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ABSTRACT This paper addresses the Direction-of-Arrival (DOA) estimation problem using a narrowband
polarimetric array sensing system. The considered receiving equipment is composed of two sub-arrays of
sensors with orthogonal polarizations. By suitably modeling the received signal via a sparse representation
(accounting for the multiple snapshots and the polarimetric array manifold structure), two iterative
algorithms, namely Polarimetric Sparse Learning via Iterative Minimization (POL-SLIM) and Polarimetric
Sparse Iterative Covariance-based Estimation (POL-SPICE), are devised to accomplish the estimation
task. The proposed algorithms provide accurate DOA estimates while enjoying nice (rigorously proven)
convergence properties. Numerical analysis shows the effectiveness of POL-SLIM and POL-SPICE to
successfully locate signal sources in both passive sensing applications (with large numbers of collected
snapshots) and radar spatial processing, also in comparison with single-polarization counterparts as well
as theoretical benchmarks.

INDEX TERMS DOA estimation, polarimetry, sparse methods, high resolution

I. INTRODUCTION

D IRECTION-of-Arrival (DOA) estimation holds a
paramount significance across diverse domains encom-

passing radar systems, wireless communications, and sonar
signal processing [1]–[3]. The accurate localization of inci-
dent signals is crucial for beamforming, source positioning,
and interference cancellation applications [4], [5]. Over the
past decades, a plethora of algorithms have been proposed to
accomplish the DOA estimation task, fulfilling constantly in-
creasing requirements, including high resolution, robustness
to sources’ correlation, and low computational demands. In
this regard, the estimation strategies can be classified into
spectral-based, parametric, and compressed sensing methods.

Spectral-based techniques, like beamforming-based and
subspace-based methods, exploit the measurements of an
appropriate spatial spectrum, identifying spectral peaks to
obtain corresponding DOA estimates. The Conventional
Beamformer (CBF) is a standard technique to maximize
the output power in a specific direction where the signal
of interest is presumed to be present. However, it has
limited angular resolution and high sidelobes. To overcome

its limitations, different beamformers, like Capon Minimum
Variance Distortionless Response (MVDR), have been pro-
posed [6], albeit with operative limitations in high Signal-to-
Noise Ratio (SNR) scenarios, when the sample covariance
matrix can be ill-conditioned.

Subspace-based super-resolution methods, such as MUlti-
ple SIgnal Classification (MUSIC) and Estimation of Signal
Parameters Via Rotational Invariance Techniques (ESPRIT),
are computationally and statistically efficient (under some
technical conditions [3]) algorithms based on the covariance
matrix eigenvalue decomposition. While the MUSIC algo-
rithm utilizes the noise subspace in the estimation process,
ESPRIT leverages the rotational invariance property of spe-
cific subarrays, i.e., it calculates the eigenvalues of a matrix
that relates two signal subspaces [5], [7]. However, this kind
of methods experience severe performance degradation in
the presence of correlated or coherent sources (for instance
when some forms of signal multipath are present), i.e., when
the signal subspace becomes rank deficient [8]–[10]. Two
well-known strategies to address this issue are Forward-
Backward (FB) averaging and spatial smoothing [3], [11].
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Different approaches to tackle the DOA estimation prob-
lem include parametric methods like Maximum Likelihood
(ML) [3]. In this regard, by considering different hypothe-
ses about the waveform model of the source signals, two
estimators have been proposed in the open literature, i.e.,
Stochastic Maximum Likelihood (SML) and Deterministic
Maximum Likelihood (DML) [12], [13]. In the former case,
source signals are modeled as Gaussian processes, while
in the latter, they are considered as unknown deterministic
quantities. Noteworthy algorithms in this context include It-
erative Quadratic ML (IQML) [3], [14] and Root-Weighting
Subspace Fitting (WSF) [15].

Recently, sparse methods have gained significant attention
in the signal processing community due to their ability to
yield high-resolution and reliable estimates from a limited
number of noisy observations, as well as the capability
to handle coherent and correlated sources [16], [17]. They
exploit the inherent sparsity of the signal model, where only
a few sources contribute to the observed data. Therefore,
under the assumption that the DOAs of the sources lie on
the assumed dictionary grid, they can be actually retrieved
as the support of the sparse signal [18]. In this context,
hyperparameter-free algorithms are Sparse Learning via It-
erative Minimization (SLIM) [19], [20] and Sparse Iterative
Covariance-based Estimation (SPICE) [21] [18], [22]. The
former is a regularized minimization algorithm capable of
providing accurate signal parameters estimates with a rela-
tively low computational burden [19]. Assuming Gaussian
and uncorrelated sources (although it is practically robust
to these assumptions), the latter relies on a a covariance
fitting criterion with global convergence properties [21] (see
also [18] and references therein).

On a parallel track, several promising approaches involved
the joint exploitation of both spatial and polarization domains
to boost the DOA estimation performance. In fact, by lever-
aging the spatial information captured by multiple antennas
and the polarization characteristics of the incident waves,
enhanced accuracy and reliability of the DOA estimates can
be obtained [23]–[27]. As a matter of fact, it is well known
that diversely polarized arrays are capable of providing better
estimation accuracy than the corresponding single polarized
arrays [25], [28]–[30]. However, in the open literature, the
investigation of sparse estimation techniques leveraging the
polarimetric domain to provide high resolution and robust
DOA estimates has only received a limited attention. To
fill this gap, in this paper, the polarimetric version of [19]
and [21], referred to as Polarimetric SLIM (POL-SLIM) and
Polarimetric SPICE (POL-SPICE), respectively, are intro-
duced for DOA estimation in a polarimetric sensor array
equipped with receive pairs of elements with orthogonal
polarizations (for instance, pairs of crossed dipoles).

The main contributions of the present work can be sum-
marized as follows1:

1Part of this paper has been presented at the 2023 IEEE International
Workshop on Technologies for Defense and Security (TechDefense) [31].

1) the formulation of a sparse signal model accounting
for both polarizations and spatial characteristics of the
emitters;

2) the derivation of POL-SLIM and POL-SPICE algo-
rithms that capitalize on the sparsity of the signal
model to endow improved performance to the DOA
estimation process, which represents the main novelty
of this paper;

3) the study of the convergence properties for the devised
procedures in terms of achieving a stationary point of
the corresponding optimization problem;

4) an extensive numerical analysis including a passive
sensing scenario as well as a radar setup where the
active system operates in the presence of vertical
multipath. To highlight the effectiveness of the devised
estimators, the results are compared with the single-
polarization counterparts already available in the open
literature and the Cramér-Rao Bound (CRB).

The remainder of this paper is organized as follows.
Section II presents the polarimetric signal model. In Section
III, the DOA estimation problem is introduced and the
proposed POL-SLIM and POL-SPICE solution strategies are
discussed. Section IV addresses the performance analysis. Fi-
nally, Section V concludes the paper and highlights potential
future research directions.

