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Abstract—This work considers Maximum Likelihood Estima-
tion (MLE) of a Toeplitz structured covariance matrix. In this
regard, an equivalent reformulation of the MLE problem is
introduced, and two iterative algorithms are proposed for the op-
timization of the equivalent statistical learning framework. Both
strategies are based on the Majorization Minimization (MM)
paradigm and hence enjoy nice properties such as monotonicity
and ensured convergence to a stationary point of the equivalent
MLE problem. The proposed framework is also extended to deal
with MLE of other practically relevant covariance structures,
namely, the banded Toeplitz, block Toeplitz, and Toeplitz-block-
Toeplitz. Through numerical simulations, it is shown that the new
methods provide excellent performance levels in terms of both
mean square estimation error (which is very close to the bench-
mark Cramér-Rao Bound (CRB)) and signal-to-interference-
plus-noise ratio, especially in comparison with state-of-the art
strategies. Moreover, the estimation task is accomplished with
a remarkable reduction in computational complexity compared
with a standard approach relying on a Semidefinite Programming
(SDP) solver.

Index terms— Toeplitz covariance matrix, Maximum like-
lihood estimation, Banded Toeplitz, Block-Toeplitz, Toeplitz-
block-Toeplitz, Adaptive radar signal processing, Array pro-
cessing, Spectral estimation

I. INTRODUCTION

Estimation of the data covariance matrix has diverse applica-
tions in radar signal processing, such as direction of arrival es-
timation, target detection, adaptive beamforming, and sidelobe
canceller design [1]–[4]. In these situations, the interference
covariance matrix is estimated from the secondary/training
data, which are assumed target-free and collected from spatial
and/or temporal returns corresponding to range cells close
to the one of interest. When the data follows a complex,
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zero-mean, circular Gaussian distribution, it is well known
that the Sample Covariance Matrix (SCM) is the unstructured
Maximum Likelihood (ML) estimate of the covariance matrix.
However, in the presence of a small number of training data
and/or when mismatches in training data spectral properties
occur, it does not always represent a reliable choice for
the covariance inference [5,6]. A well-known strategy, often
discussed in the open literature to improve the performance of
a covariance estimator, relies on the incorporation of some a
priori knowledge about its underlying structure. For instance,
in some radar/sensing applications, it is customary to suppose
that data come from a stationary Gaussian random process,
leading to a Hermitian symmetric Toeplitz Structured Co-
variance (TSC) matrix. Leveraging this information, one can
obtain (under the design conditions) a more reliable estimator
than the SCM [7]. Aside radar applications, the estimation
of a TSC matrix is encountered in speech recognition [8],
spectral estimation [2], gridless compressive sensing [9]–[11],
and hyperspectral imaging [12].

So far, several algorithms have been proposed for estimating
a TSC matrix. Let us first discuss those for ML Estimation
(MLE). According to the Caratheodory parametrization [2,13,
14] a Toeplitz covariance matrix T ∈ Hm×m can always be
decomposed as1

T = AP̃AH ; [P̃]k,k ≥ 0 , (1)

where

A =


1 · · · 1

ejω1 · · · ejωr

...
. . .

...
ej(m−1)ω1 · · · ej(m−1)ωr

 , P̃ =

p̃1 . . . 0
...

. . .
...

0 . . . p̃r

,
(2)

ωi and p̃i, i = 1, 2, · · · , r ≤ m, denote some angular
frequencies and their corresponding powers while r indicates
the rank of T. Capitalizing on this parametrization, Circulant
Embedding (CE) of Toeplitz matrix ([16]–[18]) can be used
to compute approximately the ML estimate of T. According
to CE, a Positive SemiDefinite (PSD) m×m Toeplitz matrix
is modeled as

T = F̃PF̃H ; P = diag([p1, p2, · · · , pL]), pk ≥ 0, (3)

1Notice that the parametrization is unique provided that the rank of T <
m [15].
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where F̃ = [Im×m 0m×L−m]F, Im×m is the identity matrix
of size m×m, 0m×L−m is the zero matrix of size m×L−m,
F is the normalized Discrete Fourier Transform (DFT) matrix
of size L ≥ 2m − 1 and P is a diagonal matrix of size
L × L with diagonal elements pk ≥ 0. Therefore, the matrix
T is completely parameterized by the diagonal matrix P.
Although estimating the Toeplitz covariance matrix using CE
seems attractive, the representation in (3) is valid only for a
subset of Toeplitz covariance matrices. This can be intuitively
justified because the Caratheodory parametrization in (1) does
not give restrictions on the frequencies spacing, while the CE
in (3) strictly requires the frequencies to lie on the Fourier
grid. Hence, for some Toeplitz matrices, the parametrization
in (3) is only approximated. Based on CE, [19] and [20]
have proposed an iterative algorithm based on Expectation-
Maximization (EM) for MLE of T. By modifying the M step
in the EM procedure, in [21] the technique has been extended
to deal with the banded Toeplitz covariance case. In [22], still
leveraging CE framework, a Majorization Minimization (MM)
based optimization, with faster convergence than the EM of
[19] and [20], has been introduced. In [23] a closed-form
estimator has been designed by invoking the extended invari-
ance principle to deal with the Toeplitz constraint. In [24], an
efficient approximation of a Toeplitz covariance matrix under a
rank constraint has been handled forcing the eigenvectors to be
the same as those of the SCM whereas the Toeplitz constraint
has been explicitly imposed while estimating the eigenvalues.
Finally, some attempts to handle the MLE problem without
frequencies restrictions have been pursued in [25,26]. Other
than the MLE, several other alternative paradigms have been
considered for the problem at hand. Recently, in [27] the
Toeplitz structure is forced together with a condition number
constraint via SCM projection onto a suitable constraint set.
Other geometric based approaches for the TSC estimation have
also been proposed in [28,29].

In this work2, two iterative algorithms referred to as
Alternating Projection Based TOeplitz Covariance Matrix
Estimation 1 (ATOM1) and ATOM2 are devised leveraging
a suitable reformulation of the MLE problem and the MM
framework. Both ATOM1 and ATOM2 involve the construc-
tion of a bespoke surrogate function (s.f.) along with its op-
timization. Specifically, the two procedures construct distinct
s.f. and therefore solve different surrogate minimization prob-
lems. While ATOM1 addresses the surrogate minimization
problem using the Alternating Direction Method of Multipliers
(ADMM), ATOM2 handles it either via alternating projection
or Dykstra’s algorithm. However, both the procedures directly
estimate the Toeplitz covariance matrix without forcing a
reparametrization via the CE. Moreover, ATOM2 is also
extended to include other constraints, such as banded Toeplitz,
block-Toeplitz, and Toeplitz-block-Toeplitz structures. This is
among the most valuable contributions of this study since it
addresses, via a unified framework, a quite general problem
which notably enables the incorporation of convex constraints
(in addition to the Toeplitz structure). The major contributions

2A preliminary version of the methodology introduced here was presented
in [30].

of this paper can be summarized as follows:
1) Two iterative algorithms ATOM1 and ATOM2 are pro-

posed based on the MM framework to address MLE
of a Toeplitz covariance matrix. Their computational
complexities are thoroughly discussed. Also, the con-
vergence of the procedures to a stationary point of the
equivalent MLE problem is established.

2) The extensions of ATOM2 to handle additional covari-
ance structures, such as banded Toeplitz, block-Toeplitz,
and Toeplitz-block-Toeplitz, which is the main achieve-
ment of this study, being ATOM2 capable of including
additional (other than Toeplitz) constraints (modeling
convex sets) in the estimation process with convergence
guarantees and a reasonable computational demand.

3) The derivation of the Cramér-Rao Bound (CRB) for the
estimation of Toeplitz, banded Toeplitz, and Toeplitz-
block-Toeplitz covariance matrices are provided.

4) Performance comparisons of the proposed algorithms
(included their extensions) with some state-of-the-art
procedures via numerical simulations are illustrated,
using the Mean Square Error (MSE) and the Signal-to-
Interference-plus-Noise Ratio (SINR) (for case studies
related to radar applications) as performance metrics.

The organization of the paper is as follows. The MLE prob-
lem of Toeplitz covariance matrix for complex, zero-mean,
circular Gaussian observations is formulated in Section II. In
Section III, ATOM1 and ATOM2 algorithms are proposed,
along with a discussion on their computational complexity
and implementation aspects. Also, their convergence prop-
erties are studied. At the end of this section, the extension
of ATOM2 to handle additional constraints along with the
Toeplitz requirement is discussed too. In Section IV, the CRB
for the estimation of Toeplitz, banded Toeplitz, and Toeplitz-
block-Toeplitz covariance matrices is computed. In Section V,
the proposed algorithms are compared with some state-of-the-
art techniques, and finally, concluding remarks are given in
Section VI.

A. Notation

Throughout the paper, bold capital and bold small letter
denote matrix and vector, respectively. A scalar is represented
by a small letter. The value taken by an optimization vector
x at the tth iteration is denoted by xt. Furthermore, R is
used to denote the set of real numbers, Rm and Cm are used
to represent the sets of m dimensional vectors of real and
complex numbers, respectively, whereas Rm×m, Cm×m, and
Hm×m are used to represent the sets of m×m matrices of real
numbers, m ×m matrices of complex numbers, and m ×m
Hermitian matrices, respectively. Superscripts (·)T , (·)∗, (·)H ,
and (·)−1 indicate the transpose, complex conjugate, complex
conjugate transpose, and inverse, respectively. For any x ∈ R,
⌈x⌉ returns the least integer greater than or equal to x. The
trace and the determinant of a matrix X are denoted by Tr(X)
and |X|, respectively. The notation [X]i is used to represent
the ith column of the matrix X . The symbol ⊗ indicates
the Kronecker product while the gradient of a function f is
denoted by ∇f . The symbol ⪰ (and its strict form ≻) is used to
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denote the generalized matrix inequality: for any X ∈ Hm×m,
X ⪰ 0 means that X is a PSD matrix (X ≻ 0 for positive
definiteness). Besides, for any X ∈ Hm×m, eig(X) is the
vector collecting the eigenvalues of X (sorted in increasing
order). The Euclidean norm of the vector x is denoted by
∥x∥2, |x| indicates the element wise modulus of the vector
x. The notation E[·] stands for statistical expectation. Finally,
for any X,Y ∈ Rm×m, max(X,Y ) refers to the matrix
containing the element wise maximum between X and Y .

