D localized space-time-range
adaptive processing method.

Notably, the joint optimization of transmit and receive
parameters for an FDA-MIMO architecture has only received
limited attention. In [40], an iterative algorithm is derived
to improve the SINR by optimizing the transmit beamspace
and receive filter, considering constant energy constraints. A
cognitive transmit and receive filter design, considering a
moving target detection scenario, is proposed in [41].

That said, the joint optimization of the frequency incre-
ments, radar code, and receiver filter, in an FDA-MIMO
radar system has not already been addressed, especially for
improving the detection performance in the presence of signal-
dependent clutter. In this regard, capitalizing on a priori
knowledge of the environment surrounding the radar, the
problem of maximizing the SINR at the output of the receive
filter is studied. Precisely, a joint optimization strategy of
the transmit parameters (i.e., radar code/frequency increments)
and the receive architecture is conceived, including, at the
design stage, specific constraints stemming from practical and
physical limitations as well as desired operational behavior.
Therefore, energy and similarity constraints [13] are imposed
in the code optimization, to control some specific character-
istics of the transmitted waveforms [7], [21]. Furthermore,
boundaries to frequency increments are considered as a result
of the limited available radar bandwidth.

Due to the nature of the objective function and the afore-
mentioned constraints, the successful accomplishment of the
pursued task is tied up to the solution of a non-convex NP-
hard optimization problem. Thus, a tailored MM-Maximum
Block Improvement (MBI) [42] procedure is developed and
analyzed.

To summarize, the main technical contributions of this paper
are:

• The SINR maximization problem is formulated as a
constrained optimization problem, in which the frequency
increments, the code, and the filter are jointly optimized
by leveraging a priori information about the clutter
statistics while fulfilling specific constraints.

• To tackle the NP-hard optimization problem, an MM-
MBI solution strategy is devised. It involves the solution
of subproblems, one for each variables block, i.e., the
i-th frequency offset, code, and filter, which are either
optimally solved (using for instance state of the art matrix
decomposition tools [43]) or handled resorting to the
MM paradigm. In this last situation, an important result
is represented by the construction of bespoke surrogate
functions ensuring some peculiar analytic properties nec-
essary to make convergence claims.
At a given iteration, the MBI updates the variable block
related to the highest increment (in terms of achieved

SINR), while keeping the other blocks fixed to their
previous values.

• The convergence properties of the proposed algorithm are
thoroughly analyzed, proving that any cluster point of the
optimization sequence satisfies the Karush-Kuhn-Tucker
(KKT) condition [44].

• The computational complexity of the proposed procedure
is thoroughly discussed, providing a detailed analysis for
the solution of each subproblem.

• Numerical results are presented aimed at corroborating
the theoretical achievements under diverse clutter scenar-
ios of practical relevance, also in comparison with an Al-
ternating Optimization (AO)-based procedure and some
simpler MBI-based optimization approaches, which do
not exploit all the available degrees of freedom (DOF)s.

The paper is organized as follows. In Section II, the sig-
nal model of FDA-MIMO radar operating in a background
of signal-dependent clutter is introduced. In Section III, a
transceiver design approach based on the joint optimization of
transmit parameters (radar code and frequency increments) and
receive filter is formulated. Moreover, an MM-MBI algorithm
is developed to tackle the constrained optimization problem.
The convergence properties and the corresponding computa-
tional complexity are then thoroughly discussed. Numerical
results are presented in Section IV, whereas conclusions and
possible future research avenues are provided in Section V.

A. Notations

Boldface is used for vectors a (lower case), and matrices
A (upper case). The (k, l)-entry (or l-entry) of a generic
matrix A (or vector a) is indicated as A(k, l) (or al). I
and 0 denote respectively the identity matrix and the matrix
with zero entries (their size is determined from the context).
The all-ones column vector of size N is denoted by 1N ,
whereas ek denotes the k-th column vector of I , whose size is
determined from the context. Additionally, diag(x) indicates
the diagonal matrix whose i-th diagonal element is x(i). The
transpose and the conjugate transpose operators are denoted
by the symbols (·)T and (·)†, respectively. ⊙, and ⊗ represent
the Hadamard (element-wise) product, and Kronecker product,
respectively. The trace and the rank of the matrix A ∈ CN×N

are indicated with tr{A} and Rank(A), respectively. RN and
CN are respectively the sets of N -dimensional column vectors
of real and complex numbers. HN represents the set of N×N
Hermitian matrices. The letter j refers to the imaginary unit
(i.e., j =

√
−1). For any complex number x, |x| indicates the

modulus of x and Re{x} denotes its real part. Moreover, for
any x ∈ CN , ∥x∥ denotes the Euclidean norm. E[·] denotes
the statistical expectation. Furthermore, for any x, y ∈ R,
max(x, y) returns the maximum between the two arguments.
Finally, for any optimization problem P , υ(P) represents its
optimal value.

II. SYSTEM MODEL OF FDA-MIMO RADAR

Let us consider an FDA-MIMO system with M transmit
and N receive antenna elements, where frequency incre-
ments are introduced across the transmit array elements, i.e.,
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∆f = [∆f1,∆f2, . . . ,∆fM ]
T ∈ RM . Specifically, the carrier

frequency of the m-th (m = 1, . . . ,M ) transmit element is
assigned as

fm = f0 +∆fm, (1)

where f0 indicates the reference carrier1.
Let c = [c1, c2, . . . , cP ]

T∈ CP be the transmitted radar code
vector modulating the fast time probing signals2 with P ≥
3 the number of coded sub-pulses (code length). Then, the
waveform at the receiver end is down-converted to baseband,
undergoes a tuned pulse matched filtering operation, and then
is sampled. The fast-time observations from the range-azimuth
Cell Under Test (CUT) are collected in the vector v∈ CPMN ,
which can be expressed as [7]

v = zS + zC + n, (2)

where

• zS∈ CPMN denotes the vector of the samples from a
prospective target within the CUT, namely,

zS = α0c⊗ s(θ0,∆τ,∆f), (3)

with
– α0 the complex coefficient accounting for target

backscattering and the other terms involved in the two-
way radar equation;

