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Abstract—This paper deals with the problem of angle and
incremental range (i.e., the target range offset with respect to
the center of the cell under test) estimation with a frequen-
cy diverse-array multiple-input multiple-output (FDA-MIMO)
radar exploiting as observable a single data snapshot. Starting
from the observation that the maximum likelihood (ML) estima-
tion entails a two-dimensional grid search over the parameters
of interest, three approximated ML techniques are designed
resorting to the coordinate descent algorithm and the adaptive
monopulse criterion (employing either real or complex slope/bias
corrections). At the analysis stage, the estimation performance
of the proposed methods, including the tapered and double-
step monopulse versions, is assessed also in comparison with the
Cramer-Rao lower Bound (CRB). Numerical results corroborate
the effectiveness of the considered estimation strategies in some
diverse simulated scenarios.

Index Terms—FDA-MIMO radar, target parameters estima-
tion, monopulse, coordinate descent, bias correction.

I. INTRODUCTION

Estimation of target parameters is an enduring signal pro-
cessing problem that has always raised persistent attention
within the radar scientific community. The emergence of
new threats call for stressing and stressing radar performance
requirements as well as the development of advanced algo-
rithms capable of providing reliable estimates of the target
position, even at the expense of an increased computational
complexity. With reference to the direction-of-arrival (DOA),
it is known that the phased-array radar can achieve highly
accurate angle estimation by precisely forming a beam in
the desired direction [1, 2]. In particular, the problem of
angle estimation is typically solved resorting to the Maximum
Likelihood (ML) technique, which has the advantage of being
asymptotically unbiased and efficient at the expense of an
high computational complexity associated with the required
multidimensional search. To this end, a fair amount of alterna-
tive methodologies have been developed, such as the adaptive
monopulse criterion [3], the generalized adaptive multidimen-
sional monopulse algorithm based on a series expansion of the
array manifold [4], and combined constrained methods [5, 6].
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Nevertheless, it is worth pointing out that in a classic phased
array radar system the beampattern is dependent only on
the angular direction [7–10] but it is not selective in the
range domain. As a consequence, the range information is not
directly embedded in the beamforming process. To overcome
this drawback, a novel beam scanning array, referred to as
frequency diverse array (FDA), has been proposed [11–13].
Specifically, employing a small frequency increment across
adjacent array elements, the FDA induces discrimination in
both the angle and range domain. Once adequately exploited,
it can allow to glean jointly range and angle information.
Besides, the mentioned extra flexibility of the FDA radar paves
the way for its capitalization in several applications, such
as cognitive target tracking [14] and target localization [15].
Furthermore, FDA can be successfully twisted with a multiple-
input multiple-output (MIMO) architecture leading to a FDA-
MIMO radar [16], where additional degrees-of-freedom (D-
OFs) are available by separating the different transmitted
waveforms with appropriate matched filtering. Therefore, a
range-angle-dependent transreceive beampattern is realized via
the FDA-MIMO manifold structure. In this context, a variety
of applications have been proposed in the open literature,
such as the suppression of deceptive main-lobe jammers (from
the same azimuth, but different range, as the target of inter-
est) [17], range ambiguous clutter suppression with airborne
radar [18], and synthetic aperture radar (SAR) imaging with
improved resolution [19]. Not surprisingly, a substantial bulk
of work has been focused on the target parameters estimation,
via rotational invariant techniques (ESPRIT) [20], multiple
signal classification (MUSIC) [21] and/or combined MUSIC-
ESPRIT methods [22], compressed sensing-based algorithm-
s [23], and sparse reconstruction [24].

Capitalizing the additional DOFs of FDA-MIMO radar in
the range domain, the target angle and range can be simul-
taneously estimated due to the range-angle-dependent char-
acteristic of the FDA-MIMO steering vector. Several system
configurations, e.g., the bistatic FDA-MIMO [25], the transmit
subarray FDA-MIMO (TS-FDA) [26], and the unfolded co-
prime FDA-MIMO [27] have been studied for the mentioned
purpose. However, in some practical applications with high
pulse repetition frequency (PRF), the range ambiguity problem
may be encountered, leading to a degradation of the estimation
accuracy. To overcome this shortcoming, employing a specific
design of the frequency increment, in [28] the authors have
developed a range ambiguity resolving technique to estimate
the index of the ambiguity interval. As a drawback, a large
number of snapshots are required. Finally, in [28], the Cramér-
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Rao lower Bound (CRB), for range and angle estimation via
a FDA-MIMO radar is computed assuming the presence of
structured interference plus background noise.

Despite its key role in many practical high-precision ap-
plications, the estimation of the incremental range (target
displacement with respect to (w.r.t.) the center of the oc-
cupied range cell) has only received a limited attention.
This observation motivates the study of this paper which
investigates the problem of joint target angle and incremental
range estimation using a FDA-MIMO radar in a background
of Gaussian interference with known spectral properties. At
the design stage, the target parameters, i.e., angle, incremental
range, and echo-amplitude, are assumed unknown. Under the
aforementioned setup, the estimation problem is formulated
starting from a single data snapshot. Then the ML estimator is
derived maximizing the likelihood function w.r.t. the unknown
parameters. Furthermore, to reduce the computational cost
connected with the two-dimensional (2-D) grid search required
by the implementation of ML rule, three approximated meth-
ods are considered:

• an iterative procedure based on the coordinate descent
(CD) algorithm leveraging a sequence of one-dimensional
(1-D) searches which arise alternating between the opti-
mization over one variable keeping the other fixed;

• an adaptive monopulse approach which approximates
the optimal search exploiting real bias/slope correction
values;

• a generalized monopulse procedure employing a complex
slope and bias correction aimed at minimizing the mean
square value of the noise error term.

At the analysis stage, CRBs for the angle and incremental
range estimation via a FDA-MIMO radar are derived. The
root mean square errors (RMSEs) of the estimates versus
the input signal-to-interference-plus-noise ratio (SINR) are
provided. Besides, an extensive bias and variance analysis is
developed to show the the effectiveness of the considered ap-
proximated estimation methods (including tapered and double-
step versions of the monopulse procedures).

The paper is organized as follows. Section II presents the
signal model for FDA-MIMO radar. In Section III, the single
snapshot angle and incremental range estimation problem is
formulated. Besides, the ML estimator and the three afore-
mentioned approximated methods are introduced. The CRBs
for angle and incremental range are computed in Section
IV, whereas performance analysis is addressed in Section V.
Finally, conclusions and possible future research developments
are discussed in Section VI.