II. PROBLEM FORMULATION

Let us assume the availability of n independent and iden-
tically distributed vectors {y1,y2, · · · ,yn}, where3 each yi

is of size m and follows a m-variate complex, zero-mean,
circular Gaussian distribution with covariance matrix R ≻ 0.
The maximum likelihood covariance estimation problem can
be formulated as

minimize
R≻0

f̄(R)=
1

n

n∑
i=1

yH
i R−1yi + log |R|. (4)

If n ≥ m, Problem (4) has a unique minimizer with probability

one which is given by the SCM, i.e., RSCM =
1

n

n∑
i=1

yiy
H
i .

However, if the random process, where each observation is
drawn, is stationary (at least in wide sense) then the covari-
ance matrix also exhibits a Toeplitz structure which can be
capitalized in the estimation process [2, Ch. 1],[34, Ch. 2].
By doing so, Problem (4) becomes

MLE: minimize
R∈Toep,R≻0

f̄(R), (5)

where Toep is used to denote the set of Hermitian Toeplitz
matrices of size m × m. The above problem has two con-
straints: a structural constraint and a positive definite con-
straint. Even though the structural constraint is convex, the
non-convexity of the objective function makes Problem (5)
challenging to solve and no analytical solution seems to be
available. In the following two iterative solution procedures
for (5) are designed exploiting the MM principle. Briefly, the
MM technique mainly consists of two steps

1) constructing a s.f. g(R|Rt) (where Rt is the estimate
of R at the tth iteration) for the objective function
in (5), satisfying g(Rt|Rt) = f̄(Rt),∀ Rt ≻ 0 and
g(R|Rt) ≥ f̄(R),∀ Rt ≻ 0;

2) minimizing the resulting surrogate problem at each
iteration.

For more details, [35]–[37] provide an in-depth discussion on
MM based algorithms.

III. ALGORITHMS FOR TOEPLITZ COVARIANCE MATRIX
ESTIMATION

In this section, ATOM1 and ATOM2 are proposed to tackle
the MLE problem of TSC matrix. Both exploit the MM
principle (applied to an equivalent reformulation of the MLE

3Note that, from a practical point of view, a data selection scheme [31]–
[33] can be employed for screening the available training data so as to excise
possible outliers.

problem) and differ in the way they construct and handle the
surrogate minimization problem. ATOM1 solves the surrogate
optimization using ADMM while ATOM2 tackles it using
either alternating projection or Dykstra’s algorithm. Subse-
quently, the computational complexity and proof of conver-
gence of the procedures are established. Finally, the extension
of ATOM2 to deal with additional covariance constraints along
with the Toeplitz structure is provided.

Before proceeding further, let us observe that the Hermitian
Toeplitz matrices intrinsically endow the centro-Hermitian
symmetry structure [38], i.e.,

R = JR∗J (6)

with J the m×m permutation matrix given by

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

1 0 · · · 0 0

 . (7)

As a consequence, Problem (5) is tantamount to (see also [2,
Sec. 6.5.8])

minimize
R∈Toep,R≻0

f(R), (8)

where
f(R) = Tr(RFBR

−1) + log |R| (9)

refers to the restriction of f̄(·) to the centro-Hermitian covari-
ance matrices, with RFB the forward-backward (FB) averaged
sample covariance matrix4 given by RFB = 1/2(RSCM +
JR∗

SCMJ) [39].
Now, decomposing RFB = Y Y H , e.g., via LDL factor-

ization [40], with Y ∈ Cm×r, where r = rank(RFB) ≤ m,
Problem (8) can be equivalently cast as5 (see Appendix A)

min
R∈Toep,X∈Hr×r

Tr(X) + log |R|

s.t.
(

X Y H

Y R

)
⪰ 0

, (10)

where the objective is a concave differentiable function of X
and R.

Before proceeding with the next important lemma, it is
worth pointing out that Problem (10) holds true even if
the Toeplitz structural constraint in Problem (5) and (10) is
replaced by any set of positive definite (centro-Hermitian)
matrices, provided that the estimation problem is solvable, i.e.,
the optimal solution exists.

Lemma 3.1: Given a concave differentiable6 function
h(K) : Hr×r → R, it can be majorized as

h(K) ≤ h(Kt) + Tr
(
∇h(Kt)

H(K −Kt)
)
, (11)

4Hereafter, Problem (5) (and thus (8)) is assumed solvable, i.e., there exists
a global optimizer R∗ ≻ 0, as well as any limit point of a feasible sequence
of matrices whose corresponding objectives converge to the optimal value
is feasible to the optimization problem. As a consequence, without loss of
generality, the constraint R ≻ 0 can be relaxed into R ⪰ 0. Notably, a
sufficient condition to ensure the aforementioned properties is provided by
n ≥ ⌈m/2⌉, corresponding to RFB ≻ 0 with probability one.

5A similar constraint reformulation is used in some studies involving atomic
norm for sparse reconstruction [25,41].

6For a non-differentiable function, the inequality in (11) can be cast
as h(K) ≤ h(Kt) + Tr

(
G(Kt)H(K −Kt)

)
, where G(Kt) is the

subgradient of the concave function h(K) at Kt [35].
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where Kt∈ Hr×r. The upper bound to h(K) is linear and
differentiable with respect to (w.r.t.) K.

Proof: Since h(K) is a concave function w.r.t. K,
(11) stems from linearizing h(K) via its first order Taylor
expansion [42].

In order to tackle the challenging optimization problem (10),
MM-based methods [43,44], denoted ATOM1 and ATOM2,
are now developed. To this end, let us observe that the term
log |R| in (10) is a concave function w.r.t. R [45]. Hence, it
can be majorized using Lemma 3.1 (with K = R, Kt = Rt,
h(K) = log |R|, and ∇h(Kt) = R−1

t ) to get the following
s.f.

g(X,R|Rt) = Tr(X) + Tr
(
R−1

t R
)
+ c1 = Tr(AtE) + c1 ,

(12)
where the constant c1 = log |Rt| − m, At = diag(I,R−1

t ),
whereas E = diag(X,R) is the block-diagonal matrix with
blocks X and R along the main diagonal. Given Rt, which
in our case is the value assumed by the variable Rt at the t-th
iteration of the algorithm, the MM method demands for the
solution of the following surrogate minimization task

{Rt+1,Xt+1} = arg min
R∈Toep,X∈Hr×r

g(X,R|Rt)

s.t.

(
X Y H

Y R

)
⪰ 0

, (13)

which is a Semidefinite Programming (SDP) problem.
Unfortunately, the computational complexity necessary
to handle SDP using interior point methods is
O
(
(r +m)4.5 log( 1η̃ )

)
[46,47], with η̃ > 0 the desired

solution accuracy. In order to alleviate the computational
issue, two different approaches are pursued. The former
directly handles Problem (13) via the iterative ADMM
algorithm. The latter, by means of a suitable manipulation
of (12), constructs a different s.f. for the objective function
in Problem (10). By doing so, as clearly explained in the
following, a computationally efficient and flexible estimation
procedure capable of including additional constraints can
be developed. To this end, let us observe that, adding and
subtracting γTr(E2), (12) is equivalent to7

Tr(AtE) + γTr(E2)− γTr(E2) (14)

with γ > 0 ∈ R a parameter of the surrogate construction stage
(for γ ↓ 0, the function in (14) reduces to (12)). Now, being
−Tr(E2) a concave function of E and invoking Lemma 3.1
applied to the feasible solution Et = diag(Xt;Rt) with Xt =
Y HR−1

t Y and Rt provided by the t-th iteration step of the
estimation process, it is possible to construct the s.f. for (14)

g̃(X,R|Rt) =Tr (AtE) + γTr(E2)− 2γTr(EEt)− γTr(E2
t ).

(15)
It is worth pointing out that g̃(X,R|Rt) represents a

surrogate to a s.f.. Nonetheless, since g̃(X,R|Rt) is a tight
approximation of g(X,R|Rt), it is straightforward to show
that (15) provides a direct surrogate for the objective function

7Note that as γ approaches zero, the objective function (14) shrinks towards
the original one in (12). Thereby, the smaller γ, the closer the ATOM2
surrogate objective function to the ATOM1 counterpart.

in Problem (12). Hence, given Rt and after some algebraic
manipulations, the resulting surrogate minimization problem
at the t-th iteration can be cast as

{Rt+1,Xt+1} = arg min
R∈Toep,X

∥E −Bt∥2F

subject to E +D ⪰ 0
, (16)

where Bt = Et − γ′At, with γ′ = 0.5
γ and D =

[0,Y H ;Y ,0].
In the following subsections III-A and III-B two iterative

methods, i.e., ATOM1 and ATOM2, are proposed to solve the
surrogate minimization problems in (13) and (16), respectively.

A. ATOM1

The surrogate minimization problem in (13) is solved
using ADMM [48,49]. To this end, an auxiliary variable
U∈ H(r+m)×(r+m) is introduced in (13) and the problem is
framed in the equivalent form

min
R∈Toep,U⪰0,X∈Hr×r

Tr(X) + Tr
(
(Rt)

−1R
)

s.t.
(

X Y H

Y R

)
−U = 0

. (17)

The augmented Lagrangian [50, Ch. 2] associated with (17) is

Lρ(R,X,U , λ̂) = Tr(X) + Tr
(
(Rt)

−1R
)
+

Tr
[
λ̂H

((
X Y H

Y R

)
−U

)]
+

ρ

2

∥∥∥∥( X Y H

Y R

)
−U

∥∥∥∥2
F

,

(18)

where ρ > 0 is the penalty parameter and λ̂ is the Lagrange
multiplier of size (r + m) × (r + m). Problem (18) can be
further rewritten as

Lρ(E,U , λ̂)

= Tr(AtE) + Tr
(
λ̂H(E +D −U)

)
+

ρ

2
∥E +D −U∥2F .