– θ0 the azimuth of the target;
– ∆τ the incremental range of the target within the

range cell, which accounts for the difference between
the sampling instant t⋆ and the actual target range
τ0= 2R0/c, i.e., ∆τ = t⋆ − τ0 = t⋆1, with R0 the
target range [34];

– s(θ0,∆τ,∆f) ∈ CMN the joint transmit-receive s-
teering vector, which can be further written as [45]

s(θ0,∆τ,∆f) = d(θ0)⊗ [a(θ0)⊙ b(∆τ,∆f)] , (4)

with

∗ d(θ0) =
[
1, ej2π

d
λ0

sin(θ0), · · · , ej2π
d
λ0

(N−1) sin(θ0)
]T

∈ CN the angle-dependent receive steering vector,
d the array interelement spacing, and λ0 the
reference carrier wavelength;

∗ a(θ0) = RT
[
1, ej2π

d
λ0

sin(θ0), · · · , ej2π
d
λ0

(M−1) sin(θ0)
]T

∈ CM the angle-dependent transmit steering
vector;

∗ b(∆τ,∆f) =
[
ej2π∆τ∆f1 , . . . , ej2π∆τ∆fM

]T ∈
CM the range-dependent transmit steering vector,
with R the covariance matrix of the basic set of
transmitted pulses;

• zC∈ CPMN contains the filtered clutter samples from the
range-azimuth bins adjacent to the CUT (as depicted in
Fig. 1), which is the superposition of the returns from

1Notice that in a plain FDA-MIMO, the carrier frequencies of transmit
elements are linearly increased, namely, fm = f0 + (m − 1)∆f , with an
identical relative increment ∆f .

2The transmit signal on a given antenna is obtained concatenating P
waveforms described in [34] for each specific element after amplitude/phase
modulation with a common sequence.

different uncorrelated scatterers, i.e.,

zC =

L−1∑
l=−L+1

I−1∑
i=0

K∑
k=1

βl,i,kJlc⊗ s(θi,∆τk,∆f), (5)

with
– 2L−2 (L ≤ P ) the number of range rings that interfere

with the range-azimuth bin of interest, i.e., (l, i) =
(0, 0);

– I the number of discrete azimuth sectors [42];
– K the maximum number of the scatterers within a

single range-azimuth bin;
– ∆τk and θi refer to the incremental range and azimuth,

respectively, of the k-th (k = 1, . . . ,K) scatterer from
the i-th (i = 1, . . . , I) azimuth sector and a generic
range ring (without loss of generality, the same range
displacements are considered among the different range
bins);

– Jl ∈ RP×P the binary shift matrix with ones only
on its l-th (l = 0,±1,±2, . . . ,±(P − 1)) diagonal (l
indicates the range ring), and zeros elsewhere, i.e.,

Jl(p, q) =

{
1, p− q = l
0, elsewhere

,

(p, q) ∈ {1, . . . , P}2 ,
(6)

with J0 = I;
– βl,i,k the backscattering amplitude of the k-th scatterer

from the (l, i)-th range-azimuth bin (with βl,i,k = 0 ∀k
when l = 0 and i = 0), which are modeled as
independent complex, zero-mean, circularly symmet-
ric, random variables with E[|βl,i,k|2] = σ2

l,i,k, whose
actual value can be inferred exploiting some a-priori
information on the illuminated scene [7], [46]. As a
result, the covariance matrix of zC can be evaluated as

Σc(c,∆f) = E[zCz†
C]

=
P−1∑

l=−P+1

I−1∑
i=0

K∑
k=1

σ2
l,i,kΓ̄l(c, θi,∆τk,∆f)

∈ CPMN×PMN ,

(7)

with Γ̄l(c, θi,∆τk,∆f) ∈ CPMN×PMN given by

Γ̄l(c, θi,∆τk,∆f) =(
Jlcc

†J†
l

)
⊗
(
s(θi,∆τk,∆f)s†(θi,∆τk,∆f)

)
;

(8)

• n∈ CPMN comprises the internal noise, which is mod-
eled as a zero-mean, complex, circularly symmetric,
Gaussian random vector, i.e., E[n] = 0 and covariance
E[nn†] = σ2

nI with σ2
n the noise power level (assumed

without loss of generality equal to 0 dB).

III. JOINT TRANSMIT AND RECEIVE FILTER DESIGN
PROBLEM

An FDA-MIMO radar tranceiver design approach is in-
troduced via the joint optimization of the transmit DOFs
(radar code/frequency increments) and receive filter, aimed at
maximizing the SINR while controlling some hallmarks of the

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2024.3366438

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



4

Transmit 

elements

Receive 

elements

(1,0)

(1,I-1)

(0,I-1)

(L-1,0)

(L-1,I-1)

K scatterers in each range cell
1
2
K

Target in the CUT

(0,0)

(-1,0)

(-L+1,0)

(-L+1,1)

(-L+1,I-1)

t

tD

0t

0
R

d

0
q 0

q

1

2 wB
-

1

2 wB

d1 1

1
f

2
f

3
f Mf

2 23 3 NM

(-1,I-1)

Fig. 1: Geometry of the FDA and range-azimuth bins contributing to the return from the CUT. The generic (l, i) indexes the l-th range and i-th azimuth pair.

transmitted waveform via tailored constraints on the probing
code and frequency increments, as thoroughly discussed be-
low.