Notations: Boldface is used for vectors x (lower case)
whose n-th entry is x(n), and matrices A (upper case) whose
(m,n)-th entry is Am,n. A matrix A ∈ CN×M can also
be defined by its columns am ∈ CN , m = 1, . . . ,M (i.e.,
A = [a1, . . . ,aM ]). The transpose, the conjugate, and the
conjugate transpose operators are denoted by the symbols (·)T,
(·)∗, and (·)†, respectively. diag(x) indicates the diagonal
matrix whose i-th diagonal element is the i-th entry of x.
I , 0 and 1 denote respectively the identity matrix, the matrix
with zero entries and the vector with all elements being one

(their size is determined from the context). RN , CN , CN×M ,
and HN are respectively the sets of N -dimensional vectors
of complex numbers, N -dimensional vectors real numbers,
N ×M complex matrices, and N × N Hermitian matrices.
The determinant of the matrix A ∈ CN×N is indicated with
det (A). For any x ∈ CN , ∥x∥ denotes its Euclidian norm.
⊙ and ⊗ represent the Hadamard (element-wise) product and
the Kronecker product, respectively. The letter j represents
the imaginary unit (i.e. j =

√
−1). For any complex number

z, R(z), I(z), and |z| are used to denote the real part,
imaginary part, and the modulus of z, respectively. [a, b]
indicates a closed interval of R. Finally, E[·] denotes the
statistical expectation.

II. SIGNAL MODEL OF FDA-MIMO RADAR

A. Transmitted Signal Model

Let us consider a colocated FDA-MIMO radar consisting
of M transmit and N receive modules placed according
to a uniform linear array configuration in both transmission
and reception (see Fig. 1) [29]. A frequency increment ∆f
is introduced element-by-element in the transmit array with
the first array-element being the reference. Thus, the carrier
frequency at the m-th Tx element is

fm = f0 + (m− 1)∆f, m = 1, 2, · · · ,M, (1)

where f0 indicates the reference carrier. Each element trans-
mits a specific base-band phase-modulated pulse, which is
composed of P subpulses, and the resulting complex envelope
of the Radio Frequency (RF) signal radiated by the m-th
element can be expressed as

sm(t) =

√
E

P
xm(t)ej2πfmt, 0 ≤ t ≤ Tp, (2)

where E is the transmitted energy, Tp is the radar pulse
duration, and

xm (t) =
1

√
τb

P∑
p=1

φm (l)u

[
t− (p− 1) τb

τb

]
, p = 1, · · · , P,

(3)
τb =

Tp

P , u(t) is the asymmetric rect function, i.e., u(t) = 1 as
long as 0 ≤ t ≤ 1 and zero elsewhere, and φm(p) = ejϕm(p),
with ϕm(p) ∈ [0, 2π].

B. Received Signal Model

For a point-like target with a constant radar cross-section
(RCS) over the FDA-MIMO radar bandwidth, located in far-
field at the angle θt and range Rt (see Fig. 1) [30, 31], the
complex envelope of the signal received by the n-th radiating
element (n = 1, 2, · · · , N ) due to the signal transmitted by
the m-th antenna (m = 1, 2, · · · ,M ) can be expressed as [29]

ym,n(t) = βxm(t− τm,n)e
j2πfm(t−τm,n)

≈ βxm(t− τ0)e
j2πfm(t−τm,n),

(4)

where τm,n = 2Rt−d(n−1) sin(θt)−d(m−1) sin(θt)
c is the round-

trip propagation time, β is the complex echo amplitude (ac-
counting for the transmit amplitude, phase, target reflectivity,
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Fig. 1: Signal transmission and reception in FDA-MIMO radar.

and channels propagation effects), d is the array’s inter-
element spacing, and c is the speed of light. The approximation
relies on the narrowband assumption, i.e., xm(t − τm,n) ≈
xm(t − τ0), with τ0 = 2Rt

c the customary envelope time
delay.
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Fig. 2: Signal processing at the receiver with multiple match-filtered waveforms.

After the pre-processing of Fig. 2, it can be shown that, un-
der some mild technical conditions (see Appendix A of [29]),
the received useful samples from the CUT can be stacked to
form a MN × 1-dimensional vector

yS = β1b (θt)⊗ [c (θt)⊙ a (∆τ)]

= β1s(θt,∆τ),
(5)

where s(θt,∆τ) = b (θt) ⊗ [c (θt)⊙ a (∆τ)]∈ CMN

with ∆τ the incremental delay w.r.t. the sampling
time associated with the target range cell [29],

b (θt) =
[
1, ej2π

d
λ0

sin(θt), · · · , ej2π
d
λ0

(N−1) sin(θt)
]T
∈ CN

denotes the angle-dependent receive steering
vector, c (θt) = RTd (θt) ∈ CM with d (θt) =[
1, ej2π

d
λ0

sin(θt), · · · , ej2π
d
λ0

(M−1) sin(θt)
]T
∈ CM the

angle-dependent transmit steering vector and R∈ CM×M

the transmit waveforms correlation matrix, i.e.,
Rm,l =

∫ Tp

0
xm (s)x∗

l (s)ds, (m,n) ∈ {1, ...,M}2, and
a (∆τ) =

[
1, ej2π∆f∆τ · · · , ej2π∆f(M−1)∆τ

]T ∈ CM

indicates the range-dependent steering vector.

III. JOINT ANGLE-RANGE ESTIMATION FOR FDA-MIMO
RADAR

This section investigates parameters estimation in FDA-
MIMO radar. Let us assume the availability of a single data
snapshot z ∈ CMN containing the superposition of the useful
target signal and interference plus noise contribution [3, 32],
namely the vector of observables can be cast as

z = β1s(θt,∆τ) + n, (6)

where n ∈ CMN is modeled as zero-mean complex circularly
symmetric Gaussian random vector, i.e., n ∼ CN (0,Q) with
Q ∈ HMN the positive definite covariance matrix of the
interference plus noise term. Therein, θt and ∆τ describe the
unknown angle and incremental range to be estimated, respec-
tively. Now, letting u = sin (θt) (complying with |u| ≤ 1) and
δ = 2∆f∆τ (satisfying |δ| ≤ ∆f

B ), s(θt,∆τ) can be further
expressed as

s(θt,∆τ) = s(u, δ)

= b (u)⊗ [c (u)⊙ a (δ)] ,
(7)

where b (u) =
[
1, ej2π

d
λ0

u, · · · , ej2π
d
λ0

(N−1)u
]T

∈ CN ,
c(u) = RTd(u) ∈ CM with d(u) =[
1, ej2π

d
λ0

u, · · · , ej2π
d
λ0

(M−1)u
]T

∈ CM , and a (δ) =[
1, ejπδ · · · , ejπ(M−1)δ

]T ∈ CM .
In the following subsections, the ML Estimator (MLE) of

u and δ is introduced and three low complexity methods are
proposed to approximate the MLE computation.

A. ML Estimation of u and δ

In this subsection, the ML estimation problem is formalized
as the constrained maximization (w.r.t. the unknown parame-
ters, i.e., β1, u and δ [32]) of the likelihood function,

f(u, δ, β1;z)=
1

πMN det (Q)
e−[(z−β1s(u,δ))

†Q−1(z−β1s(u,δ))] .

