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Abstract—Structured covariance matrix estimation in the
presence of missing-(complex) data is addressed in this paper
with emphasis on radar signal processing applications. After
a motivation of the study, the array model is specified and
the problem of computing the maximum likelihood estimate
of a structured covariance matrix is formulated. A general
procedure to optimize the observed-data likelihood function is
developed resorting to the expectation-maximization algorithm.
The corresponding convergence properties are thoroughly estab-
lished and the rate of convergence is analyzed. The estimation
technique is contextualized for two practically relevant radar
problems: beamforming and detection of the number of sources.
In the former case an adaptive beamformer leveraging the EM-
based estimator is presented; in the latter, detection techniques
generalizing the classic Akaike information criterion, minimum
description length, and Hannan–Quinn information criterion, are
introduced. Numerical results are finally presented to corroborate
the theoretical study.

I. INTRODUCTION

Missing sensor measurements can arise in a variety of
radar signal processing problems as for instance beamform-
ing, direction of arrival estimation, interference cancellation,
covariance estimation, and target detection. This demands the
development of specific procedures in order to keep contained
the loss with respect to the benchmark case where measure-
ments are available from all the sensors. Some practical and
interesting situations which are part of this challenging layout
are described in the following.

• Distributed radar systems (DRSs) [1] which consist of
a multitude of stand-alone coherent radar modules (radar
satellites). These nodes are equipped with a transmitter, a
receiver, an antenna element, and a small processor that
conveys the raw data from the receiver via an Internet
connection (cable, fiber or wireless) to the beamformer
fusion center. Wirelessly networked aperstructure digital
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phased array radar (WNADPAR) [2] represents a per-
fect example with reference to ship-based surveillance.
Therein, the radar satellites are distributed all over the
available areas of the ship surface to improve the radar
detection range and form narrow beams. Missing obser-
vations may arise due to transmission-reception failures.

• Switched array [3]–[7] applications when the number of
available channels is smaller than the number of sub-array
(or array elements). The system can randomly choose the
channel connections on a snapshot-to-snapshot (possibly
a block-snapshot to block-snapshot) base or use a pre-
fixed switching scheme. From a mathematical point of
view, this is tantamount to puncturing dynamically the
entire array output vector to get a reduced-size observa-
tion vector.

• Intermittent sensor failures which can occur due to sat-
uration of some sub-arrays (notice that they can ex-
hibit different antenna patterns and hence can experience
different saturation conditions), impulsive noise bursts
originated within the channels of failing sensors [8], and
malfunctions at the analog-to-digital converter (ADC)
level [9, pg. 32]. Actually, failure modes, effects, and
criticality analysis (FMECA) on array system level faults
reports cases of intermittent troubles, probably caused
by material-interaction (i.e., package moulding contam-
ination, surface-state effects, etc.), stress (i.e., burnout,
electro-migration, etc.), mechanical (i.e., solder joint fail-
ure, die fracture, etc.) and environmental impairments
(i.e., temperature, humidity and hydrogen effects) [10].
Besides, random failure of array elements has also been
discussed in [11], [12].

Motivated by the above discussion, this paper deals with the
problem of estimating a structured covariance matrix under
the missing-data context.

First of all, the homogeneous Gaussian environment ob-
servation model with missing-data is introduced capitalizing
on a-priori information about the covariance matrix structure
and/or specific array configurations. Then, the covariance
matrix estimation process is formulated as an appropriately
constrained optimization problem which is in general difficult
to solve. Hence, an effective iterative solution technique, based
on the expectation-maximization (EM) algorithm [13]–[16],
is introduced together with some convergence properties and
rate of convergence results. Each iteration of the algorithm,
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for very common covariance structures of practical interest in
radar signal processing applications, involves only closed-form
solutions for the unknowns.

The EM algorithm is popular in different contexts and
a comprehensive overview can be found in [17] and [18].
It has received considerable attention in machine learning
and pattern recognition contexts [17], [19], being a viable
means to deal with unsupervised learning problems [20], [21]
(with special emphasis on clustering [22]–[24]), reinforcement
learning strategies [25], [26], and linear regression [17].