(19)
The (inner) iterative steps of ADMM algorithm [48,49] are

U t
k+1 = argmin

U⪰0
Tr
(
(λ̂t

k)
H(Et

k +D −U)
)

+
ρ

2
∥Et

k +D −U∥2F
(20)

Et
k+1 = argmin

R∈Toep,X
Tr(AtE) + Tr

(
(λ̂t

k)
H(E +D −U t

k+1)
)

+
ρ

2
∥E +D −U t

k+1∥2F (21)

λ̂t
k+1 = λ̂t

k + ρ
(
Et

k+1 +D −U t
k+1

)
, (22)

where (·)tk is used to denote the k-th inner-iteration of the
ADMM algorithm in correspondence of the t-th MM outer-
loop. Problems (20) and (21) have closed-form solutions which
can be computed via the projection of appropriate matrices
onto the respective feasible sets. Indeed, Problem (20) can be
equivalently cast as

U t
k+1 = arg min

U⪰0
∥U −Ψt

k∥2F (23)

where Ψt
k = Et

k+D+ 1
ρ λ̂

t
k. Hence, solving (20) is tantamount

to performing the orthogonal projection of the matrix Ψt
k onto
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the set of the PSD matrices which can be computed as U t
k+1 =

Ṽ t
k max(diag(Ũ t

k),0)Ṽ
tH
k , where diag(Ũ t

k) and Ṽ t
k are the

matrices containing the eigenvalues and the corresponding
orthonormal eigenvectors of Ψt

k, respectively. Similarly, the
update step of E in (21) can be rewritten as

Et
k+1 = argmin

R∈Toep,X
∥E −Λt

k∥2F , (24)

where Λt
k = PD–Toep

(
U t

k+1 −D − 1
ρ (λ̂

t
k +At)

)
, with

PD–Toep(Ψ) computed as follows: Partitioning the matrix

Ψ as Ψ =

(
Ψ11 Ψ12

ΨH
12 Ψ22

)
with Ψ12 of size r × m, the

orthogonal projection of interest amounts to set the upper
diagonal block to Ψ11 whereas the second diagonal block is
obtained by averaging the elements along each diagonal of
Ψ22 and constructing the corresponding Toeplitz matrix.

Now, partitioning Λt
k as Λt

k =

(
Λt

11,k Λt
12,k

ΛtH
12,k Λt

22,k

)
with

Λt
11,k and Λt

22,k being r×r and m×m matrices, respectively,
it follows that Xt

k+1 = Λt
11,k and Rt

k+1 = Λt
22,k. Before

concluding, it is worth pointing out that since the surrogate
minimization problem in (13) is convex and only an equality
constraint is forced, it is guaranteed that ADMM converges
to a supposed existing8 optimal unique solution to (13) (see
Section 3.2 in [50], [51]). The pseudocode of the proposed
algorithm is shown in Algorithm 1.
From Algorithm 1 it can be seen that ATOM1 requires
initialization of the matrices R0, Xt

0 and λ̂t
0. R0 can be

set using the initialization scheme discussed in [22] and, as
t = 0, Xt

0 can be set equal to Y HR−1
0 Y while λ̂t

0 can be
constructed as λ̂t

0 = V V H , where the elements of V are
drawn randomly from a uniform distribution over [0, 1]. For
t ≥ 1, the matrices Et

0 and λ̂t
0 can be initialized with their

last value after convergence at the previous ADMM iteration,
respectively. Another input parameter required by ATOM1 is
the penalty weight ρ, introduced during the construction of the
Augmented Lagrangian of the ADMM framework. It is shown
in [50], that the ADMM algorithm converges for any value of
ρ > 0. However, the numerical stability and the convergence
rate depends on the choice of ρ. Simulation results have
highlighted that for ρ = 1, the ADMM algorithm is stable
for different values of n and m. Hence, unless otherwise
stated, in all the numerical analysis ρ = 1 is used. Notably,
in the open literature, [25],[26] addressed the Toeplitz estima-
tion problem by devising optimization procedures similar to
ATOM1, where in [26] a rank constraint is also considered in
the estimation process. However, it is worth mentioning that
ATOM1 optimizes a different surrogate function exploiting
the persymmetric structure of the covariance matrix, so it
represents a different implementation of the MM plus ADMM
method to deal with the optimization problem at hand.

1) Computational complexity and discussion about
ATOM1: ATOM1 is iterative in nature with two loops - the
outer-loop updates the Toeplitz matrix Rt while the inner-
loop solves the surrogate minimization problem using ADMM.

8A sufficient condition for the existence of the optimal solution to Prob-
lem (13) is provided by the solvability of (8).

Algorithm 1 Pseudocode of ATOM1 algorithm
Input: Data-based matrix Y and ρ

Initialize: Set t, k = 0. Initialize R0, X0 and λ̂0.
Repeat:

k ← 0

Compute At = diag(I,R−1
t ), Et

k = diag(Xt,Rt), λ̂t
k = λ̂t

Repeat:
1) Obtain U t

k+1 by projecting the matrix Ψt
k = Et

k +D + 1
ρ
λ̂t
k

onto the set of PSD matrices.
2) Compute Λ = U t

k+1 −D − 1
ρ
(λ̂t

k +At)

3) Set Xt
k+1 equal to the first block Λ11 of Λ

4) Obtain Rt
k+1 by projecting the second block Λ22 of Λ

onto the set of Toeplitz matrices.
5) Obtain Et

k+1 = diag(Xt
k+1,R

t
k+1)

6) λ̂t
k+1 = λ̂t

k + ρ
(
Et

k+1 +D −U t
k+1

)
7) k ← k + 1

until convergence
Set Rt+1 = Rt

k , Xt+1 = Xt
k , λ̂t+1 = λ̂t

k
t← t+ 1

until convergence
Output: RATOM1 = Rt.

Note that in the inner-loop, it is required to construct the

data-based matrix D =

(
0 Y H

Y 0

)
- which is iteration

independent and hence can be pre-computed and stored. Let
us now discuss the complexity related to the outer and inner-
loops of ATOM1. The inner-loop of ATOM1 requires the
computation of the matrix At - which is outer-loop iteration
dependent. Therefore, this matrix can be evaluated once in
each outer-loop. Consequently, apart from the computations
involved in the inner-loop, an outer-loop cycle just involves
the evaluation of the matrix R−1

t . Since Rt is Toeplitz,
its inverse can be efficiently computed with a complexity
O(m logm) [52]. The computational complexity of an inner-
loop cycle is related to the projection of Ψt

k onto the set of
PSD matrices and projection of Λt

k onto the set of block
diagonal matrices where the upper part (of size r × r) is
unconstrained, whereas the lower block (of size m × m) is
Toeplitz structured. The cost of this latter operation mainly
involves the projection of Λt

22,k onto the set of Toeplitz
matrices; thus, it is substantially dictated by the computation of
average of the elements along the diagonals of Λt

22,k. Hence,
the cost of the inner-step 4) is O(m2). Next, the projection
of Ψ onto the set of PSD matrices mainly involves the
computation of the eigenvalues and eigenvectors of the matrix
Ψt

k - whose corresponding complexity is O((r +m)3) [40].
Therefore, the per-outer-iteration computational complexity of
ATOM1 is O(η(r +m)3) where η is the total number of inner-
loop iterations required by the algorithm to converge.

A drawback of ATOM1 is the lack of a theoretical quality
guarantee when it has to handle additional constraints on
the covariance matrix. This is because ATOM1 implements
ADMM algorithm at each inner-iteration which requires (to
endow convergence guarantees to the process) the optimization
problem to exhibit the standard form [50,53]

minimize
Z,E

h1(Z1) + h2(Z2)

subject to A1Z1 +A2Z2 = C
(25)

where h1(Z1), h2(Z2) are convex functions and A1, A2, C
are matrices of appropriate dimensions, respectively. There-
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fore, to incorporate additional inequality constraints (such as
those resulting from upper bound on the condition number
of the matrix Z1 or a lower bound to the strength of diag-
onal elements, or more in general an intersection of closed
convex sets that can be described by additional auxiliary
variables), one needs to replace each inequality constraint
with an appropriate equality constraint. This can be done
by introducing a slack variable for each inequality constraint
to the existing optimization variables Z1 and Z2. However,
there is no convergence guarantee of ADMM when there are
more than two optimization variables [54]. This issue can be
addressed by the low complexity algorithm, referred to as
ATOM2, proposed to solve Problem (16).

B. ATOM2

Problem (16) is tantamount to seeking the block diagonal
matrix E belonging to the intersection of the two sets - the
former defined by block diagonal matrices with the lower
diagonal block of size m×m fulfilling a Toeplitz structure and
the latter given by the Linear Matrix Inequality (LMI) [55]
E + D ⪰ 0 - with minimum distance from B. Being
the feasible set of (16) characterized by the intersection of
convex sets, a viable, even though heuristic, means to tackle
Problem (16) is provided by the alternating projection or
Projection Onto the Convex Sets (POCS) technique [56]–[58],
which has already been successfully applied in the signal
processing context, e.g., [59,60].

Let us denote by PLMI(Ψ) the orthogonal projection of
an arbitrary matrix Ψ onto the set defined by E + D ⪰ 0.
Now, to proceed further and employ the POCS framework,
PD–Toep(Ψ) and PLMI(Ψ) projections must be employed.
Remarkably, both can be obtained in closed-form: the former
is computed as described in subsection III-A; as to the
latter, the orthogonal projection onto the set defined by LMI
E + D ⪰ 0 is computed by first evaluating the EigenValue
Decomposition (EVD) of the matrix Ψ + D, i.e., obtaining
[Ū , V̄ ] = eig(Ψ + D), where Ū and V̄ are matrices
containing the eigenvalues and eigenvectors of the spectral
decomposition, respectively. Then, the orthogonal projection
PLMI(Ψ) is given by V̄ max(Ū ,0)V̄ H −D.

According to POCS method, given an initial value Tt
0 =

Bt, at the k-th inner-iteration first compute Y t
k+1 =

PD–Toep(T
t
k) and then, using Y t

k+1, determine Tt
k+1 =

PLMI(Y
t
k+1) which represents the starting point Tt

k+1 of the
next inner-iteration. Hence, the POCS-based solution approach
finds a sequence of iterates {Tt

k} by alternatingly projecting
between the two convex sets. Nevertheless, as reported in
[61], POCS may suffer from slow convergence. Even more
crucial, the convergence to the global optimal solution to (16)
is, in general, not ensured [62,63]. A possible solution to the
aforementioned shortcoming is provided by Dykstra’s projec-
tion algorithm [62], which is an iterative procedure aimed at
minimizing the distance of a given point from the intersection
of closed convex sets via appropriate projections on each sin-
gle sets. Therefore this technique is extremely effective if the
individual projections can be evaluated efficiently. Dykstra’s
method is thus a refinement of POCS capable of finding a

Algorithm 2 Pseudocode of Dykstra’s algorithm
Input: Bt

Initialize: Set Tt
0 = Bt, Pt

0 = 0 and Qt
0 = 0, k = 0

Repeat:
1) Y t

k = PD–Toep(T
t
k +Pt

k)
2) Pt

k+1 = Tt
k +Pt

k − Y t
k

3) Tt
k+1 = PLMI(Y

t
k +Qt

k)

4) Qt
k+1 = Y t

k +Qt
k −Tt

k+1
5) k ← k + 1

until convergence
Output: E∗ = Tt

k .