(8)
This is equivalent to minimizing the following quadratic

form

min
β1∈C,u∈[−1,1],

δ∈[−∆f
B

,
∆f
B

]

(z − β1s (u, δ))
†
Q−1 (z − β1s (u, δ)). (9)

Now, concentrating (9) over β1 yields

β̂1 =
s† (u, δ)Q−1z

s† (u, δ)Q−1s (u, δ)
. (10)

Hence, substituting (10) into the objective function of (9)
as well as dropping constant and irrelevant terms leads to

max
u∈[−1,1],δ∈[−∆f

B ,∆f
B ]

∣∣s† (u, δ)Q−1z
∣∣2

s† (u, δ)Q−1s (u, δ)
. (11)

Finally, the ML estimates of u and δ can be obtained as
maximizers of

P (u, δ) = |w0
† (u, δ) z|2, (12)
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where w0 (u, δ) =
[
s† (u, δ)Q−1s (u, δ)

]− 1
2 Q−1s (u, δ) ∈

CMN .

B. Approximated Methods for Range and Angle Estimation
The ML rule can be practically implemented via a 2-D grid

search. To reduce the computational cost required by the fore-
going procedure, it is valuable to design approximated solution
methods. To this end, this section is focused on designing: 1)
a CD algorithm; 2) adaptive monopulse procedures (AMP).

1) Coordinate Descent Algorithm
An approximation of the optimal 2-D search involved in

(12) is developed via the CD method. This leads to a se-
quence of one-dimensional (1-D) searches obtained alternating
between the optimization over each variable keeping the other
fixed. The problem of finding the maximizer of each 1-
D search is tackled using the grid search method where
the feasible interval of interest is discretized in a finite set
of points. Specifically, the 1-D searches w.r.t. u and δ are
respectively conducted over the discretized intervals Iu and
Iδ , defined as

Iu = {−1 +
2i

Nu
, i = 0, . . . , Nu} (13a)

and

Iδ = {−∆f

B
+

2i

Nδ

∆f

B
, i = 0, . . . , Nδ}, (13b)

where (Nu+1) and (Nδ+1) are the number of discrete points
considered for the optimization over u and δ, respectively. It
is also worth pointing out that it is not possible to establish a-
priori which order of optimization leads to the best estimate,
i.e., first optimize u and then optimize δ, or vice versa. To
overcome this problem, the CD-based algorithm considered
herein is applied twice, one for each possible initial search
direction. Therefore, among the two obtained solutions, the
one that maximizes (12) is chosen as estimate. The exit
condition (for each updating policy) is set as Dn ≤ ε with
ε > 0 and Dn = |Pn − Pn−1|, where

Pn = |(wn)†z|2 (14)

indicates the objective function at the n-th iteration with

wn =
[
s†
(
ûn, δ̂n

)
Q−1s

(
ûn, δ̂n

)]− 1
2

Q−1s
(
ûn, δ̂n

)
.

(15)
Letting u0 and δ0 the nominal angle and range, the initial

estimates are chosen as û0 = u0 and δ̂0 = δ0. The resulting
method is summarized in Algorithm 1.

Note that in the presence of two blocks/variables, regardless
of the initial search direction, the CD approach (starting
from the second iteration) coincides with the Maximum
Block Improvement (MBI) policy [33]. Therefore, invoking
the convergence properties of MBI [33–35], any limit point
resulting from Algorithm 1 is a stationary point to Prob-
lem (12), although convergence to the optimal value cannot
be claimed [36].

Leveraging the output of Algorithm 1 the estimates of u
and δ obtained via the CD method are given by

uCD = û (16)

Algorithm 1 FDA-CD

Input: u0, δ0, z, Q, s, ε
Output: A solution û, δ̂ to (11).

Initialization: n = 0, û0 = u0, δ̂0 = δ0, P 0 = P (û0, δ̂0)
repeat (optimization for initial search direction given by u)

1. Find ûn+1 = argmax
u∈Iu

P (u, δ̂n);

2. Find δ̂n+1 = argmax
δ∈Iδ

P (ûn+1, δ) and set Pn+1 as the

corresponding maximum value;
3. n = n+ 1;

until |Pn − Pn−1| > ε;
Px = Pn ; ûx = ûn ; δ̂x = δ̂n;
Initialization: n = 0
repeat (optimization for initial search direction given by δ)

1. Find δ̂n+1 = argmax
δ∈Iδ

P (ûn, δ);

2. Find ûn+1 = argmax
u∈Iu

P (u, δ̂n+1) and set Pn+1 as the

corresponding maximum value;
3. n = n+ 1;

until |Pn − Pn−1| > ε;
Py = Pn ; ûy = ûn ; δ̂y = δ̂n;
if Px > Py then

Output û = ûx and δ̂ = δ̂x.
else

Output û = ûy and δ̂ = δ̂y.
end

and
δCD = δ̂. (17)

2) Adaptive Monopulse Procedure
The CD method is still time-consuming because of the

1-D searches involved during each iteration. To circumvent
this drawback, in this subsection, the generalized monopulse
approach is exploited [37] to approximate the optimal search
in (12). To this end, let

hAMP = h0+C (r − µ) , (18)

where hAMP = [uAMP, δAMP]
T ∈ R2 refers to the unknown

parameters, h0 = [u0, δ0]
T ∈ R2, C =

[
Cxu Cxδ

Cyu Cyδ

]
∈

R2×2 denotes a slope correction matrix, µ = [µx, µy]
T ∈ R2

represents a bias correction vector, and r = [rx, ry]
T ∈ R2

refers to compressed measures, with rx and ry the monopulse
ratios defined as

rx = R

{
d†
xz

w†z

}
, (19a)

ry = R

{
d†
yz

w†z

}
. (19b)

In (19a) and (19b) w = Q−1s0 ∈ CMN indicates the sum
weight vector with s0 = s(u0, δ0), dx = Q−1su ∈ CMN and
dy = Q−1sδ ∈ CMN the difference beam weights, w.r.t. u
and δ, respectively, where sh = ∂s

∂h

∣∣
(u0,δ0)

, h ∈ {u, δ}. De-
tailed expressions for su and sδ are available in Appendix A.