In the statistical literature, a multitude of EM-based ap-
plications starting from those presented in the pioneering
paper by Dempster et al. [13] and including those in [27],
have been proposed. Some of them are focused on Gaussian
mixture models fitting [28], hidden Markov models (HMMs)
estimation [29], [30], and learning of optimal mixture of
fixed models [31]. Besides, several works have dealt with
incomplete data scenarios [27], [32], [33], encompassing im-
portant applications in the field of non-parametric spectral
analysis [34], [35], and covariance matrix estimation [36]–
[38].

Returning to the radar problem, the main contribution of
this paper relies on the study of the aforementioned chal-
lenging constrained estimation problem and the analysis of
the corresponding convergence properties. Besides, the theory
is contextualized for a beamforming application and for the
problem of detecting the number of sources. The study has
lead to some efficient methods capable of operating in the
presence of missing-data with satisfactory performance.

Even if the paper is focused on spatial processing, the
methodology could be imported in a temporal processing
background where some pulses of the received train may
experience unwanted sporadic radio frequency interference
(RFI). This means that some slow time samples from some
given range cells are missed and the lack of this data has
to be properly accounted for at the signal processing design
stage.

Summarizing, the main contributions of the paper are:
a) the development of an EM-based technique for the esti-

mation of a structured covariance matrix in the presence
of missing-(complex) data, considering uncertainty sets of
practical interest for radar signal processing applications;

b) the study of the convergence properties for the resulting
iterative procedure according to B-stationarity, as well as
the computation of the convergence rate;

c) the application of the methodology to the context of
two fundamental radar problems, i.e., beamforming and
detection of the number of sources;

d) the presentation of numerical results aimed at corroborat-
ing the theoretical achievements.

The paper is organized as follows. Section II introduces the
system model and defines some covariance matrix uncertainty
sets of practical relevance. Section III formulates the structured
covariance matrix estimation problem in the presence of
missing-data and presents tailored iterative solution methods
leveraging possible a-priori structural information. Besides, it
addresses convergence issues about the proposed techniques.
In Section IV, the performance of the estimators is analyzed in

the context of adaptive beamforming and detection of number
of sources. Finally, Section V draws some conclusions and
highlights possible future research avenues.

A. Notation

Boldface is used for vectors a (lower case), and matrices A
(upper case). The (k, l)-entry (or l-entry) of a generic matrix
A (or vector a) is indicated as A(k, l) (or a(l)). I and 0
denote respectively the identity matrix and the matrix with zero
entries (their size is determined from the context). The all-ones
column vector of size N is denoted by 1N , whereas ek denotes
the k-th column vector of I , whose size is determined from the
context. Besides, diag(x) indicates the diagonal matrix whose
i-th diagonal element is x(i). The transpose, the conjugate,
and the conjugate transpose operators are denoted by the
symbols (·)T, (·)∗, and (·)†, respectively. The determinant, the
trace, and the rank of the matrix A ∈ CN×N are indicated
with det (A), tr{A}, and Rank(A), respectively. RN and CN
are respectively the sets of N -dimensional column vectors of
real and complex numbers. HN and HN++ represent the set
of N ×N Hermitian matrices and Hermitian positive definite
matrices, respectively, whereas TN indicates the set of N×N
Hermitian Toeplitz matrices. Moreover, R++ denotes the set of
real numbers greater than zero. The curled inequality symbol
� (and its strict form �) is used to denote generalized matrix
inequality: for any A ∈ HN , A � 0 means that A is a
positive semi-definite matrix (A � 0 for positive definiteness).
Besides, for any A ∈ HN , λmax(A) and λmin(A) are the
maximum and the minimum eigenvalue of A, respectively.
Furthermore, ρ(A) =

√
λmax(AA†) denotes the spectral

radius of A. The letter j represents the imaginary unit (i.e.,
j =

√
−1). For any complex number x, |x| indicates the

modulus of x. Moreover, for any x ∈ CN , ‖x‖ denotes the
Euclidean norm, whereas the Frobenius norm of a matrix A is
indicated as ‖A‖F . Let f(x) ∈ R be a real-valued function,
∇xf(x) denotes the gradient of f(·) with respect to x, with
the partial derivatives arranged in a column vector. Besides,
for any x, y ∈ R, max(x, y) returns the maximum between
the two argument values. Finally, E[·] stands for statistical
expectation.