Algorithm 3 Pseudocode of ATOM2
Input: Data-based matrix Y , surrogate parameter γ
Initialize: Set t = 0. Initialize R0, X0.
Repeat:

1) Compute At = diag(I,R−1
t ), Et = diag(Xt,Rt)

2) Compute E∗ from Algorithm 2 execution with Bt = Et − 0.5
γ

At

3) Obtain Rt+1 from the lower diagonal block of E∗

4) Obtain Xt+1 from the upper diagonal block of E∗

5) t← t+ 1
until convergence
Output: RATOM2 = Rt

point closest to Bt by adding correction matrices Pk and Qk

before each projection is performed, which in-turn ensures
convergence of sequence {Tk+1} to the optimal solution
T∗= E∗ [62]. In particular, let C1 be one of the convex set
involved in the optimization procedure, at each iteration, after
performing the projection of a matrix A onto C1 obtaining
Ã = PC1

(A+P (A)), with P (A) the corresponding correction
matrix (initialized to 0), P (A) is updated by computing the
difference between the matrix A+P (A) and its projection as
P (A) = A+ P (A) − Ǎ.

The pseudocode of Dykstra’s algorithm is shown in Al-
gorithm 2. Once the optimal solution E∗ is obtained via
Dykstra’s projection, the matrix Rt+1 can be constructed from
its lower diagonal block of size m×m. This process is repeated
until the whole MM-procedure, i.e., including the outer-loop,
converges. The complete ATOM2 is summarized in Algorithm
3. It requires the initialization of the matrix R. In this respect,
a similar scheme as in ATOM1 is followed, i.e., at each outer-
iteration, the initial guess required to determine Rt+1 in the
inner-loop is obtained starting from Rt.

C. Computational complexity of ATOM2

Like ATOM1, ATOM2 is an iterative algorithm with outer-
and inner-loops. The outer-loop updates the Toeplitz matrix Rt

and the inner-loop implements the Dykstra’s algorithm - which
requires the computation of the matrices D and R−1

t . The
former is a iteration independent data matrix and therefore can
be pre-constructed. The latter is outer-loop iteration dependent
and therefore can be computed once in each outer-loop. Con-
sequently, apart from the inner-loop computations, the outer-
loop demands only the computation of R−1

t - which can be
computed efficiently with complexity O(mlogm). Meanwhile,
the computational load of the inner-loop stems from the
evaluation of EVD of the matrix (Yk+Qk) plus a data matrix
D - which has a complexity of about O((r +m)3).

In Table I, the computational complexity of ATOM1 and
ATOM2 is compared with that of the state-of-the-art itera-
tive algorithms [19,22]. Unlike the proposed algorithms, the
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Table I: Comparison among computational complexity of
ATOM1 and ATOM2 with other state-of-the-art iterative al-
gorithms.

Algorithm Complexity
ATOM1 O(η(r +m)3))
ATOM2 O(η(r +m)3))
MELT [22] O (η(mlog(m)))
EM [19] O (η(mlog(m)))

state-of-the art methods are single loop iteration algorithms.
Therefore, in the case of [19,22] η is used to represent the
number of iterations required by the algorithm to converge.
Inspection of Table I shows that ATOM1 and ATOM2 have
the highest complexity when compared to MELT and EM.
Nevertheless, it is worth anticipating that this complexity
increase is complemented by a superior performance in terms
of generality of the problem solved (ATOM1 and ATOM2
do not exploit the CE, ATOM2 permits to handle additional
structural constraints with quality guarantee, as shown in
subsection III-E), covariance matrix MSE, and achieved SINR.

D. Proof of convergence

In this subsection, the proof of convergence of ATOM1 and
ATOM2 is established. In this regard, it is worth pointing
out that both the algorithms differ in the way they construct
and optimize the s.f. for the Problem (5). Nonetheless, since
ATOM1 and ATOM2 are based on the MM framework, the
proof of convergence based on the following Theorem will
hold for both algorithms.
Before stating the Theorem, let us first introduce the first-
order optimality condition for minimizing a function over a
convex constraint set. A point X is a stationary point of f(·)
if f ′(X;D) ≥ 0 for all D such that X + D ∈ C, where C
is the convex constraint set and f ′(X;D) is the directional
derivative of f(·) at point X in direction D and is defined as
[36]

f ′(X;D) = lim
λ↓0

inf
f(X + λD)− f(X)

λ
. (26)

Based on the following theorem, relying on the key results
in [36] and assuming that the inner-loop achieves the global
optimizer, both ATOM1 and ATOM2 are guaranteed to con-
verge to a stationary point of Problem (5).

Theorem 3.2: Denoting by {Rt} the sequence of matrices
generated by either ATOM1 or ATOM2, then the objective
function of Problem (5) monotonically decreases along the
iterations. Besides, any positive definite cluster point9 to Rt

is a stationary point to Problem (5).
Proof: See Appendix B for details.

E. Extensions of ATOM2

The augmentation of ATOM2 to handle additional con-
straints other than the Toeplitz structure in the covariance
estimation process is now addressed. In particular, it is

9Under the assumption m ≥ n/2, all the cluster points are demanded to
be positive definite.

shown that ATOM2 can be generalized10 to account for
the following scenarios: Banded Toeplitz, block-Toeplitz, and
Toeplitz-block-Toeplitz matrices. On the other side, as already
mentioned in subsection III-A1, ATOM1 cannot be directly
extended to tackle the general constraints as for instance an
upper bound requirement to the condition number [64,65]
or, in a “cognition-driven-processing” application, a similarity
constraint [66,67] to exploit some prior knowledge of the
stationary process, whose statistical characteristics inference
represent the task at hand.

1) MLE of banded Toeplitz covariance matrix: The covari-
ance matrix is constrained to exhibit a banded Toeplitz struc-
ture of bandwidth b (see [21,68,69] for relevant applications).
For instance, assuming a bandwidth b = 2 and dimension
m = 5 the covariance matrix enjoys the following structure

R =


r1 r2 r3 0 0
r∗2 r1 r2 r3 0
r∗3 r∗2 r1 r2 r3
0 r∗3 r∗2 r1 r2
0 0 r∗3 r∗2 r1

 .

Then, the MLE problem for banded Toeplitz covariance matrix
can be formulated as

minimize
R∈Band−Toep, R≻0

1

n

n∑
i=1

yH
i R−1yi + log |R| , (27)

where Band − Toep is used to denote the set of banded
Toeplitz matrices. Like in (10), the above problem can be cast
in the following equivalent form

minimize
R∈Band−Toep,X

Tr(X) + log |R|

subject to

(
X Y H

Y R

)
⪰ 0

. (28)

Hence, (28) is handled via MM framework solving the fol-
lowing surrogate minimization problem

minimize
E

∥E −B∥2F
subject to E +D ⪰ 0

E = diag(X,R) with R being a
banded Toeplitz matrix

(29)

The above problem involves two convex sets: the set defined
by the LMI E+D ⪰ 0 and the set of block diagonal matrices
where the second block has a banded Toeplitz structure with
bandwidth b. Consequently, Dykstra’s projection algorithm or
POCS can be used to solve Problem (29). The projection
of a matrix onto the LMI set can be calculated as dis-
cussed earlier in Subsection III-B. The projection of a matrix

Ψ̂=

(
Ψ̂11 Ψ̂12

Ψ̂H
12 Ψ̂22

)
onto the set of block diagonal matrices

with the second banded Toeplitz block can be obtained as
follows. The first diagonal block is the same as Ψ̂11 and the
second diagonal block is constructed by averaging the entries
of the main and the first b upper-diagonals of the matrix Ψ̂22

and computing the corresponding Toeplitz matrix [70].

10If it is not required that R satisfies the centro-Hermitian property, Y
in (10) is obtained via the LDL factorization of RSCM rather than RFB .
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2) MLE of block-Toeplitz or Toeplitz-block-Toeplitz covari-
ance matrix: In space-time adaptive processing radar applica-
tions, the covariance matrix exhibits a block-Toeplitz (BT) [71]
or a Toeplitz-block-Toeplitz (TBT) structure. An example of a
BT-structured covariance matrix with p blocks is shown below

R =


R0 R1 . . . Rp−1

RH
1 R0 . . . Rp−2

...
. . . . . .

...
RH

p−1 . . . RH
1 R0

. (30)

When each block exhibit a Toeplitz structure, then R is
TBT [72,73].

The MLE problem of a BT or a TBT covariance matrix is
formulated as

minimize
R∈BT (TBT ),R≻0

1

n

n∑
i=1

yH
i R−1yi + log |R|, (31)

where the notation BT (TBT ) is used to indicate the set
of BT (TBT ) matrices. A feasible solution to Problem (31)
can be obtained by solving at any given step the following
surrogate optimization problem

minimize
E

∥E −B∥2F
subject to E +D ⪰ 0

E is a block diagonal matrix with
the second diagonal BT (TBT) block

. (32)

Problem (32) exhibits two constraints - 1) a LMI constraint
and 2) a structural constraint - where the optimization variable
E is confined to be a block diagonal matrix with the second
block having a BT (TBT) structure. Since both the constraints
are convex, Dykstra’s projection or POCS can be applied to
solve Problem (32). The projection of a matrix onto the LMI
set can be calculated as discussed earlier in Section III B.
The projection of a given matrix Ψ̄ onto the set of matrices
whose second diagonal block has the BT (TBT) constraint
can be obtained as follows. For the first diagonal block, the
submatrix Ψ̄11 is directly used. Then, the second diagonal
block is obtained following two (three) steps. First, p matrices
are obtained by averaging the (upper-right) diagonal blocks of
the matrix Ψ̄22. Then, only for TBT, each of the p matrices are
projected onto the Toeplitz set as described in subsection III-B.
Finally, the resulting matrix is constructed according to (30).