The matrix C and the vector µ are determined from the
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vector-valued function M(u, δ) ∈ R2,

M(u, δ) = C (E [r]− µ) , (20)

forcing the conditions

M(u0, δ0) = 0, (21)

and
C E

[(
∂r

∂u
,
∂r

∂δ

)]∣∣∣∣
(u0,δ0)

= I. (22)

Under the Gaussianity assumption for the received data vec-
tor, the expectation of the monopulse ratios involved in (20),
i.e., E [rα] , α ∈ {x, y}, can be expressed as1

E[rα] =E
[
R

{
d†
αz

w†z

}]
=

=E
[
R

{
d†
αzz

†w

w†zz†w

}]
= R

{
d†
αE
[
zz†]w

w†E [zz†]w

}
=

=
|β1|2R

{
d†
αss

†w
}
+R

{
d†
αQw

}
|β1|2w†ss†w +w†Qw

, α ∈ {x, y},

(23)
where s = s (u, δ). For a sufficiently high value of |β1|2,
the two terms d†

αQw and w†Qw, at the numerator and the
denominator of (23), respectively, can be disregarded. As a
result, the bias E[r] = [E[rx], E[ry]]T correction values,
fulfilling (21), can be approximated as

µα ≈ R

{
d†
αs0

w†s0

}
, α ∈ {x, y}. (24)

Besides, the slope correction matrix is computed according
to (22), i.e.,

C =

[
Cxu Cxδ

Cyu Cyδ

]

=

 E
[
∂rx
∂u

]∣∣
(u0,δ0)

E
[
∂rx
∂δ

]∣∣
(u0,δ0)

E
[
∂ry
∂u

]∣∣∣
(u0,δ0)

E
[
∂ry
∂δ

]∣∣∣
(u0,δ0)

−1

,

(25)

where E
[
∂rα
∂h

]∣∣
(u0,δ0)

, with α ∈ {x, y}, h ∈ {u, δ}, is
approximated as (see [38, eq. 17])

E
[
∂rα
∂h

]∣∣∣∣
(u0,δ0)

≈

R
{
d†
αshs

†
0w + d†

αs0s
†
hw
}

|w†s0|2
− µα2R

{
w†sh
w†s0

}
,

(26)

Summarizing, the AMP procedure is synthetically report-
ed in Algorithm 2. It is also worth pointing out that, as
shown in [3], by further executing the procedure, namely,
re-applying the monopulse algorithm employing the esti-
mates ûAMP and δ̂AMP in place of the nominal u0 and
δ0, the potential bias could be reduced, leading to some
possible performance improvements. More in details, the,
second iteration of Algorithm 2 is performed using as input
ûAMP, δ̂AMP,Q, sAMP, sAMP−u, sAMP−δ, z, where

1The “mean” is computed performing the expectation, w.r.t. the denomina-
tor, of conditional mean of the ratio given the denominator.

• sAMP = s(ûAMP, δ̂AMP) refers to the receive steering
vector associated with the estimated direction and incre-
mental range.

• sAMP−u, and sAMP−δ denote the partial derivatives
of s(u, δ) w.r.t. u and δ, respectively computed at
(ûAMP, δ̂AMP).

The overall procedure will be referred to as the double-
step corrected (DSC) AMP (DSC-AMP) and could be also
potentially iterated multiple times. The resulting estimates are
denoted by ûDSC-AMP and δ̂DSC-AMP, respectively.

Algorithm 2 FDA-AMP

Input: u0, δ0, Q, s0, su, sδ , z
Output: A solution ûAMP, δ̂AMP to (11).

1. Compute w = Q−1s0, dx = Q−1su, and dy = Q−1sδ;
2. Evaluate rα = R

{
d†
αz

w†z

}
, α = x, y to obtain r =

[rx, ry]
T;

3. Compute µ = [µx, µy]
T via (24) and C using (25);

4. Determine hAMP using (18);
5. Project the candidate solution hAMP onto [−1, 1] ×
[−∆f

B , ∆f
B ] to get an estimate ĥAMP complying with the

problem constraints.
Output [ûAMP, δ̂AMP]

T = ĥAMP.

3) Adaptive Generalized Monopulse Procedure with Com-
plex Correction (AGMP-CC)

As the generalized monopulse approach procedure in (18)
assumes real slope and bias correction, a more general proce-
dure calls for a complex slope and bias correction [39]. This
is the rationale followed in this section which is focused on
the AGMP-CC, given by

hAGMP-CC = h0 +R
{
Ĉ†(r̂ − µ̂)

}
, (27)

where hAGMP-CC = [uAGMP-CC δAGMP-CC]
T ∈ R2,

h0 = [u0, δ0]
T ∈ R2 denotes the nominal values of

the unknowns, Ĉ ∈ C2×2 denotes a complex slope correction
matrix, µ̂ ∈ C2 indicates a bias correction vector, i.e.,
µ̂ = [µ̃x, µ̃y]

T with µ̃α =
d†
αs0

w†s0
, α ∈ {x, y} (obtained

following the same line of reasoning as in [39]), and
r̂ ∈ C2 represents the complex monopulse ratio vector, i.e.,
r̂ = [r̃x, r̃y]

T with

r̃α =
d†
αz

w†z
, α ∈ {x, y}. (28)

Now, substituting z = β1s + n into (28), and after some
algebra and approximations as in [39], the following equation
involving the actual unknowns, i.e., h = [u, δ]T, is obtained

(r̃ − µ̃) = B1(h− h0) + p1, (29)

where r̃ ∈ C4 represents the monopulse ratio vector whose
entries are the complex monopulse ratios and their complex
conjugates, i.e., r̃ = [r̂T, r̂∗T]T,

• µ̃ = [µ̂T, µ̂∗T]T∈ C4.

• B1 =
[
B̂T, B̂∗T

]T
∈ C4×2 where B̂ =

[
Bxu Bxδ

Byu Byδ

]
with Bαh =

d†
αshw

†s0−d†
αs0w

†sh

(w†s0)2
(α ∈ {x, y}, h ∈
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{u, δ}).
• p1 = [p̂T, p̂∗T]T ∈ C4 where p̂ = [px, py]

T with pα =
d†
αp̃

β1w†s
, α ∈ {x, y}.

• p̃ = n−
(

w†n
w†s

)
s ∈ CMN .

Equation (29) poses an important constraint on the matrix
Ĉ, so as to obtain in absence of noise and under the validity
of (29) the exact values of the parameters via (27), i.e.,

C†
1B1 = 2I. (30)

where C1 = [Ĉ; Ĉ∗] ∈ C4×2.
After some algebra, (30) can be recast as

R
{
Ĉ†B̂

}
= I. (31)

Hence, by substituting (31) and (29) into (27), it yields

hAGMP-CC − h0 = R
{
Ĉ†(r̂ − µ̂)

}
=

= (h− h0) +R
{
Ĉ†p̂

}
.

(32)

It can be seen that the estimates hAGMP-CC will be closest
to the true value, i.e., h, when the noise term effect, i.e.,
R
{
Ĉ†p̂

}
, is minimised. Following [39], the mean square

value of the noise error terms on the u and δ components,
is minimized according to

min
Ĉu

Ĉ†
uZ1Ĉu & min

Ĉδ

Ĉ†
δZ1Ĉδ

s.t. R
{
Ĉ†B̂

}
= I,

(33)

where Ĉu ∈ C2, Ĉδ ∈ C2 denote the first and second columns
of Ĉ and the matrix Z1 ∈ C2×2 is constructed as [39]

Z1 = Ω†ΛΩ, (34)

where Ω = [dx,dy] ∈ CMN×2 and Λ = E
[
p̃0p̃

†
0

]
∈

CMN×MN with p̃0 = p̃|s=s0
= n−

(
w†n
w†s0

)
s0.