1) Energy Constraint: To comply with the radar power
budget, the energy constraint is forced on the sought code to
account for the finite energy transmitted by the radar, which
is tantamount to forcing

∥c∥2 = 1. (9)

2) Similarity Constraint: To bestow some desirable at-
tributes to the radar probing code, a similarity constraint is
imposed on the transmitted sequence, i.e.,

∥c− c0∥2 ≤ δ, (10)

where 0 < δ < 2 rules the size of the similarity region,
and c0∈ CP represents a reference code (∥c0∥ = 1), which
possesses some desired features from the radar performance
point of view (as for instance limited amplitude variation of
the elements).

3) Spectral bandwidth occupancy constraint: Without loss
of generality, each frequency increment is supposed to satisfy

0 ≤ ∆fm ≤ Bw, m = 1, . . . ,M, (11)

where Bw denotes the available radar bandwidth for the
selection of the transmit frequencies and Bw +Bc the overall
single-side radar bandwidth with Bc the sub-pulse bandwidth.

Now, supposing the received signal v filtered via w ∈
CPMN , the chosen figure of merit is the normalized (w.r.t.
|α0|2) SINR at the output of the receive filter, which is given
by

SINR(w, c,∆f) =
|w†(c⊗ s(θ0,∆τ,∆f))|2

w†Σc(c,∆f)w + σ2
n∥w∥2

. (12)

Hence, the joint transmit receive design problem can be cast
as the following constrained optimization problem

P:



max
c,w,∆f1,...,∆fM

SINR(w, c,∆f)

s.t. 0 ≤ ∆fm ≤ Bw, m = 1, · · · ,M
∥c∥2 = 1
∥c− c0∥2 ≤ δ
∥w∥2 = 1

.

(13)
Notice that P is a non-convex and in general NP-hard

optimization problem. To come up with good quality sub-
optimal solutions, a sequential optimization procedure is de-
signed resorting to a MM-MBI paradigm [42], [47]–[49]. In a
nutshell, it partitions the vector variable into multiple blocks,
and then the assessment of the objective function improvement
(either optimized or handled with MM) w.r.t. each block, while
keeping the others fixed, is performed. In particular, at each
iteration only the block yielding the maximum increase of
the objective function is updated. To proceed further with the
algorithm development, let us introduce the vector y collecting
all the optimization variables, i.e.,

y =
[
wT, cT, (∆f1, . . . ,∆fM )

T
]T

∈ CPMN+P+M , (14)

which is partitioned into M + 2 blocks given by
y1,y2, y3, . . . , yM+2, with y1 = w ∈ CPMN , y2 = c ∈ CP ,
and yh = ∆fh−2, (h = 3, . . . ,M + 2) corresponding to
the receive filter, radar code, and frequency increments to
be optimized, respectively. Moreover, the optimization vector
obtained at the (n− 1)-th iteration is denoted by

y(n−1) =
[
w(n−1)T, c(n−1)T, (∆f

(n−1)
1 , . . . ,∆f

(n−1)
M )T

]T
.

(15)
The application of the procedure requires handling M + 2
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sub-problems at each iteration [18], namely,

P
∆f

(n)
m

:

{
max
∆fm

SINR
(
w(n−1), c(n−1), ∆̃fm

)
s.t. 0 ≤ ∆fm ≤ Bw

, (16)

for m = 3, . . . ,M + 2,

Pc(n) :


max

c
SINR

(
w(n−1), c,∆f (n−1)

)
s.t. ∥c∥2 = 1

∥c− c0∥2 ≤ δ

, (17)

and

Pw(n) :

{
max
w

SINR
(
w, c(n−1),∆f (n−1),

)
s.t. ∥w∥2 = 1

, (18)

where

• ∆̃fm =
[
∆f

(n−1)
1 , . . . ,∆f

(n−1)
m−1 ,∆fm,∆f

(n−1)
m+1 ,

· · · ,∆f
(n−1)
M

]T
∈ RM (the m-th element is the opti-

mization variable);

• ∆f (n−1) =
[
∆f

(n−1)
1 , . . . ,∆f

(n−1)
M

]T
∈ RM .

From an analytical point of view, ∆f
(n)
m , c(n), and w(n)

are suitable feasible points (either optimal or bespoke sub-
optimal) to the sub-problems P

∆f
(n)
m

(m = 1, . . . ,M ), Pc(n) ,
and Pw(n) , respectively.

In the devised optimization procedure, the problems P
∆f

(n)
m

(m = 1, . . . ,M ) are dealt with in Subsection III-A, resorting
to the MM approach with the final goal to improve the
objective. Problems Pc(n) and Pw(n) are hidden convex.
Specifically, an optimal solution to Pc(n) can be found via a
polynomial-time method [7], while an optimal solution to the
problem Pw(n) is presented in closed form in Section III-C.

A. Frequency Increment Optimization

In this subsection, the m-th frequency increment ∆fm is
optimized given the receive filter, radar code, and the other
M−1 frequency increments. To proceed further, the following
Lemma is provided, to come up with an alternative expression
of the objective SINR in (12).

Lemma 1: An equivalent expression of the objective function
in (16) is

SINR
(
w(n−1), c(n−1), ∆̃fm

)
=

b†0(∆̃fm)W
(
w(n−1), c(n−1)

)
b0(∆̃fm)

K∑
k=1

b†k(∆̃fm)Σk

(
w(n−1), c(n−1)

)
bk(∆̃fm) + σ2

n∥w(n−1)∥2
,

(19)

where b0(∆̃fm) = b(∆τ, ∆̃fm) and bk(∆̃fm) =

b(∆τk, ∆̃fm) while W
(
w(n−1), c(n−1)

)
∈ CM×M and

Σk

(
w(n−1), c(n−1)

)
∈ CM×M are provided in eq. (46)

and eq. (48) of Appendix A in the supplemental material,
respectively.

Proof: See Appendix A of the supplemental material.
In order to tackle the sub-problem at hand, a MM approach

is developed, whereby an appropriate tight minorant to the ob-

jective function at hand (constructed according to Proposition
1) is optimized to generate an updated solution.