II. PROBLEM FORMULATION

Let us consider a radar system that collects spatial data via
a narrow-band array composed of N antennas and operating in
the presence of noise and interference, with unknown spectral
characteristics. Let us suppose that a set of spatial snapshots
ri, i = 1, . . . ,K, modeled as independent and identically
distributed (IID) zero-mean circularly symmetric Gaussian
random vectors (homogeneous environment) with unknown
but structured covariance matrix, is available. Specifically

ri ∼ CN(0,M), M ∈ C ⊆ HN++, i = 1, . . . ,K, (1)

where C denotes the subset of covariance matrices that can
generate the observables. Enforcing M to belong to C is tan-
tamount to exploiting some problem structure stemming from
some a-priori knowledge about the operating environment
(i.e., the number and the DOAs of active jammers, gathered
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via an electronic support measurement (ESM) system [39]).
Moreover, the array geometry (i.e., uniform linear array or
other regular structures) [14] and the characteristics of the
acquisition system (i.e., knowledge of the thermal noise level,
or the available number of bits that results in an upper bound
to the covariance condition number) induce a specific data
covariance structure, to be wisely capitalized in order to boost
radar sensing capabilities.

Some practical examples of covariance matrix uncertainty
sets are now illustrated.

1) Structured covariance matrix with a lower bound on the
white disturbance power level [40], [41]

C =

M = σ2
nI +Re

Re � 0
σ2
n ≥ σ2

, (2)

where Re accounts for colored interference and clutter,
σ2
n > 0 is the power of the white disturbance term, and
σ2 > 0 is a known lower bound on the white disturbance
power.

2) Structured covariance matrix with a condition number
constraint [42]

C =


M = σ2

nI +Re

Re � 0
σ2
n ≥ σ2

λmax(M)
λmin(M) ≤ Kmax

, (3)

where Re, σ2
n, and σ2 are defined as in (2), whereas

Kmax is an upper bound to the covariance condition
number.

3) Structured covariance matrix with a rank constraint and
a lower bound on the white disturbance power level [43]

C =


M = σ2

nI +Re

Re � 0
Rank(Re) ≤ r
σ2
n ≥ σ2

, (4)

where Re, σ2
n, and σ2 are defined as in (2), whereas r is

the maximum rank of Re.
4) Structured covariance matrix with a rank constraint [14],

[44]

C =


M = σ2

nI + V SfV
†

V SfV
† � 0

Rank(V SfV
†) ≤ d

σ2
n > 0

, (5)

where d is an upper bound to Rank(V SfV
†), σ2

n is
defined as in (2), V is an N × d array manifold matrix
(which can be modeled either as a known or as an
unknown parameter), Sf denotes the d × d diagonal
sources covariance matrix, whereas d ≤ N is the number
of sources.

5) Structured covariance matrix with a centro-Hermitian
symmetry [45]

C =

{
M = JM∗J
M � 0

, (6)

with J the N ×N permutation matrix given by

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

1 0 · · · 0 0

 (7)

6) Structured covariance matrix with a Toeplitz struc-
ture [46]–[49]

C =

{
M ∈ TN
M � 0

, (8)

7) Structured covariance matrix with a Kronecker product
structure [50], [51]

C =


M = RA ⊗RB

RA � 0
RB � 0
M � 0

, (9)

8) Structured real covariance matrix with a spectral symme-
try [52], [53]

C =

{
M = MT

M � 0
. (10)

Besides, any combination of the above uncertainty sets
(corresponding to their intersection) constitutes additional in-
teresting examples.