Standard optimization theory argumentation leads to the
following expression for the optimal solution

Ĉopt = Z−1
1 B̂

(
R
{
B̂†Z−1

1 B̂
})−1

. (35)

Finally, the estimates of u and δ can be obtained according
to (27), i.e.,

hAGMP-CC =R

{(
R
{
B̂†Z−1

1 B̂
})−1

B̂†Z−1
1 (r̂ − µ̂)

}
+ h0.

(36)
The complete procedure for the AGMP-CC is provided in

Algorithm 3.
Along the same line of reasoning followed to introduce

the DSC-AMP estimator, a refined version of the AGMP-
CC procedure can be conceived via a second execution of
Algorithm 3, with inputs induced by ûAGMP-CC and δ̂AGMP-CC.
This procedure will be denoted as the DSC-AGMP-CC and
ûDSC-AGMP-CC and δ̂DSC-AGMP-CC indicate the resulting esti-
mates.

Algorithm 3 FDA-AGMP-CC

Input: u0, δ0, Q, s0, su, sδ , z
Output: A solution ûAGMP-CC, δ̂AGMP-CC to (11) .

1. Compute w = Q−1s0, dx = Q−1su, and dy = Q−1sδ;
2. Evaluate r̂ = [r̃x, r̃y]

T with r̃α given by (28);
3. Compute

• µ̂ = [µ̃x, µ̃y]
T with µ̃α =

d†
αs0

w†s0
, α ∈ {x, y}.

• B̂ =

[
Bxu Bxδ

Byu Byδ

]
, with

Bαh =
d†
αshw

†s0−d†
αs0w

†sh

(w†s0)2
, α ∈ {x, y}, h ∈ {u, δ}.

• Z1 according to (34).
• Ĉopt using (35).

4. Evaluate hAGMP-CC using (36);
5. Project hAGMP-CC onto [−1, 1] × [−∆f

B , ∆f
B ] to get an

estimate ĥAGMP-CC complying with the problem constraints.
Output [ûAGMP-CC, δ̂AGMP-CC]

T = ĥAGMP-CC .

C. Discussion on the Computational Complexity

In this subsection, the assessment of the computational
burden involved by the proposed estimators is provided2. To
this end, the following equivalent expression of the objective
function (12), that can be derived according to the results of
Appendix B of [29], is used for ML and CD methods

P (u, δ) =

∣∣a(δ)† v(u)∣∣
a(δ)† T̂ (u) a(δ)

, (37)

where
v(u) = c(u)⊙ z̃(u) ∈ CM , (38)

with

• z̃(u) =
∑N

l=1[b(u)]
∗
l z̄l ∈ CM .

• z̄ = Q−1z = [z̄T
1 , . . . , z̄

T
N ]T ∈ CMN , z̄l ∈ CM

and
T̂ (u) = C†(u) T (u)C(u) ∈ HM , (39)

with

• C(u) = diag(c(u)) ∈ CM×M .
• T (u) =

∑N
k=1

∑N
l=1

(
[b(u)]∗l Q̃l,k[b(u)]k

)
.

• Q−1 =

 Q̃1,1 . . . Q̃1,N

...
. . .

...
Q̃N,1 . . . Q̃N,N

, where Q̃l,k ∈ CM×M ,

(l, k) ∈ {1, . . . , N}2.

Therefore, given z̄ (which requires O((MN)2) operations),
for any given u (38) can be evaluated with a computational
complexity O(MN). Indeed, O(M) operations are needed in
the Hadamard product, while the evaluation of z̃(u) involves
O(MN) operations. Besides, the computational complexity
connected with (39) is O((MN)2), where the main task is
the evaluation of T (u), demanding O((MN)2) operations.

2Without loss of generality, it is assumed that Q−1 is pre-computed off-
line. If adaptive implementations of the proposed methods are considered,
i.e., Q is estimated resorting to secondary data, the term (MN)2K has to
be added in the computational complexity expressions, where K ≥ MN is
the size of the secondary data set.
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ML estimator. Being the feasible set I given by the
Cartesian product of Iu and Iδ , the 2-D search is tanta-
mount to performing Nu 1-D search, each at a given value
of u, with δ the optimization variable. Exploiting (37), for
T̂ (u) and v(u) given, each 1-D search requires O(NδM

2)
operations. Hence, the overall computational complexity is
O(Nu((NM)2 + NδM

2), where (NM)2 amounts for the
computation of T̂ (u) and v(u).

FDA-CD. At each iteration of the CD method, the 1-D
searches w.r.t. u and δ require O(NuM

2) and O(NδM
2)

operations, respectively, provided that T̂ (u) and v(u) are
pre-computed for each u ∈ Iu. This last task involves
O(Nu(MN)2) operations. To proceed further, let us denote by
Nit,CD = Nit,CD,x +Nit,CD,y the total number of iterations
of the CD method, where Nit,CD,x and Nit,CD,y refer to the
number of iterations required by the first and second cycle,
respectively (the former with initial search direction given by
u, the latter by δ). Hence, the implementation of FDA-CD
requires O(Nu(MN)2 + Nit,CD(Nu + Nδ)M

2) operations,
where the first term is due the computation of T̂ (u) and v(u)
for any u ∈ Iu.

FDA-AMP and FDA-AGMP-CC. The evaluation of the
terms w, dx, and dy involved in step 1 of both FDA-
AMP and FDA-AGMP-CC is the most demanding task and
requires O((NM)2) operations. Furthermore, as to FDA-
AMP, O(NM) operations are connected with the computation
of r, µ, and C, whereas O(1) operations are necessary to
perform steps 4 and 5. On the other hand, with reference to
FDA-AGMP-CC, O(NM) amounts for the computation of of
r̂, µ̂, and B̂, while O((NM)2) operations are necessary to
determine Z1. Besides, the evaluation of Ĉopt as well as the
execution of steps 4 and 5 need O(1) operations. This implies
that the computational complexity for both FDA-AMP and
FDA-AGMP-CC is O((NM)2).

Summarizing, the computational complexity connected with
the implementation (either non-adaptive or adaptive) of the
devised estimators is reported in Table I. Before concluding
this subsection, it is worth observing that the ML procedure
is the most demanding. In fact, it exhibits a computational
burden always higher than the monopulse-based procedures,
and requires more operations than the CD method, as long as
NuNδ > Nit,CD(Nu +Nδ), which is a condition always met
in our numerical experiments.