A. NOTATIONS
Boldface is used for vectors a (lower case), and matrices
A (upper case). IN and 0 denote respectively the N × N
identity matrix and the matrix with zero entries (its size is
determined from the context). The notation A(m) is used to
represent the m−th column of the matrix A. The transpose,
conjugate, and conjugate transpose operators are denoted by
the symbols (·)T, (·)⋆, and (·)†, respectively. The trace of the
matrix A ∈ CN×N is indicated with tr(A). The Kronecker
and the Hadamard (element-wise) products are denoted by
⊗ and ⊙, respectively. RN and CN are respectively the
sets of N -dimensional column vectors of real and complex
numbers. The letter j represents the imaginary unit (i.e.,
j =

√
−1). For any complex number x, Re(x), Im(x), and

|x| are used to denote the real part, imaginary part, and the
modulus of x, respectively. λmax(A) and λmin(A) are the
maximum and the minimum eigenvalue of A, respectively.
For any x ∈ CN , ∥x∥ represents the Euclidean norm.
Moreover, for any A ∈ CN×N , ∥A∥F denotes the Frobenius
norm of A. Let A, B be two square matrices of arbitrary
size, diag(A,B) represents the block diagonal matrix with
blocks A and B. Finally, let Z be a generic finite set, #{Z}
returns its cardinality.

II. SIGNAL MODEL
Let us consider a sensor array equipped with N receive pairs
of crossed-dipoles (elements with orthogonal polarizations
which are referred to as horizontal and vertical from now
on), collecting data in the presence of K narrowband Ra-

2 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2024.3411468

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



<Society logo(s) and publication title will appear here.>

dio Frequency (RF) emitters and aimed at estimating their
azimuth angle. The source signals impinge on the array
from unknown angular directions θ̄1, . . . , θ̄K . The baseband
discrete-time signal at the output of the receiving array for
the l-th snapshot, l = 1, . . . , L, can be modeled as [20]

yl =
[
y
(H)T
l ,y

(V)T
l

]T
=

K∑
m=1

S(θ̄m)x̄m,l + el ∈ C2N , (1)

where

• y
(P)
l ∈ CN is the vector of observations collected

at the l-th snapshot by the receiving elements with
polarization P ∈ {H,V };

• x̄m,l =
[
x̄
(H)
m,l, x̄

(V)
m,l

]T
∈ C2 is the complex polarimet-

ric vector associated with the m-th source amplitudes;
•

S(θ̄m) =

[
s(θ̄m) 0
0 s(θ̄m)

]
= I2 ⊗ s(θ̄m) ∈ C2N×2

(2)
is the polarimetric array matrix2, with s(θ̄m) the unit-
norm spatial steering vector of the array at a given
polarization for the angular direction θ̄m;

• el ∈ C2N , l = 1, . . . , L are independent and identi-
cally distributed (i.i.d.) zero-mean circularly symmetric
Gaussian random vectors with mean square value η,
assumed statistically independent from the sources sig-
nals.

Let us now formulate (1) as a linear regression model,
whereby the regressors are N̄ polarimetric steering matrices
S(θi) defined over a grid T = {θi}N̄i=1 of the azimuth space.
It is worth pointing out that T is supposed dense enough,
i.e., N̄ ≫ N , in order to consider an ideal on-grid scenario,
whereby the true DOAs are assumed to belong to T. Hence,
the following nonparametric model for the array’s output can
be considered [21]

yl = Hxl + el ∈ C2N , l = 1, . . . , L (3)

where

• xl =
[
xT
1,l, . . . ,x

T
N̄,l

,
]T

∈ C2N̄ , is the sparse vector
containing the spatial polarimetric profile for the l-

th snapshot, with xi,l =
[
x
(H)
i,l , x

(V)
i,l

]T
∈ C2, i =

1, . . . , N̄ ;
• H ∈ C2N×2N̄ is the model matrix defined as

H = [H1,H2, . . . ,HN̄ ] , (4)

with Hi = S (θi) the i-th atom, i = 1, . . . , N̄ .
As a matter of fact, the signal model (3) is inherently

sparse, as only a few pairs of elements for each vector
xl, l = 1, . . . , L, namely only those corresponding to the
angles θ̄1, . . . , θ̄K , are nonzero.

2Without loss of generality, in (2) the same steering vectors are con-
sidered for both polarizations. However, extensions to the case of different
array manifolds for the two polarimetric channels can also be conceived.

That said, by arranging in matrix form the data from all
the collected snapshots, the signal model can be conveniently
recast as

Y = HX +E, (5)

where
Y = [y1, . . . ,yL] ∈ C2N×L,

X = [x1, . . . ,xL] ∈ C2N̄×L,

E = [e1, . . . , eL] ∈ C2N×L.

(6)

According to (5), the received signal is a linear combination
of the columns of H , representing the atoms, where the
unknown weights X are the sources polarimetric complex
amplitudes.

Let us now partition the unknown polarimetric matrix
profile X as

X = [XT
1 , . . . ,X

T
N̄ ]T (7)

with Xi = [xi,1, . . . ,xi,L] ∈ C2×L the polarimetric signa-
ture corresponding to the i-th atom θi. It is clear that the
signal model (5) presents a direct pathway to retrieve the
DOAs as the atoms corresponding to the weights Xi with
the strongest norm. Otherwise stated, the space occupancy
map recovery process boils down to the determination of the
active atoms.

This motivates the design of sparse recovery methods to
estimate the unknown profile X so as to get the DOAs,
as a by-product. Notably, the estimation process pursued in
the following relies on either SLIM or SPICE paradigm.
In particular, while in the open literature the atoms in the
dictionary are vectors, in this work the signal model (5)
demands to consider a generalized atom in the form of
a matrix, with the dictionary given by the polarimetric
array manifold matrix H . However, it is also worth noting
that the coherence of such dictionary is the same as the
corresponding single-polarization counterpart3.

III. POLARIMETRIC SPARSE DOA ESTIMATION
In this section, the two approaches proposed to recover
the sources’ DOAs, i.e., POL-SLIM and POL-SPICE, are
developed along with a thoroughly discussion on their con-
vergence features.

A. POL-SLIM
Motivated by the need to exploit multiple snapshots of obser-
vations to gather real-time space-frequency electromagnetic
awareness, the block version of the SLIM algorithm [19],
referred to as Block-SLIM (B-SLIM), is proposed in [20].
Precisely, the approach in [20] resorts to the regularized
maximum likelihood estimation paradigm and includes a
specific term to promote the inherent sparsity of the overall
profile. Here, to account for the polarimetric characteristics
of the signals collected by the array (5), the polarimetric

3The proof is straightforward being the polarimetric atom structure
S (θi) = I2 ⊗ s(θi).
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version of the B-SLIM, referred to as POL-SLIM, is de-
veloped to obtain the 1-D spatial spectrum profile of the
sensed environment. Precisely, the procedure demands the
Maximum a Posteriori (MAP) estimate of X, η assuming

η ∼ U(ηL, ηU ) (8)

and

fX(X) ∼
N̄∏
i=1

e−
2
q (∥Xi∥2

F+ϵ)
q
2
, (9)

where 0 < q ≤ 1 rules the sparsity of X (a smaller value
of q shrinks toward a higher sparsity of the profile), ϵ > 0
is a smoothing factor [20], and ηL, ηU are respectively a
lower and an upper bound to the spectral level of the white
interference, with 0 < ηL ≤ ηU ; they could be exper-
imentally evaluated in quasi-ideal (isolated receivers) and
stressing (e.g., under peak operating temperature) conditions,
respectively [20].