Proposition 1: A tight minorant (surrogate) to the objective
function in P

∆f
(n)
m

is given by

ŜINRa

(
∆fm|∆f (n−1),w(n−1), c(n−1)

)
= X(n−1)

m ∆f2
m +

˙̂
X(n−1)

m ∆fm + ˙̄X(n−1)
m ,

(20)

with the specific definitions of X
(n−1)
m , ˙̂

X
(n−1)
m , and ˙̄X

(n−1)
m

reported in Appendix B of the supplemental material.
Proof: The interested reader may refer to Appendix B of

the supplementary material to this paper.
By leveraging Proposition 1, at the n-th iteration, the h-th

(h = 3, . . . ,M + 2) sub-problem of the devised MM-MBI
procedure becomes

P
y
(n)
h

:

{
max
yh

χ̄a

(
yh;y

(n−1)
h

)
s.t. yh ∈ Ψ

, (21)

where χ̄a

(
yh|y(n−1)

h

)
denotes

ŜINRa

(
∆fm|∆f (n−1),w(n−1), c(n−1)

)
with reference

to the variables introduced in (14) and (15), while the feasible
set Ψ is given by

Ψ = {x : 0 ≤ x ≤ Bw}. (22)

That said, a feasible solution to (21) is provided by the
following proposition.

Proposition 2: The optimal solution to P
y
(n)
h

is given by

ŷh = max(min(ỹh, Bw), 0) (23)

with

ỹh = −
˙̂
X

(n−1)
m

2X
(n−1)
m

. (24)

Proof: See Appendix C of the supplemental material.
Hence, starting from ∆f (n−1), w(n−1), and c(n−1), the

optimization of the h-th (h = 3, . . . ,M +2) variable, i.e., yh,
can be accomplished according to (23).

B. Radar Code Optimization

In this subsection, the radar code is optimized with the
frequency increments and receive filter fixed. First of all, using
Lemma 2, an equivalent form of the objective function in (17)
is obtained.

Lemma 2: An equivalent expression of the objective function
in (17) is

SINR
(
w(n−1), c,∆f (n−1)

)
=

c†Θ
(
w(n−1),∆f (n−1)

)
c

c†M
(
w(n−1),∆f (n−1)

)
c
,

(25)

where the definitions of Θ
(
w(n−1),∆f (n−1)

)
∈ CP×P and

M(w(n−1),∆f (n−1)) ∈ CP×P are given in Appendix D of
the supplemental material.

Proof: See Appendix D of the supplemental material.
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In this regard, the problem Pc(n) is recast as

Pc(n) :


max

c
SINR

(
w(n−1), c,∆f (n−1)

)
s.t. ∥c∥2 = 1

∥c− c0∥2 ≤ δ

, (26)

which is a fractional quadratic optimization problem. Then, in
terms of y2, it can be rewritten as

P
y
(n)
2

:


max
y2

y†
2Θ(w

(n−1),∆f(n−1))y2

y†
2M(w(n−1),∆f(n−1))y2

s.t. ∥y2∥2 = 1
∥y2 − c0∥2 ≤ δ

, (27)

Following the guidelines in [7], [50] and skipping the
dependence on (y

(n−1)
1 ,∆f (n−1)) for simplicity, i.e., Θ =

Θ(y
(n−1)
1 ,∆f (n−1)) and M = M(y

(n−1)
1 ,∆f (n−1)), the

homogenized version of Pc(n) is [7]

P ′
y
(n)
2

:



max
y2,t

tr

 Θ 0
0 0

 y2y
†
2 y2t

∗

y†
2t |t|2


tr

 M 0
0 0

 y2y
†
2 y2t

∗

y†
2t |t|2


s.t. tr

([
I −c0

−c†0 ∥c0∥2 − δ

] [
y2y

†
2 y2t

∗

y†
2t |t|2

])
≤ 0

tr

([
I 0
0 0

] [
y2y

†
2 y2t

∗

y†
2t |t|2

])
= 1

tr

([
0 0
0 1

] [
y2y

†
2 y2t

∗

y†
2t |t|2

])
= 1

y2 ∈ CP , t ∈ C.
(28)

Hence, an optimal solution y
(n)
2 is obtained via two distinct

steps, where the former involves the computation of the solu-
tion to a SDP problem, while the latter entails the construction
of a rank-one optimal solution.

Specifically, at the first step, the problem P ′
y
(n)
2

is relaxed
into a fractional SDP problem by dropping the implicit rank-
one constraint in (28), i.e.,

P̃
y
(n)
2

:



max
L

tr(Q0L)
tr(Q1L)

s.t. tr(Q2L) ≤ 0
tr(Q3L) = 1
tr(Q4L) = 1
L ≽ 0

, (29)

where L ∈ HP+1. The definitions of Qi ∈ CP+1 (i =
0, . . . , 4) are given in (30).

By resorting to Charnes and Cooper’s transformation, and
considering that the denominator of the fractional SDP is
always positive, an equivalent SDP of P̃

y
(n)
2

is obtained as
follows

P̂
y
(n)
2

:



max
X,u

tr(Q0X)

s.t. tr(Q1X) = 1
tr(Q2X) ≤ 0
tr(Q3X) = u
tr(Q4X) = u
X ≽ 0, u ≥ 0

, (31)

where X ∈ HP+1 and u ∈ R denotes the transformed variable
X = uL complying with tr(Q1(uL)) = 1.

Then, starting from an optimal solution X⋆ and u⋆ to

P̂
y
(n)
2

(whose optimal value is denoted by v⋆ = υ(P̂
y
(n)
2

)),

let X⋆ = X⋆

u⋆ , the second step aims at obtaining a rank-
one optimal solution x⋆(x⋆)† resorting to the rank-one matrix
decomposition theorems of [43]. Finally, denoting by x⋆ =[
υ⋆T, t⋆

]T ∈ CP+1, with υ⋆ ∈ CP and t⋆ ∈ R1, an optimal
solution y

(n)
2 to P

y
(n)
2

is obtained as [7]

y
(n)⋆
2 =

υ⋆

t⋆
. (32)

As to x⋆, it can be obtained either directly if Rank(X⋆) = 1
(i.e., X⋆ = x⋆x⋆†) or according to [43] if Rank(X⋆) >
1, that is, using Lemma 3 (reported in Appendix E of the
supplementary material to this paper and proved in [43]), with
A1 = Q0 − v⋆Q1, A2 = Q2, A3 = Q3, and A4 = Q4.