IV. CRBS FOR FDA-MIMO RADAR

To shed light on the statistical efficiency of proposed estima-
tors, the CRBs for angle and incremental range are derived. Let
us first define three auxiliary vectors, i.e., ξ = Q− 1

2 s ∈ CMN ,
ξu = Q− 1

2 su ∈ CMN , and ξδ = Q− 1
2 sδ ∈ CMN . The

CRBs for angle and incremental range are derived assuming
unknown β1.

In this respect, let us introduce the vector γ ∈ R4 containing
the real-valued unknown parameters, u, δ, β̄1 = R{β1}, β̃1 =
I{β1}, i.e., γ = [u, δ, β̄1, β̃1]

T. Hence, the CRBs for the
unknown parameters are given by the diagonal elements of
Dγ = F−1 ∈ R4×4, where the Fisher Information Matrix
(FIM) F ∈ R4×4 can be computed via the Slepian-Bangs

formula [2, p. 927, eq. 8.34], which yields

F = 2R

{(
∂β1s

∂γT

)†

Q−1

(
∂β1s

∂γT

)}

= 2R

{
[β1su, β1sδ, s, js]

†
(
Q− 1

2

)†
(
Q− 1

2

)
[β1su, β1sδ, s, js]

}
= 2R

{
[β1ξu, β1ξδ, ξ, jξ]

†
[β1ξu, β1ξδ, ξ, jξ]

}
.

(40)

Hence, the FIM can be expressed in block form as

F = 2

[
F11 F12

F21 F22

]
, (41)

where F11 ∈ R2×2, F12 ∈ R2×2, F21 ∈ R2×2, and F22 ∈
R2×2 are respectively given by

F11 =

[
|β1|2∥ξu∥2 |β1|2R

{
ξ†uξδ

}
|β1|2R

{
ξ†uξδ

}
|β1|2∥ξδ∥2

]
, (42a)

F12 =

[
R
{
ξ†uξβ

∗
1

}
−I
{
ξ†uξβ

∗
1

}
R
{
ξ†δξβ

∗
1

}
−I
{
ξ†δξβ

∗
1

} ]
, (42b)

F21 = F12
T (42c)

F22 = ∥ξ∥2
[

1 0
0 1

]
. (42d)

Then, Dγ can be calculated as the inverse of F , i.e.,

Dγ = F−1 =
1

2

[
G−1

1 G2

G3 G−1
4

]
, (43)

where G1 = F11 − F12F
−1
22 F21 ∈ R2×2. The expression of

G1 is given in (44). Hence, the CRBs for u and δ (analytical
details are reported in Appendix B) are given by

Du =
|β1|2

2 det (G1)

∥ξδ∥2 −

∣∣∣ξ†δξ∣∣∣2
∥ξ∥2

 , (45)

and

Dδ =
|β1|2

2 det (G1)

(
∥ξu∥2 −

∣∣ξ†uξ∣∣2
∥ξ∥2

)
. (46)

V. PERFORMANCE ANALYSIS

In this section, numerical examples are provided to assess
the performance of the proposed methods to estimate the target
incremental range and angle of arrival with reference to a
FDA-MIMO radar sensing system. To this end, a transmit
uniform linear array (ULA) with M = 4 elements and a
receive ULA with N = 10 elements, both pointing toward the
boresight direction (i.e., u0 = 0), are considered. Moreover,
orthogonal baseband signals are radiated, i.e., R = I , whereas
the spacing among the antennas is set to d = λ0/2.

Resorting to Monte Carlo technique, the performance of
the proposed methods is evaluated for both range and angle
estimations. As figure of merit, the RMSE is considered, which

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2021.3083591

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



8

Computational Costs
Methods Non-adaptive implementation Adaptive implementation

ML O(Nu((NM)2 +NδM
2)) O(Nu((NM)2 +NδM

2) + (NM)2K)
FDA-CD O(Nu(MN)2 +Nit,CD(Nu +Nδ)M

2) O(Nu(MN)2 +Nit,CD(Nu +Nδ)M
2 + (NM)2K)

FDA-AMP O((NM)2) O((NM)2K)
FDA-AGMP-CC O((NM)2) O((NM)2K)

TABLE I: Computational complexity of the considered estimators.

G1 = F11 − F12F
−1
22 F21 = |β1|2

 ∥ξu∥2 −
|ξ†

uξ|2
∥ξ∥2 R

{
ξ†uξδ

}
− R{ξ†

uξξ
†ξδ}

∥ξ∥2

R
{
ξ†uξδ

}
− R{ξ†

uξξ
†ξδ}

∥ξ∥2 ∥ξδ∥2 −
|ξ†

δξ|2
∥ξ∥2

 . (44)

TABLE II: Simulation Parameters of FDA-MIMO Radar

Parameter Symbol Value
transmit elements M 4
receive elements N 10

bandwidth B 1 MHz
frequency increment ∆f 0.5 MHz
nominal target angle u0 0

nominal target incremental range δ0 0
possible angle of the target u − 0.891

2(N+M)
, 0, 0.891

2(N+M)

possible incremental range of the target δ −∆f
2B

,−∆f
4B

, 0, ∆f
4B

, ∆f
2B

angle of the coherent repeater 1 u1 5 0.891
(N+M)

incremental range of the coherent repeater 1 δ1
∆f
3B

angle of the coherent repeater 2 u2 −6 0.891
(N+M)

incremental range of the coherent repeater 2 δ2 −∆f
8B

is computed as

R̂MSEu =

√√√√ 1

MC

MC∑
i=1

∥u− ûi∥2, (47)

and

R̂MSEδ =

√√√√ 1

MC

MC∑
i=1

∥∥∥δ − δ̂i

∥∥∥2, (48)

where MC = 500 indicates the number of Monte Carlo
independent trials, u and δ denote the actual DOA and
incremental range of the target, whereas ûi and δ̂i are the
estimates provided at the i-th trial by a given technique.

The performance of the CD, AMP, and AGMP-CC al-
gorithms are evaluated for several values of SINR, defined
according to [40], as

SINR = |β1|2s†(u0, δ0)Q
−1s(u0, δ0). (49)

Besides, B = 1 MHz and ∆f = 0.5 MHz are considered,
with the nominal parameters values set as u0 = 0 and δ0 = 0,
respectively. Tapered version of AMP and AGMP-CC, referred
to as AMPt and AGMP-CCt, respectively, are considered
too. In particular, Taylor and Bayliss tapers [37], both with
sidelobe level (SLL) = 30 dB and n̄ = 4, are used for
sum and difference beamforming, respectively, where n̄ in-
dicates the number of nearly constant-level sidelobes adjacent
to the mainlobe. The DSC versions of AMP, AMPt, and
AGMP-CCt algorithms, respectively denoted as DSC-AMP,

DSC-AMPt, and DSC-AGMP-CCt, are also included in the
reported analysis. Besides, since AGMP-CC is equivalent to
AMP when tapering is not applied [39], only the AMP and
DSC-AMP curves are displayed in the figures, without loss of
generality. Finally, the CRBs for both angle and incremental
range estimation are used as performance benchmarks.