This leads to the formulation of the following minimiza-
tion problem for block-sparse (with block size 2×L) signal
reconstruction4 [20]

P

{
min
X,η

2NL log(η) + η−1 ∥HX − Y ∥2F + f1(X)

s.t. ηL ≤ η ≤ ηU
, (10)

where

f1(X) =
2

q

N̄∑
i=1

(∥Xi∥2F + ϵ)
q
2 (11)

represents the penalty term promoting sparsity.
The optimization problem (10) may be effectively

handled through an iterative procedure based on the
block Majorization-Minimization (MM) method [32]–[34],
wherein the variables X and η are individually optimized by
solving (possibly surrogate) minimization problems. Hence,
at a given iteration of the algorithm, the optimization of each
variable block is performed keeping the other parameters
fixed, with their values set to the estimates computed at
the previous iteration. Formally, the n-th iteration of the
procedure demands solutions to the following optimization
problems:

1) Keeping η fixed, with its value set to η(n), the opti-
mization of (10) over the block X yields

min
X

∥HX − Y ∥2F
η(n)

+ f1(X). (12)

Exploiting the majorization [20, Appendix A]

f1(X) ≤ f1(X̄) + ∥DP
X̄X∥2F − ∥DP

X̄X̄∥2F , (13)

where

• X̄ is a problem parameter (set to X(n)),
• DP

X̄
= DX̄ ⊗ I2

4The sensing model and the corresponding sources state inference prob-
lem can be extended to accomplish a space-frequency map recovery task,
capitalizing also on polarimetric features so as to endow robustness to the
environmental state surveillance to the actual unknown sources polarization.

• DX̄ = diag
(
d̄1, . . . , d̄N̄

)
• d̄i =

(∥∥X̄i

∥∥2
F
+ ϵ
) q

4−
1
2

, i = 1, . . . , N̄ ,

a solution at the n-th iteration can be obtained by solv-
ing the corresponding surrogate minimization problem,
namely (see Appendix A for the detailed derivation)

X(n+1) = argmin
X

∥HX − Y ∥2F
η(n)

+ ∥DP
X̄X∥2F

=
(
H†H + η̄DP†

X̄
DP

X̄

)−1

H†Y .

(14)
2) Setting X to X(n+1), and η as the optimization

variable, the problem at hand becomes

min
η

2NL log(η) + η−1
∥∥HX(n+1) − Y

∥∥2
F

s.t. ηL ≤ η ≤ ηU
(15)

whose optimal solution is given by

η(n+1) = min (max (ηL, η̌) , ηU ) , (16)

where
η̌ =

1

2NL

∥∥∥HX(n+1) − Y
∥∥∥2
F

(17)

Finally, once the estimate X̂ of the matrix profile X is
obtained, the mean (over the two polarizations) Spatial
Power Spectrum (SPS) can be computed as

P̄i =
1

2L
∥X̂i∥2F , i = 1, . . . , N̄ (18)

and the DOAs, namely the spatial activation map, can be
retrieved from the atoms corresponding to the peaks of the
SPS.

As to the selection of the parameter q, several approaches
could be considered. One viable method is resorting to
a model order selector, such as the Bayesian Information
Criterion (BIC) to adaptively choose the appropriate value
from a discrete set of points [20], [35]. Alternatively, the
value of q can be tuned empirically possibly leveraging some
prior knowledge.

That said, an appropriate initialization of the unknowns is
also demanded. A wise approach is to employ the matched
filter output as the starting point, i.e.,

X
(0)
i = H†

i Y , i = 1, . . . , N̄ (19)

The overall procedure is summarized in Algorithm 1, where
the exit condition is set as

g
(
X(n−1), η(n−1)

)
− g

(
X(n), η(n)

)
≤ δ (20)

with δ > 0 a user-defined parameter and

g (X, η) = 2NL log(η)+η−1 ∥HX − Y ∥2F +f1(X) (21)

the objective function evaluated at (X, η).
Remarkably, by invoking [20, Proposition 3.1], two impor-

tant convergence properties of Algorithm 1 can be claimed:

1) the sequence of points (X(n), η(n)) generated by Al-
gorithm 1 decreases the objective function in P;
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Algorithm 1 POL-SLIM
Input: Y , H , ηL, ηU , ϵ > 0, δ > 0, and q ∈ [0, 1].
Initialization. Set n = 0, η(0) = ηL, and

X
(0)
i = H†

i Y , i = 1, . . . , N̄
repeat

1) n = n+ 1
2) DP

X̄
= DX̄ ⊗ I2 with

DX̄ = diag
(
∥X(n−1)

1 ∥2F + ϵ)
q−2
4 , . . . ,

∥X(n−1)

N̄
∥2F + ϵ)

q−2
4

)
3) X(n) =

(
H†H + η(n−1)DP†

X̄
DP

X̄

)−1

H†Y

4) η(n) = min (max (ηL, η̌) , ηU ) with
η̌ = 1

2NL

∥∥HX(n) − Y
∥∥2
F

until g
(
X(n−1), η(n−1)

)
− g

(
X(n), η(n)

)
≤ δ

Output. X̂ = X(n).

2) any cluster point of the sequence is a Karush-Kuhn-
Tucker (KKT) point of P .

B. POL-SPICE
In the previous subsection, the problem of estimating the
sparse DOAs has been addressed by directly recovering the
signal matrix X , an approach extensively explored in the
existing literature (e.g., see [36], [37]). However, under the
assumption of Gaussian and uncorrelated sources, a statisti-
cal learning formulation in terms of covariance matrix esti-
mation could also be pursued [21]. This tailored formulation
led (for the single-polarization case) to the development of a
practically robust (with respect to (w.r.t.) the sources model
assumption) estimator with desirable global convergence
properties [21]. For the above reasons, in this subsection
the polarimetric version of [21] is derived. To begin with,
let us express the data covariance matrix as5

R(P , η) = E
[
Y Y †] = HPH† + ηI2N = H̄P̄ H̄†, (22)

where

H̄ = [H, I2N ] ∈ C2N×(2N̄+2N), (23)

and

P̄ = diag(P , ηI2N ) ∈ R(2N̄+2N)×(2N̄+2N), (24)

with P = diag([P1, . . . ,PN̄ ]) = E[XX†] ∈ R2N̄×2N̄ and
Pi ∈ R2×2 the polarimetric covariance matrix of the i-th
source related to the i-th atom.

Using the SPICE criterion, the estimation problem at hand
could be addressed by minimizing the following covariance

5For ease of notation, the matrix R(P , η) is referred to in the following
as R.

fitting performance metric [21]
∥∥∥R− 1

2 (RSCM −R)
∥∥∥2
F

L < 2N∥∥∥R− 1
2 (RSCM −R)R

− 1
2

SCM

∥∥∥2
F

L ≥ 2N

, (25)

where RSCM = 1
LY Y † is the sample covariance matrix.