C. Receive Filter Optimization

In this case, h = 1, and the optimization variable is y1,
which is tantamount to solving the following optimization
problem

P
y
(n)
1

:

{
max
y1

SINR(y1,y
(n−1)
2 ,∆f (n−1))

s.t. ∥y1∥2 = 1
. (33)

The optimal solution to P
y
(n)
1

is obtained according to [7],
[51] and is given in (34).

D. Joint Transmit and Receive Optimization Procedure

The joint transmit and receive optimization process is sum-
marized in Algorithm 2. To begin with, an admissible code
c(0) and frequency increment vector ∆f (0) are initialized to
trigger the optimization procedure for the optimal receiver
filter w(0). Specifically, natural choices for the initial frequen-
cy increment vector and radar code are respectively linear
frequency increment vector, i.e., ∆f (0) = [0,∆f, . . . , (M −
1)∆f ]T ∈ RM and c(0) = c0, with ∆f ≤ Bw/(M − 1). In
this regard, the process to update each frequency increment,
radar code, and receive filter, could be iteratively repeated for
a desired number of iterations N1 > 0 or when reaching a
convergence condition, e.g.,∣∣∣χ(

y(n)
)
− χ

(
y(n−1)

)∣∣∣ < ε1,

with ε1 > 0 the exit threshold, and χ(y(n)) the objec-
tive function (12) evaluated at y(n) =

[
y
(n)T
1 ,y

(n)T
2 , y

(n)
3 ,

· · · , y(n)M+2

]T
.

A schematic representation of the proposed joint transmit-
receive optimization procedure is reported in Fig. 2. In this
regard, the clutter statistics are retrieved leveraging (possibly
dynamically updated) site specific environmental databases,
that could include Geographical Information System (GIS),
digital terrain maps, meteorological information, and clutter
models [7]. Thus, such information is employed to feed the
optimization stage thereby designing bespoke filter (receiver
side), radar code and frequency increments (transmitter side),
with a possible on-line implementation of the proposed algo-
rithm.
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Q0 =

[
Θ 0
0 0

]
,Q1 =

[
M 0
0 0

]
,Q2 =

[
I −c0

−c†0 ∥c0∥2 − δ

]
,Q3 =

[
I 0
0 0

]
,Q4 =

[
0 0
0 1

]
. (30)

y
(n)⋆
1 =

(Σc(y
(n−1)
2 ,∆f (n−1)) + σ2

nI)
−1(y

(n−1)
2 ⊗ s(θ0,∆τ,∆f (n−1)))√

(y
(n−1)
2 ⊗ s(θ0,∆τ,∆f (n−1)))†(Σc(y

(n−1)
2 ,∆f (n−1)) + σ2

nI)
−2(y

(n−1)
2 ⊗ s(θ0,∆τ,∆f (n−1)))

, (34)

Algorithm 1 Joint Transmit and Receive Optimization with
MM-MBI.
Input: M , ∆f , σ2

l,i,k, c0, δ, Bw, σ2
n, N1.

Output: y⋆.
1. Initialization:
• Set n = 0;
• Set ∆f (0) = [0,∆f, . . . , (M − 1)∆f ]T;
• Set y(0)

2 = c0;
• Compute y

(0)
1 by (34);

• Obtain y(0) =
[
y
(0)T
1 ,y

(0)T
2 , 0,∆f, . . . , (M − 1)∆f

]T
;

2. for n = 1 : N1

3. for h = 3 : M + 2
4. Update y

(n)
h according to (23) and denote by ν

(n)
h the

corresponding optimal SINR value;
5. end
6. Solve for filter y

(n)
1 and code y

(n)
2 respectively via

(34) and (32), and let ν(n)1 and ν
(n)
2 the optimal values

respectively to Problems P
y
(n)
1

and P
y
(n)
2

;

7. Compute k⋆ = arg max
k=1,...,M+2

ν
(n)
k ;

8. if k⋆ ≥ 3
9. Let y(n) =[

y
(n−1)T
1 ,y

(n−1)T
2 , . . . , y

(n)
k⋆ , y

(n−1)
k⋆+1 , . . . , y

(n−1)
M+2 ,

]T
;

10. else
11. if ν(1)h > ν

(2)
h

12. Let y(n) =
[
y
(n)T
1 ,y

(n−1)T
2 , y

(n−1)
3 . . . , y

(n−1)
M+2

]T
;

13. else
14. Let y(n) =

[
y
(n−1)T
1 ,y

(n)T
2 , y

(n−1)
3 . . . , y

(n−1)
M+2

]T
;

15. end
16. end
17. end
18. Output y⋆ = y(n).

Notably, a continuous sensing approach to extract clutter
statistics could also be conceived. This lends to a potential
cognitive implementation, whereby the system alternates per-
ception (environment estimation) and action (transmission of
a waveform tailored to the probed environment) in a feedback
loop. Precisely, the system updates the clutter statistics by
means of a specific sensing stage, possibly performed on a
regular basis or on-demand. Then, the inferred clutter charac-
teristics are used to maximize the SINR (12) by optimizing
the radar code, the filter, and the frequency increments.

As to the convergence analysis, some relevant properties of
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Fig. 2: Block diagram of the transmit-receive optimization procedure.

the optimization problem P and Algorithm 2 are summarized
in Proposition 3.