In the following subsections, two different interference
scenarios are examined. In the former, the useful signal is
buried in white Gaussian noise; in the latter, white Gaussian
noise plus two coherent repeaters, is considered. The values of
the parameters involved in the analyzed case studies are listed
in Table II.

A. White Noise Interference Scenario

Within this subsection, the overall disturbance is assumed
composed of white Gaussian interference only. Therefore, its
covariance matrix is modeled as Q = σ2

nIMN , where σ2
n is

the power level, assumed without loss of generality equal to
0 dB.

Fig. 3 illustrates the RMSE versus SINR for three case
studies assuming different values of the true angles and
incremental ranges of the target. In particular, Figs. 3 (a) and
(d) consider u = −0.891/(2(N + M)), δ = −∆f/(4B),
Figs. 3 (b) and (e) assume u = 0, δ = ∆f/(4B), while Figs. 3
(c) and (f) suppose u = 0.891/(2(N +M)), δ = ∆f/(2B).
The RMSE analysis w.r.t. u is reported in Figs. 3 (a), (b), and
(c), whereas that w.r.t. δ in Figs. 3 (d), (e), and (f).

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2021.3083591

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



9

-10 -5 0 5 10 15 20 25 30
SINR (dB)

-60

-50

-40

-30

-20

-10

0

u 
R

M
SE

 (
dB

)

CD
AMP
AMP

t

AGMP-CC
t

DSC-AMP
DSC-AMP

t

DSC-AGMP-CC
t

CRB
u

(a)

-10 -5 0 5 10 15 20 25 30
SINR (dB)

-60

-50

-40

-30

-20

-10

0

u 
R

M
SE

 (
dB

)

CD
AMP
AMP

t

AGMP-CC
t

DSC-AMP
DSC-AMP

t

DSC-AGMP-CC
t

CRB
u

(b)

-10 -5 0 5 10 15 20 25 30
SINR (dB)

-60

-50

-40

-30

-20

-10

0

u 
R

M
SE

 (
dB

)

CD
AMP
AMP

t

AGMP-CC
t

DSC-AMP
DSC-AMP

t

DSC-AGMP-CC
t

CRB
u

(c)

-10 -5 0 5 10 15 20 25 30
SINR (dB)

-50

-40

-30

-20

-10

0

 R
M

SE
 (

dB
)

CD
AMP
AMP

t

AGMP-CC
t

DSC-AMP
DSC-AMP

t

DSC-AGMP-CC
t

CRB
u

(d)

-10 -5 0 5 10 15 20 25 30
SINR (dB)

-50

-40

-30

-20

-10

0

 R
M

SE
 (

dB
)

CD
AMP
AMP

t

AGMP-CC
t

DSC-AMP
DSC-AMP

t

DSC-AGMP-CC
t

CRB
u

(e)

-10 -5 0 5 10 15 20 25 30
SINR (dB)

-50

-40

-30

-20

-10

0

 R
M

SE
 (

dB
)

CD
AMP
AMP

t

AGMP-CC
t

DSC-AMP
DSC-AMP

t

DSC-AGMP-CC
t

CRB
u

(f)

Fig. 3: Comparison of RMSE (dB) assuming white noise for some u and δ: (a) and (d) u = −0.891/(2(N + M)), δ = −∆f/(4B), (b) and (e) u = 0, δ = ∆f/(4B),
(c) and (f) u = 0.891/(2(N + M)), δ = ∆f/(2B). The RMSE analysis w.r.t. u is reported in (a), (b), and (c), whereas that w.r.t. δ is reported in (d), (e), and (f).
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Fig. 4: Bias and variance analysis assuming white noise for 15 different pairs (u, δ) and
SINR = 20dB.

Inspection of the curves shows that the higher the SINR
the lower the RMSE of all the estimators. Besides, some of
them achieve performance levels comparable with the CRB
benchmark when the SINR is sufficiently high, for all the
considered scenarios. Specifically, both the angle and incre-
mental range estimates provided by the CD method are very
close to their true values. Similar results hold for the DSC-
AMP, with RMSE curves almost overlapped, especially for the
high SINR regime, with those pertaining to CD technique. The
plots also highlight that the DSC versions of the monopulse
procedures outperform their corresponding single iteration

(i.e., without DSC) counterparts for all the range of SINR
values and all the considered experimental setups. Besides, the
tapered procedures exhibit a performance degradation w.r.t. the
unweighted counterparts. In particular, even with the further
iteration, i.e., considering DSC-AMPt and DSC-AGMP-CCt

at high SINR values, the CRB is not attained, in both u and
δ domains. Furthermore, at low SINR, smaller RMSE values
than the CRB benchmark are observed indicating that all the
proposed estimators exhibit a bias under this SINR regime due
to an upper bound to the mean square error induced by the
enforced constraint.

To further shed light on performance of the different pro-
cedures, Fig. 4 displays the bias and variance ellipses of the
proposed estimators for a grid of 15 points and SINR = 20dB.
The ellipses corresponding to the CRBs are also reported for
comparison. The simulation assumes the same interference
environment as in Fig. 3. The results reveal that the AMP
(or equivalently the AGMP-CC) method, as well as AMPt

and AGMP-CCt, exhibit a bias in both the u and δ domains,
with a much more marked effect on the δ component. As
expected, the bias is almost corrected by the second iteration
of the double-step implementation, i.e., DSC-AMP and DSC-
AGMP-CC, thus leading to a performance very close to the
CRB. On the other hand, despite the second iteration, a
small but noticeable bias persists in both DSC-AMPt and
DSC-AGMP-CCt. Therefore, the bias and variance analysis
confirms that all the tapered monopulse algorithms experience
a bias in both u and δ domains, which is the main reason
for the deviations of these estimators from the CRB (at high
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SINR). Finally, under this SINR regime, no bias is exhibited
by the CD method with variance ellipses almost overlapped
with CRBs.

B. Coherent Repeaters In The Interference Scenario

The interference scenario considered in this subsection
accounts for the presence of two coherent signals at the
same range ring as the target (this can be the situation of
stand-off or escort jamming configuration), with signal-to-
noise ratio (SNR) equal to 30 dB, impinging on the array from
u1 = 5 (0.891/(N + M)) and u2 = −6 (0.891/(N +M)),
with δ1 = ∆f/(3B) and δ2 = −∆f/(8B), respectively. As
a consequence, for this specific environment, the interference
covariance matrix is modeled as Q = σ2

nIMN + σ2
cΣc where

σ2
n and σ2

c are the noise and interferers powers3, respectively,
with σ2

c/σ
2
n = 30 dB. Besides,

Σc =
2∑

i=1

s(ui, δi)s
†(ui, δi), (50)

where s(ui, δi), ui, and δi are the steering vector, the angle
and the incremental range of the i-th coherent repeater, re-
spectively.