The estimation problem (object of the present paper) de-
mands a data model endowed with the capability to handle
missing-data arising from the lack of some entries within
specific spatial snapshots. To this end, each observed snapshot
is modeled as

yi = Airi, i = 1, . . . ,K, (11)

where Ai is the pi × N selection matrix, constructed by
extracting from I the pi ≤ N rows corresponding to the
available observations at the i-th snapshot. In the following,
the vectors ri and yi will be referred to as complete and
observed data, respectively.

III. COVARIANCE MATRIX ESTIMATION PROCEDURE

This section is devoted to the derivation of a covariance
matrix estimation procedure in the presence of missing-data
accounting for model structures via suitable constraints. As
already pointed out, the problem is of primary importance for
many applications in the field of radar signal processing [54]–
[61] and, in most cases, a maximum likelihood (ML) estimator
is usually demanded at least due to its favorable asymptotic
properties. For the missing-data case, the constrained ML
estimate of the covariance matrix, given the observed-data,
can be formulated as

M̂(θ) = arg max
M(θ)∈C

Ly(M(θ)|Y ,A1, . . . ,AK), (12)

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3111587

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



4

with

Ly(M(θ)|Y ,A1, . . . ,AK) =

−
K∑
i=1

pi ln(π)−
K∑
i=1

[
ln(det(AiM(θ)A†i ))

+tr{(AiM(θ)A†i )
−1yiy

†
i }
] (13)

the observed-data log-likelihood, Y = {y1, . . . ,yK} the set
of observed-data, and θ ∈ RV the vector of the unknown
parameters defining the underlying structure of M . This is
tantamount to solving

θ̂ML = arg max
θ:M(θ)∈C

Ly(θ|Y ,A1, . . . ,AK). (14)

Computing θ̂ML (or equivalently M̂(θ)) is, in general, a
difficult problem for which an analytic closed-form solution
could not be available [62]. Besides, an optimization procedure
based on a multi-dimensional grid search (MDGS) in the un-
known parameter space could be computationally prohibitive.
This motivates the interest toward iterative approximated pro-
cedures characterized by a more affordable computational cost
than ML evaluation via MDGS.

A. EM Algorithm

EM is a widely adopted iterative technique to obtain
approximate ML estimates of parameters from incomplete-
data1 [13]–[15]. The algorithm is composed of two steps.
In the former, referred to as expectation (E) step, the con-
ditional expectation of the complete-data likelihood, given the
observed-data and the current estimate of the parameters, is
evaluated (E-step score function). In the latter, referred to as
the maximization (M) step, the E-step score function (corre-
sponding to current estimate of the parameters) is maximized
with respect to the unknowns. The EM starts with an initial
guess of the parameters, i.e., θ(0), and iterates between E
and M steps. The procedure can also be interpreted as a
minorization-maximization optimization technique where the
surrogate function stems from the Jensen inequality [63].
With reference to the estimation problem in (14), at the h-
th iteration, the E-step consists in the evaluation of the score
function

Q
(
θ,θ(h−1)

)
= E[Lr(θ)|Y ,A1, . . . ,AK ,M̂(θ(h−1))], (15)

where

Lr(θ) =−K[N ln(π) + ln(det(M(θ)))

+ tr{M(θ)−1S}]
(16)

is the complete-data log-likelihood,

S =
1

K

K∑
i=1

rir
†
i (17)

is the sample covariance matrix of the complete-data, and
M̂(θ(h−1)) is the estimate of the covariance matrix at the

1In situations where direct access to the complete set of observations is not
available, part of the data are missing or, more in general, data undergo a
many-to-one mapping before becoming available to the observer.