However, if (25) is adopted as objective function, then
two remarks are necessary. First, it involves distinction
between the cases L < 2N and L ≥ 2N like in [18]
for the single-polarization scenario. Second, the resulting
optimization problem can possibly be not well-posed for the
L = 1 (see Appendix B), which is a crucial scenario for
radar applications. Therefore, in order to work with only one
objective function which would guarantee that the covariance
matrix estimation problem is well-posed, regardless of the
number of snapshots (with L ≥ 1), along with a unifying
treatment, the Fast ML (FML) estimate of the covariance
matrix is employed in lieu of RSCM . Precisely, the FML
procedure [38], [39] provides the ML Estimation (MLE)
when R belongs to the uncertainty set of positive definite
matrices whose eigenvalues are greater than or equal to a
specific value, that is, under the assumption that a lower
bound ηL on the thermal noise power level is a-priori
available. Therefore, denoting by UΛU † the Eigenvalue
Decomposition (EVD) of RSCM and by λ̃v, v = 1, . . . , N
its eigenvalues, the FML estimate is given by

R̃ = UΛFMLU
†, (26)

where

ΛFML = diag(λ1,FML, . . . , λN,FML) (27)

with λv,FML = max(λ̃v, ηL), v = 1, . . . , N .
This technique ensures that all the eigenvalues of R̃ are

greater than or equal to the lower bound on the power
noise level. Notably, this estimation process is equivalent
to perform the projection (in terms of Frobenius norm) of
RSCM onto the set of the positive definite matrices greater
than or equal to ηLI [40].

Leveraging (26), the considered objective function is given
by ∥∥∥R− 1

2

(
R̃−R

)
R̃− 1

2

∥∥∥2
F

(28)

which, after algebraic manipulation, can be rewritten as

P1


min

P≻0,ηL≤η≤ηU

tr(R−1R̃) +

N̄∑
i=1

tr(H†
i R̃

−1HiPi)

+ η tr(R̃−1)

. (29)

Remarkably, P1 is jointly convex w.r.t. Pi and η; thus,
it can be solved via any Semi-Definite Program (SDP)
solver, with the drawback (due to the high dimensionality
of the problem) of a high computational complexity [41].
Therefore, an efficient and iterative optimization procedure
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is devised as follows. First of all, let us equivalently6

reformulate (29) as [21]

P2

 min
C,P≻0,ηL≤η≤ηU

f(C,P , η)

s.t. H̄C = R̃
1
2

(30)

with C ∈ C(2N̄+2N)×2N a slack variable and

f(C,P , η) = tr(C†P̄−1C) +

N̄∑
i=1

tr(H†
i R̃

−1HiPi)

+ η tr(R̃−1)

(31)

the objective function to optimize. Hence, resorting to the
Coordinate Descent (CD) framework, at the n-th iteration,
each block variable, i.e., C, P , and η, is optimized at a time
while keeping the others fixed. Notably, each sub-problem
can be solved in closed-form, yielding the following CD
updating rules (see Appendix C)

C(n) = P̄ (n)H̄†(R(n))−1R̃
1
2 , (32)

P (n) = diag([P
(n)
1 , . . . ,P

(n)

N̄
]), (33)

and
η(n) = min (max (ηL, η̌) , ηU ) , (34)

where

η̌ =

√√√√√√√
N̄+N∑
i=N̄+1

∥∥∥C(n)
i

∥∥∥2
F

tr(R̃−1)
(35)

and, for i = 1, . . . , N̄ ,

P
(n)
i = Zi

[
Z−1

i

(
H†

i R̃
−1Hi

)−1

Z−1
i

] 1
2

Zi, (36)

with
Zi =

(
C

(n)
i C

(n)†
i

) 1
2

. (37)

and Ci ∈ C2×2N obtained by extracting the (2i − 1)-th
and (2i)-th rows of C. The devised POL-SPICE proce-
dure is reported in Algorithm 2 whereby the polarimetric
covariance matrix is initialized as P

(0)
i = X̃iX̃

†
i with

X̃i = H†
i Y /

√
L, i = 1, . . . , N̄ , while the exit condition

is set as
∥P (n) − P (n−1)∥F

∥P (n−1)∥F
≤ δ. (38)

As a final remark, the convergence properties of Al-
gorithm 2 is analyzed. To begin with, observe that the
following conditions are satisfied

C1) f(C,P , η) is continuously differentiable over the fea-
sible set;

C2) each subproblem has an unique solution (which is
computed in closed-form);

C3) each block variable is optimized over a compact set
(see Appendix D);

6Denoting by Ĉ, P̂ , and η̂ the optimal solution to P2, it is straightfor-
ward to prove that (P̂ , η̂) is the optimal solution to P1 as well [21].

Algorithm 2 POL-SPICE

Input: Y , H , R̃−1, R̃
1
2 , ηL, ηU , and δ > 0.

Initialization. Set n = 0, η(0) = ηL, H̄ = [H, I2N ] and
P

(0)
i = X̃iX̃

†
i with X̃i = H†

i Y /
√
L, i =

1, . . . , N̄
repeat

1) n = n+ 1
2) P̄ (n) = diag(P (n−1), η(n−1)I2N )
3) R(n) = H̄P̄ (n)H̄†

4) C(n) = P̄ (n)H̄†(R(n))−1R̃
1
2

5) η(n) = min (max (ηL, η̌) , ηU ) with

η̌ =

√∑N̄+N

i=N̄+1
∥C(n)

i ∥2
F

tr(R̃−1)

6) P (n) = diag([P
(n)
1 , . . . ,P

(n)

N̄
]) where, for

i = 1, . . . , N̄

P
(n)
i = Zi

[
Z−1

i

(
H†

i R̃
−1Hi

)−1

Z−1
i

] 1
2

Zi,

with
Zi =

(
C

(n)
i C

(n)†
i

) 1
2

.

until ∥P (n) − P (n−1)∥F /∥P (n−1)∥F ≤ δ

Output. P̄i = ∥P (n)
i ∥F , i = 1, . . . , N̄ .

C4) f(C,P , η) is jointly convex over its block compo-
nents.

As a consequence, due to [33, Theorem 2], any limit point
of the iterates generated by Algorithm 2 is a stationary
point of P2 and, due to C4), it is also a global minimum
of f(C,P , η) [42].

IV. PERFORMANCE ANALYSIS
In order to evaluate the performance of the proposed esti-
mation procedures, two scenarios of practical relevance are
considered in the following. The former refers to a passive
sensing configuration, whereas the latter investigates the
performance of an active polarimetric radar operating in the
presence of multipath. In the simulations, unless otherwise
specified, the dictionary is built as a discretization of the
azimuth domain [−π/2, π/2] with N̄ = 1000 equally spaced
points.