The RMSE versus SINR is displayed in Fig. 5, where in
each subfigure different values of the true angle and incremen-
tal range of the target are considered. In particular, Figs. 5 (a)
and (d) refer to u = 0.891/(2(N + M)), δ = −∆f/(2B),
Figs. 5 (b) and (e) assume u = −0.891/(2(N + M)), δ =
−∆f/(4B), while Figs. 5 (c) and (f) consider u = 0, δ = 0.
The RMSE analysis w.r.t. u is reported in Figs. 5 (a), (b),
and (c), whereas that w.r.t. δ in Figs. 5 (d), (e), and (f).
Inspection of the curves highlights that the considered es-
timators exhibit performance behaviors comparable to those
obtained in the white noise only scenario. In other words, the
methods correctly estimate the parameters of a target located in
the main beam without experiencing significant performance
degradation due to possible coherent interferences. In particu-
lar, the CD and DSC-AMP procedures achieve similar RMSE
levels with performance very close to CRB, at high SINR.
Furthermore, the bias and variance analysis reported in Fig. 6,
for SINR = 20dB, does not show specific differences w.r.t.
the noise-only case, corroborating the effectiveness of the DSC
technique to reduce the bias and thus improve the performance.

VI. CONCLUSION

The problem of target angle and incremental range esti-
mation with a FDA-MIMO radar has been investigated using
a single data snapshot. At the design stage, three estimators,
with lower computational complexity than the 2-D grid search
procedure required by the ML estimator, have been devised.
Firstly, a CD algorithm has been proposed, which reduces
the 2-D search to a sequence of 1-D problems alternating
between the optimization over each variable while keeping
the other fixed. Then, two approximated estimators, i.e., the

3The white noise power level σ2
n can be again assumed, without loss of

generality, equal to 0 dB.
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Fig. 6: Bias and variance analysis for 15 different pairs (u, δ) assuming SINR = 20dB
and two coherent repeaters, with SNR = 30dB, located at u1 = 5 (0.891/(N +M))
and u2 = −6 (0.891/(N + M)) with incremental range of δ1 = ∆f/(3B) and
δ2 = −∆f/(8B), respectively.

AMP leveraging real slope and bias correction and the AGMP-
CC capitalizing complex slope and bias correction, have been
devised. The performance of the proposed estimators, also con-
sidering double-step and tapered versions, has been assessed
in terms of RMSE versus SINR. Comparisons with benchmark
limits, along with an extensive bias and variance analysis, have
also been conducted. The results (for both white and colored
interference) have pinpointed the effectiveness of the devised
estimators to reliably estimate the angle and incremental range
of the target in all the considered case studies. In particular,
the CD method achieves a performance level very close to the
theoretical CRBs when the SINR is sufficiently high.

Possible future research studies might include the design of
estimators tailored for specific jammer and/or clutter scenarios,
as well as the extension of the approach to the case of multiple
targets via compressed sensing techniques. Furthermore, the
analysis of the proposed estimators on real FDA-MIMO radar
data represents definitely another research topic of primary
concern.

APPENDIX

A. Expressions of the su and sδ

According to (7), the first derivatives of s w.r.t. u and δ,
evaluated respectively at u0 and δ0, can be calculated as

su =
∂s

∂u

∣∣∣∣
(u0,δ0)

=
∂b (u)

∂u

∣∣∣∣
u0

⊗ [c (u0)⊙ a (δ0)]

+ b (u0)⊗

[
∂c (u)

∂u

∣∣∣∣
u0

⊙ a (δ0)

]
,

(51)

and

sδ = ∂s
∂δ

∣∣
(u0,δ0)

= b (u0)⊗
[
c (u0)⊙ ∂a(δ)

∂δ

∣∣∣
δ0

]
, (52)

where
∂b (u)

∂u

∣∣∣∣
u0

= j2π
d

λ0
ET b (u0) , (53)
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Fig. 5: Comparison of RMSE (dB) for some u and δ: (a) and (d) u = 0.891/(2(N + M)), δ = −∆f/(2B), (b) and (e) u = −0.891/(2(N + M)), δ = −∆f/(4B),
(c) and (f) u = 0, δ = 0, assuming two coherent repeaters, with SINR = 30dB, located at u1 = 5 (0.891/(N + M)) and u2 = −6 (0.891/(N + M)) with incremental
range of δ1 = ∆f/(3B) and δ2 = −∆f/(8B), respectively. The RMSE analysis w.r.t. u is reported in (a), (b), and (c), whereas that w.r.t. δ is reported in (d), (e), and (f).

∂c (u)

∂u

∣∣∣∣
u0

=
∂
(
RTd(u)

)
∂u

∣∣∣∣∣
u0

= RT ∂d (u)

∂u

∣∣∣∣
u0

= j2π
d

λ0
RTERd(u0),

(54)

∂a (δ)

∂δ

∣∣∣∣
δ0

= jπERa (δ0) , (55)

with ER = diag
(
[0, 1, ...,M − 1]T

)
and ET =

diag
(
[0, 1, ..., N − 1]T

)
.

B. Computations of Du and Dδ

Let us consider

V = F12F
−1
22 F21 = ∥ξ∥−2

[
V11 V12

V12 V22

]
∈ R2×2, (56)

The entries of V are given by

V11 = R2
{
ξ†uξβ

∗
1

}
+ I2

{
ξ†uξβ

∗
1

}
= |β1|2

∣∣ξ†uξ∣∣2, (57a)

V12 = R
{
ξ†uξβ

∗
1

}
R
{
ξ†ξδβ1

}
+ I

{
ξ†uξβ

∗
1

}
I
{
ξ†ξδβ1

}
= R

{
ξ†uξβ

∗
1ξ

†ξδβ1

}
= |β1|2R

{
ξ†uξξ

†ξδ
}
,

(57b)

V22 = R2
{
ξ†δξβ

∗
1

}
+ I2

{
ξ†δξβ

∗
1

}
= |β1|2

∣∣∣ξ†δξ∣∣∣2. (57c)

Hence, G1 is derived as

G1 = F11 − V =

[
G11 G12

G12 G22

]
, (58)

with

G11 = |β1|2∥ξu∥2 −
|β1|2

∥ξ∥2
∣∣ξ†uξ∣∣2, (59)

G12 = |β1|2R
{
ξ†uξδ

}
− |β1|2

∥ξ∥2
R
{
ξ†uξξ

†ξδ
}
, (60)

and

G22 = |β1|2∥ξδ∥2 −
|β1|2

∥ξ∥2
∣∣∣ξ†δξ∣∣∣2. (61)

The inverse of G1 is given in (62), where det (G1) =
G11G22 − G12G21. As a result, the CRBs for u and δ are
the diagonal elements of 1

2G
−1
1 , which have been provided in

(45) and (46), respectively.
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