IV. CRB CALCULATION

In this section, the CRB is derived11 for the estimation of
Toeplitz structured covariance matrix (the interested reader
may refer to Appendix C with reference to the CRBs com-
putation of Banded Toeplitz, BT, and TBT covariance model).
The CRB provides a lower bound on the variance of any
unbiased estimator [78]. To proceed further, let θ represent
the real value vector parametrizing a given covariance matrix

11Bespoke parametrization of the unknowns are exploited to compute
CRBs. It is noteworthy to highlight that the general framework to handle
CRB computation in the presence of parameters restrictions/relationships is
provided by the constrained CRB (the interested reader may refer to [74]–
[77]).

structure of interest. Then, the CRB is the inverse of the Fisher
Information matrix (FIM) whose (i, k)th element is

[F]i,k = E
[
∂2 log f̄(R)

∂θi∂θk

]
, (33)

where ∂ log f̄(R)
∂θi

denotes the partial derivative of log f̄(R)
w.r.t. θi, with θi the i-th element of θ. Due to the Gaussian
assumption, the (i, k)th element of the FIM can be computed
using the Slepian–Bangs formula [2]

[F]i,k = nTr
(
R−1 ∂R

∂θi
R−1 ∂R

∂θk

)
. (34)

In the following subsection, the FIM is derived for the
Toeplitz covariance structure.

A. Toeplitz matrix

As the entries of the TSC matrix are completely char-
acterized by its first row, i.e., [r1, r2, · · · rm]T , the covari-
ance matrix R ∈ Hm×m can be parameterized by θ =
[r1,ℜ(r2), · · · ℜ(rm),ℑ(r2), ...,ℑ(rm)]T ∈ R2m−1 where
ℜ(ri) and ℑ(ri) denotes the real and imaginary parts of ri,
respectively. Then, the covariance matrix R can be expressed
in terms of θ and basis matrices BToep

g (defined as in (36)),
g = 1, 2, · · · ,m [20]

R =

m∑
g=1

θgℜ(BToep
g ) + j

2m−1∑
g=m+1

θgℑ(BToep
g−m+1) . (35)

The (i, k)th element of the matrix BToep
g is given as

[BToep
g ]i,k =


1 + j i− k = g − 1 = 0

1 + j k − i = g − 1 ̸= 0

1− j i− k = g − 1 ̸= 0

0 otherwise

. (36)

Using (35), ∂R
∂θi

can be obtained as

∂R

∂θi
=

{
ℜ(BToep

i ) 1 ≤ i ≤ m

jℑ(BToep
i−m+1) m+ 1 ≤ i ≤ 2m− 1

.

Substituting ∂R
∂θi

in (34), yields the FIM for Toeplitz covariance
matrix.

V. NUMERICAL SIMULATIONS

In this section, the performance of the proposed covari-
ance matrix estimators ATOM1 and ATOM2 is numerically
analyzed in comparison with the following state-of-the-art
algorithms: EM-based [19,79], MELT [22], the SCM, and
the FB estimators [39]. First, a convergence analysis of the
derived methods is provided, also in comparison with the
aforementioned counterparts. Then, the estimation capabilities
are analyzed in three different scenarios, using the MSE as
performance metric, defined as12

MSE = E
[∥∥∥θ − θ̂

∥∥∥2] , (37)

12In the following, (37) is computed via Monte Carlo technique.
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where θ̂ indicates the estimate of the unknown θ, obtained
according to one of the aforementioned strategies. First of
all, the covariance matrix is assumed to share the Toeplitz
structure. Then, the banded Toeplitz, the BT, and the TBT
constraints are considered. The CRB-based benchmark, com-
puted as CRB = Tr(F−1), is reported too, whereby, for each
case study, the FIM is appropriately derived, see Section IV.

Furthermore, assuming a typical radar signal processing
scenario, the performance is also evaluated in terms of average
achievable SINR by an adaptive spatial filter.

It is also worth reporting that, in the aforementioned scenar-
ios, ATOM1 and ATOM2 procedures are initialized using the
FB estimate RFB , projected onto the set of Toeplitz matrices.
Moreover, for the execution of ATOM2, the parameter γ is
updated adaptively in each outer-loop iteration according to
the following law13

γ = γ0(t log t+ k1)
2. (38)

To illustrate the role of γ in the optimization process per-
formed by ATOM2, a notional representation of the objective
function (conceptually depicted as a one-dimensional curve
and corresponding to a specific portion of a restriction of the
multivariate objective) and the s.f. of ATOM1 and ATOM2, is
reported in Fig. 1. Remarkably, the value of γ affects the trade-
off between performance and convergence speed of ATOM2.
Indeed, while a smaller γ leads to a better performance
(ATOM2 s.f. approaches the ATOM1 one as γ → 0), it
demands more inner-loop iterations to achieve convergence,
due to the almost singular resulting metric. On the other
hand, a larger γ reduces the overall computational cost, but
introduces a growth in the approximation error. However, as
the outer-loop iterations increase, the approximation error of
the ATOM2 s.f. w.r.t. the objective function decreases as the
updated point becomes closer and closer to a local minimum
at which the sequence is “converging”. That said, slowly
increasing γ with the number of iterations allows to speed-up
its computational burden without decreasing its performance.

A. Assessment of iterative algorithms convergence for on-grid
and off-grid frequencies

In this simulation, the convergence of ATOM1 and ATOM2
(whose inner-loop was implemented via Dykstra’s algorithm)
is assessed in comparison with MELT and EM algorithms. To
this end, each data snapshot yk ∈ Cm is modeled as

yk = R
1
2nk, k = 1, 2, · · · , n (39)

where nk ∈ Cm, k = 1, . . . , n are independent and iden-
tically distributed zero-mean circularly symmetric Gaussian
random vectors with unit mean square value.

Two different experimental setups are considered, assuming
m = 6 and n = 20. In the former, the true underlying
Toeplitz covariance matrix R is constructed by choosing the

13As to the adaptive ATOM2 surrogate construction stage, it has been
empirically shown that the updating rule (38), with γ0 = 10−4 and k1 = 5,
provides satisfactory performance in all the scenarios; therefore, unless
otherwise stated, ATOM2 s.f. (and the subsequent processing) is constructed
using (38) with the aforementioned values.
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Figure 1: A notional representation of the objective function
of Problem (10) and the corresponding s.f. of ATOM1 and
ATOM2, with the latter employing γ ∈ {0.5, 1, 10}, for a
one-dimensional optimization problem.

2-nd, 3-rd, 5-th, 7-th, 8-th and the 11-th column of the DFT
matrix with L = 2m − 1 in (3), corresponding to the fre-
quencies [0.5712, 1.1424, 2.2848, 3.4272, 3.9984, 5.7120] rad,
and as powers [p1, . . . , p6]

T = [3, 6, 4, 1, 7, 5]T, respectively.
Figs. 2(a) and 2(b) show the negative log likelihood (9) and
the objective function of problem (10) versus the number of
iterations, respectively. It can be seen that all the algorithms
numerically improve the negative log-likelihood as the number
of iterations increases and almost converge to the same value,
with negligible differences. Moreover, Fig. 2(b) indicates that
the proposed algorithms monotonically decrease the problem
objective function, which is expected since they optimize (10)
using the MM framework.

In the other experimental setup, the true underlying Toeplitz
covariance matrix is constructed such that two of the fre-
quencies are not on the Fourier grid. Therefore, the same
parameters used in case study 1 are considered, with the
exception that the Fourier frequencies 0.5712 rad and 3.9984
rad are replaced with 0.5 rad and 5.3 rad, respectively. For
the case study at hand, the negative log-likelihood (9) and the
objective function of (10) are reported in Figs. 3(a) and 3(b)
versus the number of iterations, respectively. Inspection of
Fig. 3(a) reveals that while MELT and EM converge to a value
of ≈ 22.4, ATOM1 and ATOM2 converge to 22. Therefore,
when two of the frequencies do not lie on the Fourier grid, the
state-of-the-art iterative algorithms converge to a larger value
of the negative log-likelihood than the proposed methods.
This is due to the fact that unlike the counterparts, the
proposed algorithms estimate the Toeplitz covariance matrix
without reparametrizing it via the CE technique and thus
they are able to cover the whole set of Toeplitz covariance
matrices. Furthermore, remarks similar to those made for the
on-grid case hold true with reference to the results depicted
in Fig. 3(b).

In the following, the mean computational time14 (averaged
over 1000 Monte Carlo trials) of the proposed techniques and

14The simulation has been executed using MATLAB R2020b on a desktop
computer equipped with an Intel i5 processor and 16 GB of RAM.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3474977

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

10 20 30 40

Iteration

24

25

26

27

28

29

N
e

g
a

ti
v
e

 L
o

g
-L

ik
e

lih
o

o
d

ATOM1

ATOM2

MELT

EM

36 38 40

23.05

23.1

23.15

23.2

23.25

2 4

23.12

23.13

23.14

(a)

10 20 30 40

Iteration

23.12

23.125

23.13

23.135

23.14

ATOM1

ATOM2

(b)

Figure 2: Negative log-likelihood (9) and the objective func-
tion of (10) vs. outer-iterations for m = 6, n = 20, and on-grid
frequencies scenario.
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Figure 3: Negative log-likelihood (9) and the objective func-
tion of (10) vs. outer-iterations for m = 6, n = 20, and off-grid
frequencies scenario.

the counterparts is examined. As case studies, four different
values of m are considered, i.e., m ∈ {4, 8, 16, 32}. Moreover,
the data samples yk are generated as (39) using n = 4m
samples, with R = T + I . The Toeplitz covariance matrix
T is generated assuming 3 equal power sources, i.e., with
p = [5, 5, 5], whose frequencies are randomly selected (at each
trial) such that two of them lie on the Fourier grid of the DFT
matrix, with L = 2m−1, whereas the third one is drawn from
a uniform distribution over [0, 2π]. The iterative algorithms
have been run until the following condition is met15

p(Rt−1,Xt−1)− p(Rt,Xt) ≤ 10−4 (40)

with p(R,X) = Tr(X) + log |R| the objective function of
problem (10), or until the maximum number of iterations (set
equal to 1000) is reached. The average computational time
of the different algorithms (possibly with different values of
the hyperparameters) are reported in Table II. The results
show that ATOM2 has, in general, a longer execution time
than ATOM1. This is because the inner-loop of ATOM2
(based on Dykstra’s algorithm) requires an higher number
of iterations and hence a longer run time to converge than
ATOM1 inner-loop (implemented via ADMM), and similar to
those of EM/MELT when γ0 is small, where the distance is
minimized in a metric space is ill defined more and more.
However, when γ0 = 10−1, the run times of ATOM1 and
ATOM2 are comparable and similar to those of MELT and

15For the execution of EM and MELT procedures, the exit condition is set
as f(Rt−1)− f(Rt) ≤ 10−4.