A. PASSIVE SENSING SCENARIO
Let us consider a passive sensor equipped with N = 35
crossed dipoles, arranged in a standard Uniform Linear Array
(ULA) configuration, receiving data in both horizontal and
vertical polarizations. It is assumed that the system collects
L = 200 snapshots in the presence of K = 3 uncorrelated
Gaussian sources impinging on the sensor from azimuth
directions θ̄ = [−18.11,−14.50, 17.93]◦, which correspond
to the positions [400, 420, 600] of the atoms within the
dictionary. Precisely, at the l-th snapshot, the received signal
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FIGURE 1: RMSE vs SNR for L = 200, ρ = 0.5, and
σc = 0.9. (a) SLIM-based procedures vs counterparts. (b)
SPICE-based procedures vs counterparts.

is given by (1), with the emitters (independent of each other)
complex amplitudes on the two polarizations modeled as

x̄m,l ∼ CN(0, |α|2Mm), l = 1, . . . , L, m = 1, . . . ,K
(39)

where
Mm = PmΣj (40)

with P1 = 1, P2 = 9, P3 = 4, and

Σj =

[
1− ρ σc

√
ρ(1− ρ)

σc

√
ρ(1− ρ) ρ

]
, (41)

while ρ represents the polarimetric power imbalance coeffi-
cient, and σc is the polarimetric correlation coefficient.

The SNR is defined as

SNR =
|α|2

η

1

K
tr(P ), (42)

where η is assumed, without loss of generality, equal to 0
dB and

P = diag([P1, P2, P3]
T). (43)

The CRB for either unknown nonrandom sources or for
unknown Gaussian sources (referred to as CRBG), whose
derivations are provided in Appendix E, is reported as

0 5 10 15 20

SNR [dB]

0.2

0.4

0.6

0.8

1

P
d

POL-SLIM

POL-MUSIC

SLIM-H

SLIM-V

BF-H

BF-V

(a)

0 5 10 15 20

SNR [dB]

0.2

0.4

0.6

0.8

1

P
d

POL-SPICE

POL-MUSIC

SPICE-H

SPICE-V

BF-H

BF-V

(b)

FIGURE 2: Pd vs SNR for L = 200, ρ = 0.5, and σc = 0.9.
(a) SLIM-based procedures vs counterparts. (b) SPICE-based
procedures vs counterparts.

benchmark while the following counterparts are included for
comparison purposes:

• the CBF using a single-polarization subarray (either
working in H or V polarization) [3];

• the block-sparse single-polarization SLIM and SPICE
algorithms [18], [20], [21];

• an extension of the MUSIC algorithm (referred to in the
following as POL-MUSIC) for crossed-dipoles arrays
(see Appendix F).

The angular estimation performance of the considered
methods is assessed using two figures of merit, i.e.,

• the Root Mean Square Error (RMSE) computed as

R̂MSE =

√√√√ 1

MC

MC∑
l=1

1

K

K∑
m=1

|θ̂m,l − θ̄m|2, (44)

where θ̂m,l is the m-th source DOA estimate at the l-
th trial with MC = 1000 the number of Monte Carlo
trials;

• the probability of detecting the sources within 1.8
degrees from the true DOAs (denoted as Pd).

Furthermore, the POL-SLIM has been implemented as
a two-step procedure. First, a spatial spectrum is inferred
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FIGURE 3: Capon spectrum (45), normalized to the maximum, computed for ρ = 0.5, σc = 0.9, and SNR = 7 dB, using
the single-polarization covariance matrix estimated by either POL-SLIM or POL-SPICE method. Figs. (a) and (b) report
the spectra in H polarization, whereas the curves in Figs. (c) and (d) refer to V polarization.

adopting q = 1; then, the estimated sparse profile is used to
initialize a second POL-SLIM process with q = 0.5, aimed
at further promoting the sparsity of the results and refining
the DOA inference process.

The simulation results, reported in Figs. 1 and 2 for ρ =
0.5 and σc = 0.9, show that POL-SLIM and POL-SPICE
outperform the corresponding single-polarization algorithms,
the CBF as well as POL-MUSIC, in terms of both RMSE
and Pd. Precisely, for SNR = 5 dB, the devised techniques
are capable of providing RMSE values in the order of 1
degree, with an appreciable improvement (of approximately
2 degrees) compared to their single-polarization counterparts.
Moreover, they approach the CRB at lower SNR values than
all the other considered estimators. Under low/medium SNR
regime (and in particular for SNR values smaller than 15 dB),
POL-MUSIC achieves lower estimation performance than
the counterparts (even those working in single polarization).
However, in the high SNR regime, it is able to attain the
CRB as well as Pd = 1.

Additionally, Fig. 2 highlights that POL-SLIM and POL-
SPICE are capable of providing higher Pd than the other
methods. In particular, at Pd = 0.9, there is a performance
gain of approximately 1 dB for POL-SLIM and 2 dB
for POL-SPICE when compared to the single-polarization
counterparts.

Notably, for the employed simulation parameters, a direct
comparison between the two polarimetric methods reveals
that, for a given SNR, POL-SPICE consistently provides
more accurate DOA estimates as well as higher Pd values

than POL-SLIM. The observed superiority is likely a conse-
quence of the fact that POL-SPICE operates under a model
matching condition of the procedure, as the analyzed case
is characterized by the presence of uncorrelated Gaussian
sources.

Aimed at providing a further insight into the effectiveness
of the developed approaches, Figs. 3 and 4 report, for a
specific trial instance and for SNR=7 dB and SNR=15 dB,
respectively, the estimated single-polarization spectra x̌(P ),
normalized to its maximum. Precisely, the i-th element of
x̌(P ), corresponding to the spectrum at the angle θi, is
estimated by the Capon formula

x̌(P )(i) =
1

L

L∑
l=1

∣∣∣∣∣ s(θi)†Ř−1
P y

(P)
l

s(θi)†Ř
−1
P s(θi)

∣∣∣∣∣ , i = 1, . . . , N̄

P ∈ {H,V }
(45)

where, ŘP = ĀP̄ (P )Ā† is the estimated covariance matrix
at the given polarization P , with Ā = [s(θ1), . . . , s(θN̄ ), IN ]
the extended single-polarization dictionary and P̄ (P ) the
corresponding power estimated by either POL-SLIM or
POL-SPICE. In the figures, the estimated profile is compared
with the true one, i.e., the Capon spectrum (45) computed
using the true single-polarization covariance matrices. The
results highlight that the estimated profiles achieve a good
match with the theoretical counterparts at both SNR equal
to 7 dB and 15 dB.

Figs. 5 and 6 report the RMSE and Pd versus SNR
curves, respectively, for the case of ρ = 0.6 and σc = 0.4.
Unlike the previous case study, characterized by equal signal
power distribution among the two polarimetric channels, this
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FIGURE 4: Capon spectrum (45), normalized to the maximum, computed for ρ = 0.5, σc = 0.9, and SNR = 15 dB, using
the single-polarization covariance matrix estimated by either POL-SLIM or POL-SPICE method. Figs. (a) and (b) report
the spectra in H polarization, whereas the curves in Figs. (c) and (d) refer to V polarization.

scenario reveals a noticeable performance gap between the
performance of single polarization methods operating on H
and V polarization data. In fact, at SNR = 5 dB, it is possible
to observe a RMSE difference of about 1.5 degrees between
SLIM-H and SLIM-V and similarly of 2 degrees between
SPICE-H and SPICE-V. On the other hand, the proposed
polarimetric estimation strategies yield the best performance
among all the considered counterparts, thus demonstrating
their effectiveness in exploiting the polarimetric characteris-
tics of the received signals. As a consequence, such methods
endow robustness to the environmental awareness process
against possible power mismatches and/or correlation among
the polarimetric channels. It is worth noting that, in a typical
passive sensing scenario, the received power distribution
among the two polarization channels is generally unknown;
therefore, single-polarization methods using data from the
weak polarimetric channel may experience a considerable
performance degradation. In contrast, POL-SLIM and POL-
SPICE consistently maintain satisfactory performance with-
out requiring prior information about signal power distribu-
tion on the two polarimetric channels.