(h − 1)-iteration. Computing the conditional expectation in-
volved in (15) yields

Q(θ,θ(h−1)) =−K[N ln(π) + ln(det(M(θ)))

+ tr{M(θ)−1Σ(h−1)}],
(18)

where

Σ(h−1) =
1

K

K∑
i=1

C
(h−1)
i (19)

is the sample mean of the conditional correlation matrices

C
(h−1)
i = E[rir

†
i |yi,Ai,M̂(θ(h−1))], i = 1, . . . ,K. (20)

A closed-form expression to

E[rir
†
i |yi,Ai,M ] = Ci, (21)

is given by (the interested reader may refer to Appendix A of
the supplementary material for the detailed derivation)

Ci =(A†iyi + Āi
†
µi)(A

†
iyi + Āi

†
µi)
† + Āi

†
GiĀi (22)

with Āi the N − pi × N selection matrix complementary to
Ai (obtained removing from I the pi rows corresponding to
Ai),

µi = ĀiMA†i (AiMA†i )
−1yi (23)

and

Gi = ĀiMĀ†i − ĀiMA†i (AiMA†i )
−1AiMĀ†i . (24)

After an E-step, an M-step is performed, corresponding
to the maximization of the score function (18), namely the
estimate of the parameters is updated according to

θ(h) = argmax
θ:M(θ)∈C

Q(θ,θ(h−1)). (25)

The following proposition outlines the main features of the
sequence of estimates.

Proposition 1. Provided that M(θ(0)) � 0, K ≥ N , and
C = B ∩HN++, with B a closed set of HN , then
• M(θ(h)) � 0, for all h ≥ 0 and
Ly(M(θ(h))|Y ,A1, . . . ,AK) is a monotonically
increasing sequence;

• if B ∈ HN++ is a closed set of positive definite matrices,
then M(θ(h)), h ≥ 0, is a bounded sequence and
Ly(M(θ(h))|Y ,A1, . . . ,AK), h ≥ 0, converges to a
finite value. Besides, supposing M(θ) a norm coercive
differentiable mapping, any limit point θ∗ to θ(h) is a
B-stationary point2 [64]–[67] to Problem (14).

Proof: See Appendix B of the supplementary material.
A summary of the EM procedure is reported in Algorithm 1,

where, leveraging the results of Proposition 1, the exit con-
dition of the procedure is set as |P (h) − P (h−1)| ≤ ε1 or
‖θ(h) − θ(h−1)‖ ≤ ε2, where ε1, ε2 > 0 and

P (h) = Ly(M(θ(h))|Y ,A1, . . . ,AK). (26)

2Substantially, a B-stationary point is any element of the feasible set
with the property that along any limiting feasible direction the objective
function is locally not increasing; please, see [64]–[67] and Appendix B of
the supplementary material for a rigorous definition.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3111587

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



5

Algorithm 1 EM Covariance Matrix Estimation Procedure

Input: N , K, Y , A1, . . . ,AK , C, θ(0), ε1, ε2.
Output: EM solution θ̂ to Problem (14).

Initialization
h = 0;
P (0) = Ly(M(θ(0))|Y ,A1, . . . ,AK);
repeat

1: h = h+ 1;
2: E-Step: Compute Σ(h−1) given by (19);
3: M-Step: Find θ(h) using (25);
4: Compute P (h) using (26);

until |P (h) − P (h−1)| > ε1 or ‖θ(h) − θ(h−1)‖ > ε2;
Output θ̂ = θ(h).

Remark 1. Before proceeding further, a useful digression on
the convergence rate of Algorithm 1 is now in order. As shown
in [13], assuming that θ(h) converges to the ML estimate θ̂ML,
then the rate of convergence is ruled by the spectral radius
ρ(REM ) of the rate matrix

REM = I − F
1
2

obsF
−1
EMF

1
2

obs, (27)

where
Fobs = −∇θ∇T

θLy(θ)
∣∣
θ=θ̂ML

(28)

is the observed information matrix and

FEM = E
[
−∇θ∇T

θLr(θ)|Y ,θ
]∣∣
θ=θ̂ML

(29)

is the expected complete information matrix. The interested
reader may refer to Appendix D of the supplementary material
for the computation of (28) and (29) with reference to (13) and
(16).