EM. Interestingly, Table III pinpoints that, for γ0 sufficiently
small, i.e., 10−4, ATOM2 is generally able to reach MSE
values smaller than ATOM1, reasonably to its adaptive step-
size strategy (38), which allows it to provide better quality
estimates than ATOM1 as the outer-loop iteration increases.
It can also be seen that EM has the least computational time
(at large values of m). Nevertheless, as shown in Table III,
although the proposed algorithms have a slight longer compu-
tational time, the obtained estimates are superior, in terms of
MSE, to those provided by MELT and EM.

Interestingly, as the data dimension increases, the resulting
average MSE values reached by the ATOM2 using different
γ0 parameters becomes closer and closer. Therefore, for a
sufficient larger data size, i.e., m ≥ 32, γ0 = 10−1 represents
an appropriate choice for ATOM2 implementation, as it offers
a good performance with a reduced computational burden.

To further corroborate the computational efficiency of
ATOM1 also from a practical point of view, several numerical
examples are provided in the following by considering specific
instances of problem (13), with Rt provided by the starting
point of the estimation process. In particular, using the same
setup parameters as in Tables II-III with m = 8 and n = 4,
Table IV shows the average computational times and the
average values of the objective function (12), computed over
500 Monte Carlo trials, achieved by either solving the SDP
directly with the SeDuMi/SDPT3 solver or by employing
ATOM1. Results reveal that the average value of the objective
function achieved by ATOM1 substantially concides with that
attained by the SDP solvers, but with a considerably faster
processing time, reflecting its lower computational complexity
as compared with the counterparts.

B. MSE vs n for Toeplitz covariance matrix

For this case studies, it is assumed m = 15 and the
number of samples n ranging between 50 and 500 in steps
of 50. The data yk ∈ C15 are again simulated according
to (39). Precisely, two different experiments are considered
whereby the true Toeplitz covariance matrix is generated
using on-grid16 and off-grid frequencies17, respectively. The
resulting MSE, computed over 1000 Monte Carlo trials, are
illustrated in Fig. 4. Inspection of the curves depicted in
Fig. 4(a) shows that, regardless of the number of samples
n, in the first experiment ATOM1 and ATOM2 almost reach
the CRB, whereas EM and MELT yield a slightly better
performance, resulting in a deviation from the CRB. This can
be explained observing that the derived CRB does not exploit
the information that the frequencies lie on-grid. Fig. 4(b)
highlight that in the second experiment, ATOM1 attain the
best performance, with results quite close to the CRB and
slightly better than ATOM2, with a limited gap between the
corresponding curves. Furthermore, MELT and EM exhibit
similar MSE values which seem to saturate as n increases. The

16The frequencies used in the first experiment are:
[0.2167, 0.6500, 1.0833, 1.3, 1.5166, 1.9500, 2.3833, 2.8166, 3.2499,
3.68324.1166, 4.5499, 4.9832, 5.4165, 5.8499] rad. Their corresponding
powers increase linearly from 1 to 15 with a unit step.

17For the off-grid simulation, the frequencies [1.3, 2.8166, 4.9832, 5.8499]
rad are replaced with [1.25, 3.01, 5.20, 5.8] rad, respectively.
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Figure 4: MSE vs. number of samples n for Toeplitz covari-
ance matrix. a) on-grid frequencies; b) off-grid frequencies.

performance behavior of Fig. 4(b) stems from the observation
that, unlike MELT and EM, ATOM1 and ATOM2 are gridless
methods, delivering the same performance regardless of the
sources frequencies.

C. MSE vs n for banded Toeplitz covariance matrix

This subsection analyzes the performance in the case of
covariance matrix belonging to the set of banded Toeplitz
matrices. In particular, the same simulation setup as in Sec-
tion V-B is considered, but enforcing the underlying covari-
ance matrix to have a bandwidth b = 6. To this end, R
is constructed by alternately projecting a random Hermitian
matrix onto the set of banded Toeplitz matrices and the set of
PSD matrices. Moreover, for this study case, ATOM2 is imple-
mented according to the procedure described in Section III-E1,
namely explicitly including the banded Toeplitz structure in
the constraint set.

Fig. 5 highlights that the bespoke implementation of
ATOM2 delivers the best performance, with MSE values really
close to the CRB. Furthermore, MELT and EM share the same
performance with a noticeable gap w.r.t. ATOM2, which is
expected since the aforementioned algorithms do not leverage
the banded structure of the covariance matrix.
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Figure 5: MSE vs. number of samples n for banded Toeplitz
covariance matrix.
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Figure 6: MSE vs. number of samples n for TBT covariance
matrix.

D. MSE vs n for BT (TBT) covariance matrix

Here, the capabilities of ATOM2 are analyzed in the context
of covariance matrix with TBT structure. To this end, assuming
m = 16 and p = 4 blocks (each having block-size l = 4),
the covariance matrix is modeled as R = T1 ⊗ T1, where
T1 ∈ Cl×l is a Toeplitz matrix constructed as in subsec-
tion V-A, with frequencies [0.6, 1.4, 3.2, 5.1] rad and powers
[3, 6, 4, 1]. Thus, each data snapshot yk is drawn according
to (39). The resulting MSE values (averaged over 1000 Monte
Carlo trials) are displayed in Figure 6 versus the number of
snapshots. Specifically, the performance of both the BT and
the TBT extension of ATOM2 (described in Section III-E2)
are reported and compared with the CRB (see Appendix C)
as well as with two EM-based estimators, tailored respectively
for BT/TBT covariance matrix [79]. Inspection of the results
reveals that ATOM2 TBT uniformly achieves the least MSE,
with ATOM2 BT ranking second. As previously highlighted,
the superior performance of the proposed method stems from
the design criterion which does not require reparametrizing
the covariance matrix using the CE.

E. Radar Application

In this subsection, the performance of the covariance esti-
mation algorithms is evaluated with reference to the average
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Table II: Comparison of the average run time (in seconds) of the iterative algorithms.

Dimension m ATOM1 ATOM2 (γ0 = 10−4) ATOM2 (γ0 = 10−2) ATOM2 (γ0 = 10−1) MELT[22] EM[19]
4 0.028 1.309 0.047 0.014 0.051 0.026
8 0.032 1.503 0.164 0.055 0.071 0.035

16 0.163 6.912 0.522 0.166 0.162 0.081
32 0.473 9.569 2.484 0.825 0.663 0.348

Table III: Comparison of the average MSE of the iterative algorithms.

Dimension m ATOM1 ATOM2 (γ0 = 10−4) ATOM2 (γ0 = 10−2) ATOM2 (γ0 = 10−1) MELT[22] EM[19]
4 42.48 38.12 45.08 47.88 45.04 44.64
8 22.80 19.92 23.04 23.92 82.48 82.32

16 30.88 26.40 32.80 35.36 93.60 91.36
32 20.16 20.16 20.16 20.48 112.96 107.21

Table IV: Average computational times and average values of
the objective function (12) achieved by SeDuMi, SDPT3 and
ATOM1 for the m = 8, n = 4 case.

SeDuMi SDPT3 ATOM1
avg. obj. fun 19.425 19.425 19.447

avg. execution time 0.5099 0.5944 0.2073

achievable SINR in adaptive radar spatial processing context.
To this end, let us consider a radar system equipped with a
uniform linear array with m = 6 sensors, pointing toward the
boresight direction. The inter-element distance between each
sensor is set equal to d = λ/2, where λ is the radar operating
wavelength.

For this simulation scenario, the interference covariance
matrix is modeled as R = Rs + σ2

aI where σ2
a is the power

level of the white disturbance noise (assumed without loss
of generality equal to 0 dB) and Rs is given by Rs =
J∑

l=1

σ2
l s(ϕl)s(ϕl)

H , where J is the number of uncorrelated

narrow-band jammers and, for the l-th jammer,

s(ϕl) =
1√
m
[1, ej

2π
λ d sin(ϕl), . . . , ej(m−1) 2π

λ d sin(ϕl)]T (41)

is the steering vector in its direction-of-arrival ϕl, and σ2
l the

corresponding interferer power.
The capabilities of the estimation methods are analyzed by

means of the average SINR, computed as

SINRavg =
1

K

K∑
i=1

|ŵi
Hs(θ)|2

ŵH
i Rŵi

, (42)

where K = 500 is the number of Monte-Carlo trials and
ŵi = R̂−1

i s(θ) is the estimate of the optimal weight vector
for adaptive spatial processing with R̂i the estimate of the
interference-plus-noise covariance matrix for the i-th trial,
computed either via the sample covariance matrix or enforcing
the Toeplitz structure in the covariance matrix and employing
the estimators ATOM1, ATOM2, EM, and MELT.

More precisely, J = 2 jammers, with powers σ2
1 = 30 dB

and σ2
2 = 20 dB, respectively, impinging on the array from

θ1 = 9.8◦ and θ2 = −8.8◦, is considered. As comparison
terms, the optimum SINR, i.e., SINROPT = s(θ)HR−1s(θ)

and the performance of the Sample Matrix Inversion (SMI)
beamformer, are included too.

The average SINR versus θ ∈ T , with T =[−π/2, π/2]
discretized with 500 equally-spaced points, is shown in Fig. 7,
for n ∈ {m, 2m, 3m}. Inspection of the plots highlights that
as the number of samples n increases, the results achieved by
ATOM1 and ATOM2 gets closer and closer to the optimum,
yielding superior performance w.r.t. the counterparts.