Finally, Figs. 7 and 8 illustrate the results, in terms of
RMSE vs ρ and Pd vs ρ, respectively, achieved by the
SLIM-based and SPICE-based procedures for SNR = 10 dB,
L = 200, and σc = 0.9. Inspection of the curves highlights
that when ρ = 0, i.e., the returns on the H polarization
are dominant, the methods that exploit the data collected
on the H channel are capable of providing Pd close to
1 and estimation accuracy in the order of 0.5◦. On the

other hand, the single polarization methods employing data
obtained on the V channel fail to accomplish the detection
task (with Pd approximately 0). However, the performance
of such data processors employing H (V ) polarization data
is degraded (improved) as ρ increases. Moreover, regardless
of the employed polarimetric channel, all the single-pol
methods achieve similar results (in terms of comparing each
H-pol method with the corresponding V -pol counterpart)
in the case of ρ = 0.5. Notably, the proposed POL-SLIM
and POL-SPICE consistently exhibit the best performance
among all the reported methods, regardless of the value of
ρ. This behavior further corroborates the advantage of the
devised techniques toward an effective exploitation of the
polarimetric domain and thus providing robust performance
with respect to any unknown polarimetric power imbalance.

B. RADAR SCENARIO
In this subsection, a typical radar application is considered,
wherein a radar aims at estimating the elevation of a prospec-
tive target in the presence of a vertical multipath. In this
context, considering the radar transmitting a single pulse
(i.e., L = 1) on polarization H and assuming a rather smooth
reflection surface [43], at the listening stage it receives two
useful signal contributions on each polarization channel,
namely the target echo from the direct path as well as the
multipath [1], as shown in Fig. 9 (with the array elements
arranged along the y-axis), where

• θ̄d is target elevation;
• θ̄s is reflection angle;
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FIGURE 5: RMSE vs SNR for L = 200, ρ = 0.6, and
σc = 0.4. (a) SLIM-based procedures vs counterparts. (b)
SPICE-based procedures vs counterparts.

• Rd = [R2+(ht−hr)
2]

1
2 and Rs = [R2+(ht+hr)

2]
1
2

are the direct (slant range) and reflected path distance,
respectively;

• ht and hr are the receiver and the target height,
respectively,

with R the ground distance between the target and the
receiver. In this regard, the following relationship holds
true [43]

θ̄s = − arctan

(
tan(θ̄d) +

2hr

R

)
. (46)

Within the aforementioned geometry, the received signal
can be modeled as

y =
[
y(H)T,y(V)T

]T
=
[
S(θ̄d),S(θ̄s)

] [
xH , xV , ρHxHe−jϕ, ρV xV e

−jϕ
]T

+ e ∈ C2N ,
(47)

where

• x = [xH , xV ]
T ∈ C2 is the polarimetric complex

target echo amplitude, modeled as a zero-mean complex
circular Gaussian random vector with covariance matrix
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FIGURE 6: Pd vs SNR for L = 200, ρ = 0.6, and σc = 0.4.
(a) SLIM-based procedures vs counterparts. (b) SPICE-based
procedures vs counterparts.

γMT , whereas MT is given by [44]

MT = σP

[
1 ρP

√
γP

ρ⋆P
√
γP γP

]
(48)

and the values of σP , ρP , and γP , namely the target
polarimetric parameters, are reported in Table 1;

• ρH and ρV are the ground reflection coefficients in
polarization H and V, respectively;

• ϕ = 2π∆R/λ is the phase shift induced by the addi-
tional path (i.e., ∆R) traveled by the reflected signal
w.r.t. the direct one;

• e is a zero-mean circularly symmetric Gaussian random
vector with mean square value η, independent from x,

whereas the SNR is modeled as SNR = γ/η.
In the considered case study characterized by an approxi-

mately flat surface, the ground reflection coefficients can be
modeled according to [43] as

ρH =
sin
(
−θ̄s

)
−
√

ε−
(
cos
(
θ̄s
))2

sin
(
−θ̄s

)
+

√
ε−

(
cos
(
θ̄s
))2

ρV =
ε sin

(
−θ̄s

)
−
√

ε−
(
cos
(
θ̄s
))2

ε sin
(
−θ̄s

)
+

√
ε−

(
cos
(
θ̄s
))2

(49)
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FIGURE 7: RMSE vs ρ for SNR = 10 dB, L = 200, and
σc = 0.9. (a) SLIM-based procedures vs counterparts. (b)
SPICE-based procedures vs counterparts.

where
ε = εr − j60λσe (50)

is the complex permittivity, with εr and σe the relative
permittivity and the surface conductivity, respectively.

The simulation parameters are provided in Table 1
whereby, for the ground model, it is assumed a typical
ordinary soil surface [43]. In particular, θ̄d = 3◦ and
θ̄s = −3.76◦, with an angular separation between the two
paths of 6.76◦.

In this case study, the RMSE of the target DOA θ̄d is
considered as a figure of merit, i.e.,

R̂MSE =

√√√√ 1

MC

MC∑
l=1

|θ̂l − θ̄d|2, (51)

where θ̂l is the estimated target DOA (obtained as the peak
of the spatial spectra obtained by the considered SLIM-based
and SPICE-based procedures) at the l-th trial. Moreover, it is
worth noting that, since the modulus of the reflection coef-
ficients are |ρH | = 0.97 and |ρV | = 0.58, in V polarization
the direct return is significantly stronger than the reflected
return, whereas in H polarization the two contributions have
similar amplitudes.
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FIGURE 8: Pd vs ρ for SNR = 10 dB, L = 200, and σc =
0.9. (a) SLIM-based procedures vs counterparts. (b) SPICE-
based procedures vs counterparts.
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FIGURE 9: Setup geometry for the simulation scenario
considered in subsection B.

The estimation performance for the aforementioned radar
scenario is reported in Fig. 10 in terms of RMSE ver-
sus SNR. Inspection of the curves reveals that, under a
low/medium SNR regime (SNR < 10 dB), SLIM and SPICE
methods perform better in H polarization than the V one,
as the returns in the former channel are stronger than in
the latter (recall that γP = 0.1). Conversely, at high SNR,
it is more advantageous to employ the data collected in V
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TABLE 1: Simulation parameters for subsection B.