Proposition 3: The optimization problem P enjoys the
following properties:

• The objective χ(y) is continuous and P has a compact
feasible set. Thus, according to the Weierstrass theorem,
P is solvable3, and χ(y(n)) ≤ υ(P);

• The objective χ(y(n)) is monotonically increasing and
converges to a finite value χ⋆. Moreover, for any cluster
point y⋆ of y(n), χ(y⋆) = χ⋆;

• Any cluster point y⋆ satisfies the KKT conditions for
Problem P .

Proof: See Appendix F of the supplemental material.
Notably, another optimization technique that can be used to

address the constrained optimization problem (13) is the AO,
whereby each block variable is cyclically updated until achiev-
ing the desired exit condition [42]. Precisely, problem P is
solved via a MM-Block CD (BCD) technique, which partitions
the vector variable into multiple blocks, and then the objective
function is alternately improved (either optimized or handled
with MM) w.r.t. each block, while keeping the others fixed.
In this regard, this alternative optimization process enjoys the
same properties as the first and second items of Proposition 3.
However, the KKT condition cannot be ensured (in general)
for any limit point y⋆. Remarkably, the MBI method could
also be combined with the sequential optimization theory,

3The problem is solvable means it is feasible, bounded above, and its
optimal value υ(P) is attained [52].
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aimed at achieving a better balance between performance and
complexity [42].

The computational complexity enrolled in Algorithm 2 in
each iteration lies in the evaluation of the optimized frequency
increments (step 4), radar code (step 6), and receive filter (step
6), whose complexities are discussed as follows.

• As to the complexity connected with the frequency in-
crements optimization, the optimal solution to the Prob-
lem P

y
(n)
h

can be accomplished with a complexity of
O(KIPM2), which corresponds to the computation of
the K matrices Σk

(
w(n−1), c(n−1)

)
.

• As to code design, the complexity lies in solving the SDP
P̂
y
(n)
2

, i.e., O(P 3.5log(1/η)) with η a predefined accuracy
[7], [52]. Moreover, the complexity of the specific rank-
one decomposition procedure is O(P 3). Notably, the
optimal value to the corresponding problem requires O(1)
being it obtained as a by product of the SDP procedure;

• As to receive filter optimization, the main complexity is
dominated by the computation of Σc(y

(n−1)
2 ,∆f (n−1)),

which is O(P 3M2N2IK), and the evaluation of
the inverse of Σc(y

(n−1)
2 ,∆f (n−1)) + σ2

nI , which is
O((PMN)3). However, since it is positive definite, after
the computation of Σc(y

(n−1)
2 ,∆f (n−1)), the filter could

be efficiently computed resorting to the Conjugate Gradi-
ent Method (CGM) [53], with a resulting computational
saving. Therefore the overall computational complexity
is O(P 3M2N2(KI +MN)).

Consequently, the overall computational com-
plexity of each iteration in Algorithm 2 is
O
(
P 3.5log(1/η) + P 2M2N2(KIP +Q)

)
.

A direct comparison could be useful w.r.t. the AO
[7] in terms of computational burden. Specifically
in each iteration AO involves solving only one sub-
problem yielding a computational complexity of
O
(
max

{
P 3.5log(1/η), P 2M2N2(KIP +Q)

})
. Finally, if

a parallel implementation is foreseen for the MBI, the same
per-iteration worst case computational burden as per the AO
approach is demanded.

Moreover, it is worth noting that the computational bur-
den of some MBI iterations can be mitigated by avoid-
ing redundant evaluations of some terms. For example, the
value of Σc(c

(n−1),∆f (n−1)) can be reused (by keep-
ing it in memory) until the code or one of the frequen-
cy increments is reoptimized. Similarly, the computation of
Σk

(
w(n−1), c(n−1)

)
, k = 1, . . . ,K is demanded only after

the optimization of the filter or the code. Indeed, for the same
number of iterations, empirical simulations have shown that
specific optimization patterns (in terms of MBI selections) can
sometimes lead to a computational saving in the MM-MBI
implementation as compared to the MM-AO counterpart, due
to the larger number of redundant calculations avoided in the
former procedure.

Finally, it is worth considering the possibility of paralleliz-
ing, at each iteration of the MM-MBI procedure, the optimiza-
tion of the filter, the code, and the frequency increments, to
further reduce the overall computational time.

TABLE I: Simulation Parameters of FDA-MIMO Radar.

Parameter Value Parameter Value
M 4 N 8
Bw 2 MHz Bc 1 MHz
I 181 L 11
K 5 P 11
σ2
n 0 dB N1 1000

IV. PERFORMANCE ANALYSIS

In this section, numerical examples are provided to assess
the performance of the proposed transceiver design scheme
for SINR improvement in an FDA-MIMO radar. The system
comprised ULAs for both transmission and reception with
M = 4 and N = 8 elements, respectively, arranged using
an inter-element distance equal to half-wavelength. The radar
is supposed operating at f0 = 1 GHz.

In addition, the code length is considered as P = 11, and
a standard Barker code is used as reference, i.e.,

c0 = [1, 1, 1,−1,−1,−1, 1,−1,−1, 1,−1]T (35)

and δ = 0.5 is employed unless otherwise specified.
Moreover, a linear pattern is considered to initialize the

carrier frequencies of the M transmit elements [31], using
a constant frequency increment of ∆f = 0.5 MHz, namely,

∆f (0) = [0, 0.5, 1, 1.5]TMHz, (36)

whereas the available radar bandwidth is assumed to be Bw =
2 MHz.

As to the clutter, two different heterogeneous environments,
with mixed ground/sea clutter, are examined, thereby assuming
their statistical characterization known a priori, e.g., retrieved
through a geographic-query to a site specific environmental
database [7]. The former refers to the case of typical clutter
edges scenario while in the latter different clutter patches are
considered located at specific azimuth sectors. In both cases,
it is employed a discretization of the azimuthal domain in I
= 181 sectors (see Fig. 1), while considering L = 11 range
rings interfering with the range-azimuth bin of interest (BOI),
i.e., (0, 0). The setup parameters involved in the simulations
are listed in Table I, whereby the target incremental range is
assumed to be ∆τ = 1/(10Bc).