VI. CONCLUSION

In this paper, the MLE problem for TSC matrices has
been addressed. Precisely, by reformulating appropriately the
MLE optimization problem and leveraging the MM frame-
work, two iterative algorithms ATOM1 and ATOM2 have
been developed. Both inherit the key properties of MM i.e.,
they monotonically decrease the underlying cost function with
guaranteed convergence to a stationary point of the equivalent
MLE problem. Subsequently, ATOM2 has been extended to
handle covariance matrix MLE forcing other Toeplitz-related
structures, such as banded Toeplitz, BT, and TBT. Simulation
results have indicated that the proposed algorithms can per-
form better than some state-of-the-art techniques in terms of
MSE and the SINR metrics.
Some of the possible future research directions are now
outlined. In particular, ATOM2 could be further extended to
include the cases of low rank TSC, with the rank assumed
either known or unknown at the design stage, as well as co-
variance matrix with an upper bound to the condition number.
Another possible extension of the proposed technique could be
MLE of a Toeplitz covariance matrix assuming a compound
Gaussian distribution for the underlining data which has a
significant application in low-grazing angle target detection
[80,81]. Moreover, acceleration methods inspired for instance
by the SQUAREd iterative Methods (SQUAREM) [82] could
be investigated. In addition, the design of sub-optimal op-
timization strategies (e.g., based on the gradient projection
method) with an improved computational burden (a valuable
feature for real-time applications) is definitely worth to be
pursued. Finally, it would be of great interest to apply the
devised gridless framework to the problems of direction of
arrival/frequency estimation [26,83] [84,85] and to compare
the subsequent performance with existing methods already
available in the open literature.
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Figure 7: Average SINR vs θ in the presence of two jammers, assuming m = 6 and a) n = m b) n = 2m, and c) n = 3m.

APPENDIX

A. Proof of equivalence between (8) and (10)

Let R⋆ be an optimal solution to (8), then (X⋆,R⋆), with
X⋆ = Y HR⋆−1Y , is feasible for (10) and the two problems
have the same objective values. This means that

v(8) ≥ v(10), (43)

where v(·) indicates the optimal value of the corresponding
optimization problem.

Moreover, for any fixed R1 ≻ 0, concentrating the objective
function of (10) with respect to X (which is tantamount to
placing X = Y HR−1

1 Y ), it follows that the concentrated
optimization problem is

minimize
R1⪰0

Tr(RFBR
−1
1 ) + log |R1|, (44)

due to Schur complement Theorem and the monotonicity of
the trace operator with respect to generalized matrix inequality
“⪰”. Finally, being by assumption (8) solvable, any minimizer
of (44) satisfies R⋆

1 ≻ 0 with a corresponding optimal solution
to (10) given by (R⋆

1,Y
HR⋆−1

1 Y ). This implies that

v(8) ≤ v(10). (45)

Capitalizing on (43) and (45) as well as the above consid-
erations, it follows that v(8) = v(10) and given an optimal
solution (R⋆

1,X
⋆
1 ) to (10), R⋆

1 is also optimal to (8) and
viceversa, given an optimal solution R⋆ to (8) (X⋆,R⋆) is
an optimal point to (10).

B. Proof of Theorem 3.2

To begin with, let us denote by h(E|Et) either the objective
function involved in the surrogate optimization problem of
ATOM1 (12) or ATOM2 (15), where E = diag(X,R). This
function, regardless of the method, satisfies the following two
inequalities

h(Et|Et) = l(Et) (46)

h(Et+1|Et) ≥ l(Et+1), (47)

where l(E) = Tr(X)+log |R|. Leveraging the above inequal-
ities, it follows that

l(Et+1)
(a)

≤ h(Et+1|Et)
(b)

≤ h(Et|Et)
(c)
= l(Et). (48)

In (48), the inequality (a) and equality (c) stem from (47) and
(46), respectively; besides, the inequality (b) is obtained by
exploiting the fact that ATOM1 and ATOM2 globally solve
the corresponding convex surrogate optimization problem.
Therefore, (48) implies that the sequence of objective value
of Problem (16) generated by the proposed algorithms is
monotonically decreasing , i.e.,

l(E0) ≥ l(E1) ≥ l(E2) ≥ · · · (49)

Next, let us denote by Z a cluster point to {Et} and let {Ert}
be a subsequence of {Et} converging to Z. Then, from (46),
(47), and (49)

h
(
Ert+1 |Ert+1

)
= l

(
Etj+1

)
≤ l (Ert+1)

≤ h (Ert+1|Ert) ≤ h (E|Ert) ,∀ feasible E.
(50)

Thus, letting t → ∞

h(Z|Z) ≤ h(E|Z), (51)

which implies that h′(Z|Z;D) ≥ 0, for any feasible direction
D from any feasible Z, where h′(G|Z;D) denotes the
directional derivative in a feasible direction D from G of
the surrogate function at point Z. Finally, by Proposition 1 in
[36], the surrogate function h(E|Z) and the objective function
l(E) have the same first order behavior at E = Z since
both of them are differentiable at any feasible E. Therefore,
h′(Z|Z;D) ≥ 0 implies that l′(Z;D) ≥ 0. Hence, Z is a
stationary point of the objective function l(E).

C. CRB of Banded Toeplitz and TBT covariance model

Herein, the CRB of Banded Toeplitz and TBT covariance
model are provided.

1) Banded Toeplitz matrix: In the case of banded
Toeplitz matrix with bandwidth b, the first row of the
covariance matrix R ∈ Hm×m has only b + 1 non-
zero terms. Therefore, R can be parameterized via θ =
[r1,ℜ(r2), · · · ℜ(rb+1),ℑ(r2), ...,ℑ(rb+1)]

T ∈ R2b+1. Be-
sides R can be expressed in terms of basis matrices BToep

g

and real coefficients θ

R =

b+1∑
g=1

θgℜ(BToep
g ) + j

2b+1∑
g=b+2

θgℑ(BToep
g−b ) (52)
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and consequently

∂R

∂θi
=

{
ℜ(BToep

i ) 1 ≤ i ≤ b+ 1

jℑ(BToep
i−b ) b+ 2 ≤ i ≤ 2b+ 1

.

Substituting ∂R
∂θi

in (34), yields the FIM for banded Toeplitz
covariance matrix.

2) Toeplitz-block-Toeplitz matrix: Before proceeding fur-
ther, it is worth noting that a TBT matrix composed of p
blocks of size l can be parameterized by the vector θ =
[θT

0 ,θ
T
1 , . . . ,θ

T
P−1]

T ∈ R2l−1+(p−1)(4l−2) whereby
θ0 = [r0,1,ℜ(r0,2), . . . ,ℜ(r0,l),ℑ(r0,2), . . . ,ℑ(r0,l)]T ∈
R2l−1 and θp = [ℜ(rp,1), . . . ,ℜ(rp,l),ℑ(rp,1), . . . ,ℑ(rp,l),
ℜ(cp,2), . . . ,ℜ(rp,l),ℑ(rp,2), . . . ,ℑ(rp,l)]T ∈ R4l−2, p =
1, . . . , P −1, with rp,n and cp,n the n-th row and n-th column
of Rp, respectively. Indeed, the TBT covariance matrix can be
expressed as

RTBT = C0 ⊗R0 +

p−1∑
w=1

((
Cw ⊗RH

w

)
+
(
CT

w ⊗Rw

))
, (53)

where

R0 =

l∑
g=1

θ0,gℜ(BToep
g ) + j

2l−1∑
g=l+1

θ0,gℑ(BToep
g−l+1) (54)

and, for w = 1, . . . , p− 1,

Rw =

l∑
g=1

[θw,g + jθw,g+l]ℜ(Dg)

+

3l−1∑
g=2l+1

[θw,g + jθw,g+l−1]ℑ(Dg−2l+1)

(55)

with θw,g the g-th element of θw, Dg = BToep
g as long as

g = 1 and 1/2((BToep
g )T + j(BToep

g )T ) elsewhere, whereas
the (i, k)th element of the matrix Cw ∈ Rl×l is given by

[Cw]i,k =

{
1 i− k = w

0 otherwise
.

That said, ∂RTBT

∂θw,g
is given by

∂RTBT

∂θw,g

=



C0 ⊗ℜ(BToep
g ) 1 ≤ g ≤ l, w = 0

C0 ⊗ jℑ(BToep
g−l+1) l + 1 ≤ g ≤ 2l − 1, w = 0

Cw ⊗ℜ(Dg)
T

+CT
w ⊗ℜ(Dg) 1 ≤ g ≤ l, w > 0

Cw ⊗ (−j)ℜ(Dg−l)
T

+CT
w ⊗ jℜ(Dg−l) l + 1 ≤ g ≤ 2l, w > 0

Cw ⊗ℑ(Dg−2l+1)
T

+CT
w ⊗ℑ(Dg−2l+1) 2l + 1 ≤ g ≤ 3l − 1, w > 0

Cw ⊗ (−j)ℑ(Dg−3l+2)
T

+CT
w ⊗ jℑ(Dg−3l+2) 3l ≤ g ≤ 4l − 2, w > 0

which, employed in (34), yields the FIM for TBT covariance
matrix.
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[14] U. Grenander and G. Szegö, “Toeplitz forms and their applications,”
1958.

[15] Z. Yang, J. Li, P. Stoica, and L. Xie, “Sparse methods for direction-
of-arrival estimation,” in Academic Press Library in Signal Processing,
Volume 7. Elsevier, 2018, pp. 509–581.

[16] V. F. Pisarenko, “The retrieval of harmonics from a covariance function,”
Geophysical Journal International, vol. 33, no. 3, pp. 347–366, 1973.

[17] A. Dembo, C. L. Mallows, and L. A. Shepp, “Embedding nonnegative
definite Toeplitz matrices in nonnegative definite circulant matrices, with
application to covariance estimation,” IEEE Trans. Inf. Theory, vol. 35,
no. 6, pp. 1206–1212, 1989.

[18] S. Haykin, “Nonlinear methods of spectral analysis,” vol. 34, 2006.
[19] M. I. Miller and D. L. Snyder, “The role of likelihood and entropy

in incomplete-data problems: Applications to estimating point-process
intensities and Toeplitz constrained covariances,” Proceedings of the
IEEE, vol. 75, no. 7, pp. 892–907, 1987.

[20] M. J. Turmon and M. I. Miller, “Maximum-likelihood estimation of com-
plex sinusoids and Toeplitz covariances,” IEEE Trans. Signal Process.,
vol. 42, no. 5, pp. 1074–1086, 1994.

[21] L. P. Christensen, “An EM-algorithm for band-toeplitz covariance ma-
trix estimation,” in 2007 IEEE International Conference on Acoustics,
Speech and Signal Processing-ICASSP’07, vol. 3. IEEE, 2007, pp.
III–1021.