Parameter Value Parameter Value
f 145 MHz R 30 km
hr 200 m ht 1 km
θ̄d 3◦ θ̄s −3.76◦

εr 15 σe 0.005
σP 58.5 γP 0.1
ρP 0.885 η 0 dB
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FIGURE 10: RMSE vs SNR for the radar scenario with L =
1. (a) SLIM-based procedures vs counterparts. (b) SPICE-
based procedures vs counterparts.

polarization to better distinguish the two returns. Indeed, in
H polarization, being |ρH |=0.97, the two returns (direct and
multipath) have similar values, whereas in V polarization,
being |ρV | = 0.58, the echo from the direct path is
much stronger than the multipath one, making the actual
target DOA estimation process easier. However, the POL-
SPICE and POL-SLIM methods provide substantially better
performance regardless of the SNR value, with a notice-
able advantage of the POL-SPICE over the counterparts,
corroborating again its effectiveness also in this challenging
scenario characterized by a single data snapshot and two
closely-located and correlated returns (direct contribution
and multipath).

V. CONCLUSION
In this paper, two iterative algorithms, POL-SLIM and
POL-SPICE, have been proposed for DOA estimation in a
sensor array with crossed dipole receive pairs. The devised
estimators can be framed as extensions of the conventional
sparse methods, i.e., SLIM and SPICE, to the polarimetric
domain. Toward this goal, a tailored polarimetric dictionary,
composed of generalized matrix atoms (given by the po-
larimetric array manifolds), has been considered to model
the sparse signal. Therefore, bespoke solutions to the opti-
mization problems involved in the SLIM and SPICE-based
estimation processes have been derived (also capitalizing on
prior knowledge on the noise variance), which, together with
the sparse model formulation, represent the main technical
contributions of this paper. Hence, by leveraging the sparsity
of the signal model and capitalizing on its polarimetric
characteristic, POL-SLIM and POL-SPICE proved able to
yield high-resolution DOA estimates. Precisely, their RMSE
performance has been numerically assessed in several practi-
cal scenarios, including a typical passive sensing case and a
radar operating in a multipath context. Moreover, comparison
with the CRB and single-polarization counterparts available
in the open literature has also been thoroughly considered.
The results have clearly highlighted the effectiveness of
the synthesized estimation architectures and their advantages
over the counterparts.

Future developments may include the application of the
devised framework to the case of different subarrays in H
and V polarizations, in terms of number of elements and/or
antennas characteristics, i.e., having distinct array manifold
expressions. Other possible extensions may be aimed at
taking into account, at the design stage, the presence of non-
idealities, e.g., due to mutual coupling effects, that could
lead to considerable performance loss if not adequately
compensated [45] as well as off grid sources returns. Finally,
it deserves further analysis the limiting DOA estimation
performance using crossed-dipoles array via the Ziv-Zakai
bound [46] in the polarimetric domain.
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APPENDIX
A. SOLUTION TO PROBLEM IN (14)
Let us write the objective function in (14) as

∥HX − Y ∥2F
η(n)

+ ∥DP
X̄X∥2F

=tr

(
(HX − Y )†(HX − Y )

η(n)

)
+ tr

(
X†DP†

X̄
DP

X̄X
)

=tr

(
X†H†HX −X†H†Y − Y †HX + Y †Y

η(n)

)
+ tr

(
X†DP†

X̄
DP

X̄X
)

=tr

(
X†

(
H†H

η(n)
+DP†

X̄
DP

X̄

)
X

)
− tr

(
X†H†Y − Y †HX

η(n)

)
+K1

(52)
with K1 functionally independent of X . Now, computing
and nulling the gradient of (52) w.r.t. X yields(

H†H

η(n)
+DP†

X̄
DP

X̄

)
X − H†Y

η(n)
= 0. (53)

Thus, a stationary point of (14) is given by

X̂ =
(
H†H + η(n)DP†

X̄
DP

X̄

)−1

H†Y . (54)

B. PROOF THAT FOR L = 1 THE SPICE CRITERION (25)
CAN POSSIBLY YIELD TO A ILL-POSED OPTIMIZATION
PROBLEM
To begin with, let us notice that the SPICE fitting crite-
rion (25), for the case of L = 1, can be equivalently written
as ∥∥∥R− 1

2 (RSCM −R)
∥∥∥2
F

= tr((RSCM −R)R−1 (RSCM −R))

= tr(RSCMR−1RSCM ) + tr(R)− 2 tr(RSCM ).

(55)

In this case the sample covariance can be rewritten as
RSCM = aa†, so (55) is given by

tr(aa†R−1aa†) + tr(R)− 2∥a∥2

= ∥a∥2a†R−1a+ tr(R)

≥ ∥a∥4λmin(R
−1) +

N∑
i=1

λi(R)

= ∥a∥4 1

λmax(R)
+ λmax(R) +

N∑
i=2

λi(R)

≥ ∥a∥4 1√
∥a∥4

+
√

∥a∥4 +
N∑
i=2

λi(R)

≥ 2∥a∥2,

(56)

whereby the infimum 2∥a∥2 can be only achieved when the
covariance matrix is semidefinite, i.e.,

R = aa† + lim
n→∞

1

n
I ⪰ 0, (57)

which means that the unconstrained optimal solution lies on
the boundaries of the feasible set.

C. POL-SPICE updating rules
In the following, the optimization of the objective function
in (30) w.r.t. C is studied. Then, fixing C, the estimates of
P and η are derived.

Assuming P and η fixed parameters, by denoting P̄ =
diag(P , ηI2N ), the solution for C is given by [18]

Ĉ = P̄ H̄†(H̄P̄ H̄†)−1R̃
1
2 . (58)

Let us now analyze the optimization problem when C is
held fixed, with its value set to Ĉ. To begin with, it is worth
noting that

tr(Ĉ†P̄−1Ĉ) =

N̄∑
i=1

tr(Ĉ†
iP

−1
i Ĉi) +

1

η

N̄+N∑
i=N̄+1

∥Ĉi∥2F .

(59)
Thus, the optimization problem (30) w.r.t. P and η is
tantamount to considering

min
P≻0,η>0

h(P , η) (60)

with

h(P , η) =

N̄∑
i=1

tr(Ĉ†
iP

−1
i Ĉi) +

1

η

N̄+N∑
i=N̄+1

∥Ĉi∥2F

+

N̄∑
i=1

tr(H†
i R̃

−1HiPi) + η tr(R̃−1)

(61)

Therefore, the optimal solution w.r.t. P = [P1, . . . ,PN̄ ] is
obtained as the point satisfying

∇h(P , η)

∇Pi
= 0 (62)

leading to the expressions

P̂−1
i ĈiĈ

†
i P̂

−1
i = H†

i R̃
−1Hi, i = 1, . . . , N̄ . (63)

By defining Zi = (ĈiĈ
†
i )

1
2 , (63) can be equivalently written

as
ZiP̂

−1
i ZiZiP̂

−1
i Zi = ZiH

†
i R̃

−1HiZi (64)

which, by letting Qi = Z−1
i P̂iZ

−1
i , yields

Q−2
i = ZiH

†
i R̃

−1HiZi (65)

that leads to

Qi = Z−1
i P̂iZ

−1
i =

[
Z−1

i

(
H†

i R̃
−1Hi

)−1

Z−1
i

] 1
2

.