Just to provide a study example, let us consider N = 10
and covariance matrix belonging to (5). Denoting by v(θ0)
the steering vector in the direction of interest θ0, the true
parameters are V = [v(θ1),v(θ2)] with θ1 = −7◦ and
θ2 = 15◦, Sf = diag(λ1, λ2) with λ1 = λ2 = 10, and σ2

n = 1.
The presence of missing-data is emulated assuming that almost
37% of the snapshots undergoes information loss mechanisms.
As to the missing-data pattern, the selection matrices obtained
skipping the zero rows of

1) diag(1N − e1 − e3),
2) diag(1N − e2 − e5),
3) diag(1N − e4 − e7),
4) diag(1N − e6 − e8),
5) diag(1N − e9 − e10),

are cyclically used (according to the reported order) to
choose the observations at the different snapshots experiencing
missing-data.

Figs. 1 (a) and (b) display the average convergence rate
and the average number of iterations, respectively, required
by Algorithm 1 (with ε1 = ε2 = 10−7 and initialized using
the observed-data sample covariance matrix Sy) to achieve
convergence, versus the number of snapshots. Specifically,
Sy = 1/K

∑K
i=i ỹiỹ

†
i , with ỹi obtained by filling the missing

values of yi with zero-elements, i = 1, . . . ,K. The results
rely on standard Monte Carlo counting techniques over 100
independent trials.

Inspection of the figures outlines that a lower value of
ρ(REM ) is associated with a faster convergence of Algo-
rithm 1.

In Fig. 1 (c), for a given trial, the distance between the ML
estimate and the EM solution at the h-th M-step, i.e., ‖θ(h)−
θ̂ML‖, is plotted versus the number of iterations, assuming
K = 40, 60, 80, 100. This analysis confirms that increasing
the number of available snapshots the resulting estimate of
Algorithm 1 is closer and closer to θ̂ML. Besides, a larger
sample support size K is connected with a smaller number
of iterations required for Algorithm 1 to converge, confirming
the trend of Fig. 1 (b).
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Fig. 1. Convergence rate analysis for the case study discussed in the main
text, with N = 10. Fig. (a) displays the average rate of convergence versus the
number of snapshots, while Fig. (b) displays the average number of iterations
versus the number of snapshots. The norm difference ‖θ(h) − θ̂ML‖ in
dB versus the number of iterations for Algorithm 1 is reported in Fig. (c),
assuming K = 40, 60, 80, 100.

Remark 2. It is worth pointing out that the main advantage
connected with the use of an EM algorithm occurs when
the optimization involved in (25) is more tractable than the
direct maximization of the observed-data likelihood (14). It is
clear that the crucial point to devise an EM-based constrained
covariance estimation procedure is the capability to obtain
an optimal solution to (25) with an affordable computational
effort. Besides, it is important to remark that different system
constraints generally induce distinct feasible sets that generally
result in different solutions θ(h). In particular, for the special
case of unconstrained estimation [14],

M̂(θ(h)) = Σ(h−1) (30)

is the maximizer of Q(θ,θ(h−1)) and therefore it constitutes
the updated estimate θ(h).

In the following subsections, two well-known radar applica-
tions are analyzed in the missing-data scenario: adaptive beam-
forming and detection of the sources number. In particular,
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each application is presented and the underlying structured
covariance matrix estimation problem is discussed. Then,
EM-based solution methods, leveraging problem structure at
different extents, are devised.

B. Adaptive Beamforming

Let us consider the minimum variance distortionless re-
sponse (MVDR) (also known as the Capon) beamformer [14]

w =
M−1v(θ0)

v(θ0)†M−1v(θ0)
. (31)

In a practical scenario the covariance matrix must be esti-
mated from the incoming data leading to an adaptive weight
vector. It is crystal clear that obtaining an accurate estimate
of the unknown interference covariance matrix is a crucial
task affecting the performance of the resulting adaptive beam-
former. In a typical case where a set of K ≥ N secondary data
{ri}, i = 1, . . . ,K, is available, the unstructured ML estimate
of M is given by the sample covariance matrix S (often with
a diagonal loading), defined as in (17) [14]. Therefore, S (or
possibly a diagonally loaded version) is employed in place of
M in (31), obtaining the MVDR adaptive beamformer.