[22] P. Babu, “MELT—maximum-likelihood estimation of low-rank Toeplitz
covariance matrix,” IEEE Signal Processing Letters, vol. 23, no. 11, pp.
1587–1591, 2016.

[23] H. Li, P. Stoica, and J. Li, “Computationally efficient maximum likeli-
hood estimation of structured covariance matrices,” IEEE Trans. Signal
Process., vol. 47, no. 5, pp. 1314–1323, 1999.

[24] B. Kang, V. Monga, and M. Rangaswamy, “Computationally efficient
Toeplitz approximation of structured covariance under a rank constraint,”
IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 1, pp. 775–785, 2015.

[25] Z. Yang and L. Xie, “Enhancing sparsity and resolution via reweighted
atomic norm minimization,” IEEE Trans. Signal Process., vol. 64, no. 4,
pp. 995–1006, 2016.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3474977

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



15

[26] Z. Yang, X. Chen, and X. Wu, “A robust and statistically efficient
maximum-likelihood method for DOA estimation using sparse linear
arrays,” IEEE Trans. Aerosp. Electron. Syst., pp. 1–16, 2023.

[27] X. Du, A. Aubry, A. De Maio, and G. Cui, “Toeplitz structured covari-
ance matrix estimation for radar applications,” IEEE Signal Processing
Letters, vol. 27, pp. 595–599, 2020.

[28] F. Barbaresco, “Information geometry of covariance matrix: Cartan-
siegel homogeneous bounded domains, mostow/berger fibration and
frechet median,” in Matrix Information Geometry. Springer, 2013, pp.
199–255.

[29] B. Balaji, F. Barbaresco, and A. Decurninge, “Information geometry and
estimation of Toeplitz covariance matrices,” in 2014 International Radar
Conference. IEEE, 2014, pp. 1–4.

[30] A. Aubry, P. Babu, A. De Maio, and R. Jyothi, “ATOM for MLE of
Toeplitz structured covariance matrices for RADAR applications,” in
2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1–6.

[31] P. Chen, W. L. Melvin, and M. C. Wicks, “Screening among multivariate
normal data,” Journal of Multivariate Analysis, vol. 69, no. 1, pp. 10–29,
1999.

[32] A. Aubry, A. De Maio, L. Pallotta, and A. Farina, “Covariance matrix
estimation via geometric barycenters and its application to radar training
data selection,” IET Radar, Sonar & Navigation, vol. 7, no. 6, pp. 600–
614, 2013.

[33] ——, “Median matrices and their application to radar training data
selection,” IET Radar, Sonar & Navigation, vol. 8, no. 4, pp. 265–274,
2014.

[34] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection
Theory. Prentice Hall, 1987.

[35] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-
rithms in signal processing, communications, and machine learning,”
IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, 2016.

[36] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–
1153, 2013.

[37] A. Aubry, A. De Maio, A. Zappone, M. Razaviyayn, and Z.-Q. Luo, “A
new sequential optimization procedure and its applications to resource
allocation for wireless systems,” IEEE Trans. Signal Process., vol. 66,
no. 24, pp. 6518–6533, 2018.

[38] A. Cantoni and P. Butler, “Properties of the eigenvectors of persymmetric
matrices with applications to communication theory,” IEEE Trans.
Commun., vol. 24, no. 8, pp. 804–809, 1976.

[39] H. L. Van Trees, Optimum Array Processing: Part IV, ser. Detection,
Estimation, and Modulation Theory. Wiley, 2004.

[40] G. H. Golub and C. F. Van Loan, “Matrix computations,” 1996.
[41] B. N. Bhaskar, G. Tang, and B. Recht, “Atomic norm denoising with

applications to line spectral estimation,” IEEE Trans. Signal Process.,
vol. 61, no. 23, pp. 5987–5999, 2013.

[42] J. R. Magnus and H. Neudecker, Matrix Differential Calculus With
Applications in Statistics and Econometrics. Hoboken, NJ, USA: Wiley,
1995, 1995.

[43] T. T. Wu and K. Lange, “The MM Alternative to EM,” Statistical
Science, vol. 25, no. 4, pp. 492 – 505, 2010.

[44] W. J. Heiser, “Convergent computation by iterative majorization,” Recent
advances in descriptive multivariate analysis, pp. 157–189, 1995.

[45] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[46] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Processing
Magazine, vol. 27, no. 3, pp. 20–34, 2010.

[47] R. M. Vaghefi, M. R. Gholami, R. M. Buehrer, and E. G. Strom,
“Cooperative received signal strength-based sensor localization with
unknown transmit powers,” IEEE Trans. Signal Process., vol. 61, no. 6,
pp. 1389–1403, 2013.

[48] F. Xu and P. Pan, “A new algorithm for positive semidefinite matrix
completion,” Journal of Applied Mathematics, vol. 2016, 2016.

[49] M. Fazel, T. K. Pong, D. Sun, and P. Tseng, “Hankel matrix rank
minimization with applications to system identification and realization,”
SIAM Journal on Matrix Analysis and Applications, vol. 34, no. 3, pp.
946–977, 2013.

[50] S. Boyd, N. Parikh, and E. Chu, “Distributed optimization and statistical
learning via the alternating direction method of multipliers,” Now
Publishers Inc, 2011.

[51] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan, “A gen-
eral analysis of the convergence of admm,” in International Conference
on Machine Learning. PMLR, 2015, pp. 343–352.

[52] P.-G. Martinsson, V. Rokhlin, and M. Tygert, “A fast algorithm for the
inversion of general Toeplitz matrices,” Computers & Mathematics with
Applications, vol. 50, no. 5-6, pp. 741–752, 2005.

[53] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented
lagrangian methods for semidefinite programming,” Mathematical Pro-
gramming Computation, vol. 2, no. 3-4, pp. 203–230, 2010.

[54] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of admm
for multi-block convex minimization problems is not necessarily conver-
gent,” Mathematical Programming, vol. 155, no. 1-2, pp. 57–79, 2016.

[55] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. Society for Industrial and
Applied Mathematics (SIAM), 1994.

[56] H. H. Bauschke and J. M. Borwein, “On projection algorithms for
solving convex feasibility problems,” SIAM review, vol. 38, no. 3, pp.
367–426, 1996.

[57] W. Cheney and A. A. Goldstein, “Proximity maps for convex sets,”
Proceedings of the American Mathematical Society, vol. 10, no. 3, pp.
448–450, 1959.

[58] C. L. Byrne, “Alternating minimization and alternating projection algo-
rithms: A tutorial,” Sciences New York, pp. 1–41, 2011.

[59] J. Tropp, I. Dhillon, R. Heath, and T. Strohmer, “Designing structured
tight frames via an alternating projection method,” IEEE Trans. Inf.
Theory, vol. 51, no. 1, pp. 188–209, 2005.

[60] D. Blatt and A. Hero, “Energy-based sensor network source localization
via projection onto convex sets,” IEEE Trans. Signal Process., vol. 54,
no. 9, pp. 3614–3619, 2006.

[61] D. Henrion and J. Malick, “Projection methods for conic feasibility
problems: applications to polynomial sum-of-squares decompositions,”
Optimization Methods & Software, vol. 26, no. 1, pp. 23–46, 2011.

[62] J. P. Boyle and R. L. Dykstra, “A method for finding projections onto
the intersection of convex sets in hilbert spaces,” in Advances in order
restricted statistical inference. Springer, 1986, pp. 28–47.

[63] R. L. Dykstra, “An algorithm for restricted least squares regression,”
Journal of the American Statistical Association, vol. 78, no. 384, pp.
837–842, 1983.

[64] A. Aubry, A. De Maio, L. Pallotta, and A. Farina, “Maximum likelihood
estimation of a structured covariance matrix with a condition number
constraint,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 3004–3021,
2012.

[65] A. Aubry, A. De Maio, and L. Pallotta, “A geometric approach to
covariance matrix estimation and its applications to radar problems,”
IEEE Trans. Signal Process., vol. 66, no. 4, pp. 907–922, 2017.

[66] A. De Maio, S. De Nicola, L. Landi, and A. Farina, “Knowledge-aided
covariance matrix estimation: a MAXDET approach,” IET Radar, Sonar
& Navigation, vol. 3, pp. 341–356(15), August 2009.

[67] A. Aubry, A. De Maio, L. Pallotta, and A. Farina, “Radar detection of
distributed targets in homogeneous interference whose inverse covari-
ance structure is defined via unitary invariant functions,” IEEE Trans.
Signal Process., vol. 61, no. 20, pp. 4949–4961, 2013.

[68] T. A. Barton and S. T. Smith, “Structured covariance estimation for
space-time adaptive processing,” in 1997 IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 5. IEEE, 1997, pp.
3493–3496.

[69] X. Cui, Z. Li, J. Zhao, D. Zhang, and J. Pan, “Covariance matrix regular-
ization for banded Toeplitz structure via Frobenius-norm discrepancy,”
in Matrices, Statistics and Big Data: Selected Contributions from IWMS
2016 25. Springer, 2019, pp. 111–125.

[70] T. A. Barton and S. T. Smith, “Structured covariance estimation for
space-time adaptive processing,” in 1997 IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 5. IEEE, 1997, pp.
3493–3496.

[71] K. Greenewald and A. O. Hero, “Regularized block Toeplitz covariance
matrix estimation via Kronecker product expansions,” in 2014 IEEE
Workshop on Statistical Signal Processing (SSP), 2014, pp. 9–12.

[72] Y. I. Abramovich, B. A. Johnson, and N. K. Spencer, “Two-
dimensional multivariate parametric models for radar applications—part
i: Maximum-entropy extensions for Toeplitz-block matrices,” IEEE
Trans. Signal Process., vol. 56, no. 11, pp. 5509–5526, 2008.

[73] ——, “Two-dimensional multivariate parametric models for radar ap-
plications—part ii: Maximum-entropy extensions for hermitian-block
matrices,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5527–5539,
2008.

[74] J. Gorman and A. Hero, “Lower bounds for parametric estimation with
constraints,” IEEE Transactions on Information Theory, vol. 36, no. 6,
pp. 1285–1301, 1990.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3474977

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



16

[75] P. Stoica and B. C. Ng, “On the Cramer-Rao bound under parametric
constraints,” IEEE Signal Processing Letters, vol. 5, no. 7, pp. 177–179,
1998.

[76] T. J. Moore, R. J. Kozick, and B. M. Sadler, “The Constrained
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