(66)
Therefore

P̂i = Zi

[
Z−1

i

(
H†

i R̃
−1Hi

)−1

Z−1
i

] 1
2

Zi, i = 1, . . . , N̄ ,

(67)
Finally, regarding η, it is straightforward to prove that

η̂ = min (max (ηL, η̌) , ηU ) , (68)
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where

η̌ =

√√√√√√√
N̄+N∑
i=N̄+1

∥∥∥C(n)
i

∥∥∥2
F

tr(R̃−1)
(69)

is the corresponding unconstrained estimate, obtained by
computing and nulling the partial derivative of the objective
function in (60) w.r.t. η.

D. PROOF THAT EACH BLOCK VARIABLE OF P2 IS
OPTIMIZED OVER A COMPACT CONVEX SET
In the following, the feasible sets, related to each block
variable optimization in Algorithm 2, are proven to be
compact convex sets. To begin with, notice that due to
considered prior knowledge on the white noise power, η is
bounded by lower and upper bounds, i.e., so η is optimized
over S1 = [ηL, ηU ]. Then, being H†

i R̃
−1Hi ≻ 0, it follows

that

• f(C,P , η) diverges for ∥Pi∥F → ∞, so ∃ζP ∈ R+

such that the optimization of Pi can be performed
focusing on the non-empty compact and convex set
Si2 = {∥Pi∥F ≤ ζP } , i = 1, . . . , N̄ ;

• f(C,P , η) diverges for ∥C∥F → ∞ being

f(C,P , η) ≥ tr(C†P̄−1C) ≥ ∥C∥2Fλmax(P̄ ), (70)

with λmax(P̄ ) ≤ max(ζP , ηU ), so ∃ζC ∈ R+ such
that the search space can be restricted to the non-empty
compact and convex set S3 = {∥C∥F } ≤ ζC .

Therefore, the optimization process can be focused on the
non-empty compact and convex set given by S1 × S2 × S3,
where S2 = S12 × S22 × · · · × SN̄2 .

E. CRB
Aimed at a proper understanding of the statistical efficiency
of the devised signal processing strategies, in the following,
the CRB for sources DOA estimation is devised, which
represents a lower bound on the accuracy of any unbiased
estimators [3].

1) Unknown nonrandom sources
With reference to the signal model (1), assuming the sources
amplitude be unknown nonrandom complex terms, the vector
whose entries are the unknown parameters is given by

θ = [θ̄T,FT, η]T ∈ RK+4KL+1 (71)

with

θ̄ = [θ̄1, . . . , θ̄K ]T ∈ RK (72)

and

F = [FT
1 , . . . ,FT

L ] ∈ R4KL (73)

where, for l = 1, . . . , L,

Fl =
[
Re{x̄(H)

1,l },Im{x̄(H)
1,l },Re{x̄(V)

1,l },Im{x̄(V)
1,l }, . . . ,

Re{x̄(H)
K,l},Im{x̄(H)

K,l},Re{x̄(V)
K,l},Im{x̄(V)

K,l}
]T

∈ R4K
.

(74)
Therefore, the CRB on θ̄ is [3]

CRBθ =

(
2

η

L∑
l=1

Re{Z†
l D

†P o
SDZl}

)−1

(75)

where

Zl = diag(x̄1,l, x̄2,l, . . . , x̄K,l) ∈ C2K×K (76)

D = [Ṡ(θ̄1), Ṡ(θ̄2), . . . , Ṡ(θ̄K)] ∈ C2N×2K (77)

P o
S = I − PS ∈ C2N×2N (78)

with
PS = S̃

(
S̃†S̃

)−1

S̃† ∈ C2N×2N (79)

S̃ =
[
S(θ̄1),S(θ̄2), . . . ,S(θ̄K)

]
∈ C2N×2K (80)

while

Ṡ(θ̄m) =

[
ṡ(θ̄m) 0
0 ṡ(θ̄m)

]
= I2 ⊗ ṡ(θ̄m) ∈ C2N×2 (81)

with ṡ(θ̄m) = ∂s(θ̄m)
∂θm

, which, for a ULA, becomes

ṡ(θ̄m) = s(θ̄m)⊙ [0, jπ, . . . , jπ(N − 1)]T. (82)

Finally, the mean CRB on DOA estimation (averaging (75)
over the number of sources) is computed as

CRB =
1

K
tr (CRBθ) . (83)

2) Unknown Gaussian sources
Under the assumption of Gaussian sources, the unknown
spectral matrix is

R̃ =

K∑
m=1

S(θ̄m)P̃iS(θ̄m) + ηI = S̃P̃ S̃† + ηI2N (84)

where S̃ = [S(θ̄1), . . . ,S(θ̄K)] ∈ C2N×2K

and P̃ = diag([P̃1, . . . , P̃K ]) ∈ R2K×2K with

P̃i =

[
Pi,H Pi,HV

Pi,HV Pi,V

]
= E[x̄m,1x̄

†
m,1] = · · · =

E[x̄m,Lx̄
†
m,L] ∈ R2×2 the polarimetric covariance matrix

of the i-th source. Therefore, with reference to (84), the
unknown vector of parameters is

θ = [θ̄T, P̄T, η]T ∈ R4K+1 (85)

with
θ̄ = [θ̄1, . . . , θ̄K ]T ∈ RK (86)

and
P̄ = [P1,H , P1,HV , P1,V , P2,H , P2,HV , P2,V ,

. . . , PK,H , PK,HV , PK,V ] ∈ R3K .
(87)
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Under this scenario, the mean CRB on DOA estimation
is computed as

CRB =
1

K
tr (CRBθ,G) (88)

where the CRB for θ̄ estimation is given by [3]

CRBθ,G =
η

2L

(
Re{[P̃ S̃†R̃−1S̃P̃ ]⊙ [D̃†P⊥

S̃
D̃]T}

)−1

(89)
with

D̃ = [Ṡ(θ̄1), . . . , Ṡ(θ̄K)] ∈ C2N×2K (90)

and
P⊥

S̃
= I2N − S̃

(
S̃†S̃

)−1

S̃† ∈ C2N×2N (91)

F. Implementation of Polarimetric MUSIC
This subsection describes the implementation of a polarimet-
ric version of the MUSIC algorithm.

1) Compute the sample covariance matrix RSCM =
1
LY Y †;

2) Perform the eigendecomposition of RSCM as

RSCM = UΛUH , (92)

where Λ is the diagonal matrix of eigenvalues arranged
in descending order and U is the matrix of the corre-
sponding eigenvectors;

3) Partition U as

U =
[
Usignal Unoise

]
, (93)

where Usignal contains the eigenvectors corresponding
to the 2K largest eigenvalues (assuming K sources),
and Unoise contains the remaining 2(N−K) eigenvec-
tors spanning the noise subspace;

4) Evaluate the polarimetric spatial power spectrum for
the angle θi as

SPS(θi) =
1

∥U †
noiseHi∥2F

; (94)

5) Estimate the DOAs as the angles θi corresponding to
the K highest peaks in the SPS.
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