Let us now focus on a missing-data context where the
problem of computing the ML estimate of the covariance
matrix from the observed-data is described in (12) and a
viable estimation procedure is reported in Algorithm 1. As a
consequence, following the same guideline as in the definition
of the MVDR adaptive beamformer3, it is possible to gain
adaptivity under the missing-data scenario using

wEM =
M̂−1

EMv(θ0)

v(θ0)†M̂−1
EMv(θ0)

, (32)

where M̂EM denotes the estimate of the covariance matrix
obtained via the EM procedure described in Algorithm 1.

As highlighted in the previous subsection, tailored solutions
to the M-step of Algorithm 1 can be devised under the
assumption of M belonging to a specific covariance matrix
uncertainty set. In this respect, some case studies are discussed
in the following.

1) Unconstrained Estimation: The special case of uncon-
strained estimation has been described in the previous subsec-
tion and a solution to the resulting M-step is given by (30).

2) Constraint on the lower bound of the white noise power
level: The Fast ML (FML) procedure [40], [41] provides the
M-step solution when M belongs to the uncertainty set (2),
i.e., a lower bound on the thermal noise power level is a-priori
available. Specifically, denoting by UΛΣU

† the eigenvalue
decomposition (EVD) of Σ(h−1) and by λ̃v, v = 1, . . . , N its
eigenvalues, at the M-step update under the uncertainty set (2),
is given by

M̂(θ(h)) = UΛFMLU
†, (33)

with
ΛFML = diag(λ1,FML, . . . , λN,FML) (34)

3The analysis developed in the following can be also naturally extended to
other kinds of beamformers.

and λv,FML = max(λ̃v, σ
2), v = 1, . . . , N .

Notably, this technique ensures that all the eigenvalues of
M̂(θ(h)) are greater than or equal to the lower bound on the
power noise level. This is tantamount to projecting (according
to the Frobenius norm) Σ(h−1) onto the set of the positive
definite matrices greater than or equal to σ2I [41].

3) Centro-Hermitianity constraint: In many scenarios of
practical interests (standard rectangular, hexagonal, uniform
circular or cylindrical array), the covariance matrix exhibits
a centro-Hermitian structure [14], which is equivalent to
consider M belonging to (6). Capitalizing on the problem
structure, the M-step solution can be obtained using the
forward-backward (FB) averaged sample covariance matrix
procedure [14], resulting into

M̂(θ(h)) = ΣFB , (35)

where
ΣFB =

1

2
(Σ(h−1) + JΣ(h−1)∗J). (36)

4) Lower bound constraint on the white noise power level
plus Centro-Hermitianity: This is tantamount to considering
the uncertainty set characterizing the centro-Hermitian covari-
ance matrices with a lower bound on the white disturbance
power level

C =


M = σ2

nI +Re

M = JM∗J
Re � 0
σ2
n ≥ σ2

, (37)

where Re, σ2
n and σ2 are defined as in (2), whereas J is

given by (7). In this situation, denoting by UFB ΛFB U
†
FB

the EVD of ΣFB defined in (36), with ΛFB =
diag(λ̃1,FB , . . . , λ̃N,FB), it follows that the M-step update is
now given by

M̂(θ(h)) = UFB ΛFML−FB U
†
FB , (38)

where

ΛFML−FB = diag(λ1,FML−FB , . . . , λN,FML−FB), (39)

with λv,FML−FB = max(λ̃v,FB , σ
2), v = 1, . . . , N .

The overall procedure used to find the proposed adaptive
Capon beamformer in the context of missing-data is summa-
rized in Algorithm 2.