At each iteration, the normalized SINR achieved with the
proposed MM-MBI and MM-AO algorithms are compared
with three counterparts: two simpler MBI approaches, i.e.,

• MBI optimizing only the transmitted code and the receive
filter (referred to as MBI-C&F), whose corresponding
design problem is

Pw,c:


max
w,c

SINR(w, c,∆f (0))

s.t. ∥w∥2 = 1
∥c∥2 = 1
∥c− c0∥2 ≤ δ

; (37)

• MBI optimizing only the frequency increments and the
receive filter (referred to as MBI-DF&F), whose corre-

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2024.3366438

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



9

-80 -60 -40 -20 0 20 40 60 80

-10

-8

-6

-4

-2

0

2

4

6

8

10

ra
ng

e 
bi

n

15

20

25

30

35

40

45

50

55

60

Fig. 3: Clutter power distribution (dB) of subsection IV-A, i.e., an heterogeneous
environment with clutter edges.

sponding resource allocation problem is

Pw,∆f :


max
w,∆f

SINR(w, c0,∆f)

s.t. ∥w∥2 = 1
0 ≤ ∆fm ≤ Bw, m = 1, · · · ,M

,

(38)
• and a receive-only adaptation for a fixed code and fre-

quency increments (referred to as OPT-FLT), i.e.,

wOPT−FLT = argmax
w

SINR(w, c0,∆f (0))

s.t. ∥w∥2 = 1
(39)

which is computed via the RHS of (34) with n = 1.

A. Heterogeneous Environment with Clutter Edges

In the following, an heterogeneous clutter environment
encompassing clutter edges is considered. The specific case
study at hand is represented in Fig. 3, which reports, for each
range-azimuth bin, the sum of the mean square values of the
K clutter scatterers, i.e.,

∑K
k=1 |nl,i,k|2. More precisely,

σ2
l,i,k = CNRl,i|nl,i,k|2, (40)

with CNRl,i = 10dB in the range rings from -11 to 2, while
for the other rings the clutter profile is considered having
CNRl,i = 50 dB within the region [−10◦, 20◦] and CNRl,i =
30 dB elsewhere, whereas nl,i,k is a zero-mean, unit-variance,
complex Gaussian random variable.

The obtained results, depicted in Fig. 4, demonstrate sub-
stantial SINR improvements achievable through the joint op-
timization of the transmit DOFs, i.e., the radar code and
frequency increments, and the receive filter. A careful study of
the curves in Fig. 4 (a) reveals that the proposed MM-MBI and
MM-AO algorithms can significantly enhance the SINR, with
MM-MBI outperforming all the counterparts. Specifically, at
the 200-th iteration, MM-MBI achieves a remarkable SINR
gain of 5.75 dB, with a gap of 0.22 dB w.r.t. MM-AO. More-
over, MM-MBI shows faster convergence (achieved at ≈ 700
iterations), compared to MM-AO (reaching convergence at
≈ 900 iterations).

Furthermore, it is observed that the MM-MBI exhibits, at
the 1000-th iteration, some SINR improvement as compared
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Fig. 4: Optimization results for the first environmental scenario: (a) Normalized SINR
versus the number of iterations; (b) Percentage of MBI selections.

with the MBI-C&F and MBI-DF&F approaches, with gaps in
the order of 0.64 dB and 5.32 dB, respectively. Additionally,
Fig. 4 (b) shows the percent of times each block variable is
optimized by the devised MM-MBI procedure. Evidently, the
chart underscores, for this case study, a prevailing emphasis
on code and filter optimizations rather than on frequency
increments.

To shed light on the role of code optimization, in Fig. 5,
the normalized SINR versus the number of iterations of the
MBI-based optimization is reported for several values of
the similarity constraint, i.e., δ ∈ {0.1, 0.3, 0.5, 0.7}. Not
surprisingly, a higher value of δ leads to a better SINR gain
due to a less stringent constraint on the code optimization,
with gap (at the 1000-th iteration) of approximately 3 dB
between the cases of δ = 0.7 and δ = 0.1. However, this
advantage comes with the potential drawback of losing control
over certain critical characteristics of the reference waveform.
Furthermore, the results show that larger values of δ demand
an increased number of iterations to achieve convergence.

Fig. 6 reports the range-angle system response, i.e.,

|w(n)†vl,i|2, l = −L+ 1, . . . , L− 1, i = 0, . . . , I − 1, (41)

with vl,i = Jlc
(n) ⊗ s(θi,∆τk,∆f (n)), corresponding to

the strength of filter output to the echo of a possible target
located at θi and the l-th range ring, with the radar system
using the optimized transceiver at a specific iteration of the
MM-MBI algorithm. The results, achieved with the initialized
parameters, 4-th, 100-th, and 1000 iterations, are illustrated in
Figs. 6 (a)-(d), respectively. Inspection of the figures reveals
that the proposed optimization strategy is effectively able to
preserve the response at the target’s bin, i.e., 0◦ and L = 0,
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Fig. 7: Detection probability at a given iteration for the first environmental scenario.

while minimizing that at other locations, in particular after
100 iterations. Such behavior corroborates the capability of
the developed joint transmit-receive optimization procedure to
suppress the clutter and improve the SINR.

Now, assuming the case of non-fluctuating (Swerling 0) tar-
get, the probability of detection (Pd) for the coherent detector

|w†v|
H1

≷
H0

ζ (42)

is given by

Q
(√

2|α0|2χ̂,
√
−2 log Pfa

)
, (43)

where H0 and H1 indicate the null and the alternative hy-
pothesis (i.e., target echo absence/presence within the received
observation vector), respectively, ζ is the detection threshold
set to ensure the desired false alarm probability (Pfa), Q(·) is
the Marcum Q function [54], and χ̂ is the achieved normalized
SINR after the joint transmit-receive optimization.

The Pd versus |α0|2, for Pfa = 10−4, at different iterations
of the devised MM-MBI procedure, is displayed in Fig. 7
assuming the same interference environment as in Fig. 3.
The curves highlight that, for a given |α0|2, increasing the
number of iterations leads to a better Pd, owing to the achieved
higher normalized SINR. Moreover, the MBI approach yields
superior performance than the AO counterpart, in particular
with designs after a small number of iterations.

-80 -60 -40 -20 0 20 40 60 80

-10

-8

-6

-4

-2

0

2

4

6

8

10

ra
ng

e 
bi

n

24

26

28

30

32

34

36

38

40

42

44

Fig. 8: Clutter power distribution (dB) of subsection IV-B, i.e., an heterogeneous
environment with clutter patches.

B. Heterogeneous Environment with Clutter Patches

The second analyzed environmental scenario still assumes
clutter powers modeled as in (40) but it encompasses
three different patches arranged in the following patterns:
[−30◦,−10◦] with CNRl,i = 30 dB, [15◦, 35◦] with CNRl,i

= 20 dB, and [40◦, 50◦] with CNRl,i = 20 dB, respectively.
The corresponding clutter profile is illustrated in Fig. 8.

The optimization results are displayed in Fig. 9 in terms of
achieved normalized SINR in Fig. 9 (a), and MBI parameter
selection count in Fig. 9 (b). Similar to the preceding case,
the MBI-based strategy demonstrates superior performance
than the other approaches, achieving the highest SINR gain of
4.23 dB. Notably, the results emphasize that, in this specific
study case, the primary contributor to the SINR gain is the
optimization of the frequency increments. This observation
is supported by both the data depicted in Fig. 9 (b) and the
performance achieved by the MBI-DF&F, which, in terms of
normalized SINR, ranks second. Furthermore, the MBI-C&F
approach fails to yield any SINR improvement, mainly due to
the absence of frequency increments optimization in its design.

The squared modulus of the filter response (41), computed
with the nominal parameters as well as with the optimized
ones at 4-th, 100-th and final iterations, is displayed in Figs. 10
(a)-(d), respectively. From the maps at different iterations, it
is possible to observe that an effective clutter suppression, in
both range and azimuth domains, is achieved with the devised
optimization strategy.

The Pd (43) versus |α0|2 is plotted in Fig. 11 for the nor-
malized SINR values achieved by the MM-MBI and MM-AO
procedures at specific iterations, i.e., before the optimization
(0-th), 4-th, 100-th, and 1000-th. As expected, an increase of
Pd is attained with a large number of iterations, that is, due to
the SINR gain obtained with the optimization procedures.

Finally, remarks similar to those made for Fig. 8, i.e.,
the detection probability results under the first environmental
scenario, hold true with reference to the curves displayed in
Fig. 11. Precisely, regardless of the number of iteration, the
results highlight a slight advantage of MM-MBI procedure
over the MM-AO counterpart, with gaps between the curves
less than 0.5 dB.
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Fig. 6: Squared modulus (dB) of the filter response at a given range azimuth position for the first environmental scenario and iteration: (a) Initial; (b) 4-th iteration; (c) 100-th
iteration; (d) 1000-th iteration.
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Fig. 10: Squared modulus (dB) of the filter response at a given range azimuth position for the second environmental scenario and iteration: (a) Initial; (b) 4-th iteration; (c) 100-th
iteration; (d) 1000-th iteration.
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Fig. 9: Optimization results for the second environmental scenario: (a) Normalized SINR
versus the number of iterations; (b) Percentage of MBI selections.

V. CONCLUSIONS

This paper has dealt with the problem of joint transmitter
and receiver synthesis in a signal-dependent interference en-
vironment using an FDA-MIMO radar system. The adopted
design leverages the SINR maximization over the receiving
filter, the radar code, and the FDA frequency increments
under some system constraints ruled by the available transmit
energy, code features, and total bandwidth. Since the resulting
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Fig. 11: Detection probability at a given iteration for the second environmental scenario.

optimization problem is in general non-convex and NP-hard, to
come up with good quality solutions, a bespoke optimization
framework based on the MM-MBI approach has been pro-
posed and assessed. Specifically, at each iteration, the devised
iterative procedure outputs the triple: optimized radar code,
frequency increments, and receive filter exploiting the MM
methodology. The convergence properties of the algorithm
have been rigorously proven showing that any cluster point sat-
isfies the KKT conditions. Moreover, the overall computational
complexity has been evaluated and discussed. At the analysis
stage, the performance of the joint transceiver optimization
technique is analyzed via diverse metrics, including the SINR
versus the number of iterations, the detection probability,
and the interference cancellation capabilities realized at the
output of the receive filter. In this respect, numerical results
have demonstrated that the proposed algorithm can effectively
suppress the signal-dependent clutter leading to significant
SINR improvements as the number of iterations increases.
Additionally, comparisons with other design methods, includ-
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ing MM-AO and two simpler MBIs optimizing only a subset
of the available DOFs, further corroborate the performance
enhancements achievable capitalizing the full flexibility of the
system.

Possible future research avenues could be focused on the
extension of the framework to the case of space-(slow) time
processing, where spatial processing is jointly performed to-
gether with a Doppler processing, as well as to a polarimetric
FDA-MIMO system. Moreover, it could be of interest to
consider the structured case of a uniform FDA increment
from sensor to sensor and optimize just a single frequency
parameter. Last but not least, it is worthy mentioning the
possibility to endow robustness to the transceiver performance
w.r.t. some unavoidable mismatches induced by coupling ef-
fects [55] and pointing errors [56]. Finally, an experimental
validation undoubtedly represents the final benchmark to claim
the effectiveness of the approach.
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