Algorithm 2 Adaptive beamforming in the context of missing-
data
Input: N , K, Y , A1, . . . ,AK , C, θ(0), ε1, ε2.
Output: EM-based adaptive beamformer wEM .

1: find M̂EM via Algorithm 1 using the appropriate bespoke
solution (30), (33), (35), (38) to the M-step;

2: compute wEM using (32);
3: output wEM .

C. Detection of Number of Sources

Let us consider d uncorrelated narrow-band sources imping-
ing the array from distinct directions {θs}, s = 1, . . . , d < N .
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After amplification, down-conversion, and digital sampling,
the i-th received complete spatial snapshot ri is given by

ri = V si + ni, i = 1, . . . ,K, (40)

where V = [v(θ1),v(θ2), . . . ,v(θd)] ∈ CN×d is the array
manifold matrix (assumed full-rank), si, i = 1, . . . ,K, are
IID zero-mean Gaussian random vectors of sources amplitudes
(independent of each other) with powers σ2

s , s = 1, . . . , d,
respectively, and ni are IID zero-mean circularly symmetric
Gaussian random vectors with power σ2

n, assumed statistically
independent from the sources.

For the case at hand, the covariance matrix of the received
signal can be assumed belonging to (5). Resorting to the EVD,
the complete-data covariance matrix takes on the convenient
form

M =

d∑
v=1

λvΦvΦ
†
v +

N∑
v=d+1

λvΦvΦ
†
v, v = 1, . . . , N, (41)

where λv and Φv, v = 1, . . . , N , denote the eigenvalues
and the corresponding eigenvectors of M , respectively, with
λ1 ≥ λ2 ≥ . . . λd ≥ λd+1 = λd+2 = . . . λN = σ2

n. As
a consequence, denoting by ΦT

v,R and ΦT
v,I the vectors of

the real and imaginary components of Φv , for a given d, the
vector of the unknown parameters (underlying the covariance
structure) is in one-to-one mapping with [14, p. 831]

θd = [λ1, . . . , λd, σ
2
n,Φ

T
1,R,Φ

T
1,I , . . . ,Φ

T
d,R,Φ

T
d,I ]

T, (42)

which explicitly reveals the role of d in controlling the degrees
of freedom of the covariance matrix, where Ud = [Φ1,R +

jΦ1,I , . . . ,Φd,R + jΦd,I ] is such that U †d Ud = I .
The approach pursued in this subsection follows from [14],

[54], [55], [68], where a source number detection al-
gorithm, based on a data-adaptive test statistic plus
a penalty function related to the degrees of free-
dom, is devised. Specifically, denoting by θ̂d,ML =
[λ̂1, . . . , λ̂d, σ̂

2
n, Φ̂

T
1,R, Φ̂

T
1,I , . . . , Φ̂

T
d,R, Φ̂

T
d,I ]

T the ML esti-
mate of θd, the problem of detecting the number of sources
can be formulated as

d̂ = argmax
d=0,...,K1

Lr(θ̂d,ML)− T (d), (43)

where K1 ≤ N − 1 is an upper bound to the number of
sources, Lr(θ̂d,ML) is the statistic given by the complete-
data log-likelihood (16) evaluated at θ̂d,ML, and T (d) is a
penalty term accounting for the number of free parameters in
the assumed model. In particular, taking the negative value of
Lr(θ̂d,ML) and dropping the terms functionally independent
from d, the following decision statistic is obtained [69]

L(d, λ̂1, . . . , λ̂N ) = K(N − d) ln

{
1

N−d
∑N
v=d+1 λ̂v

(
∏N
v=d+1 λ̂v)

1
N−d

}
. (44)

Exploiting the above result, problem (43) is equivalently recast
as4

d̂ = argmin
d=0,...,K1

L(d, λ̂1, . . . , λ̂N ) + p(d), (45)

4It is also worth pointing out that (45) can be generalized to the case of
covariance matrices with additional structured constraints.

where p(d) is a specific penalty function. In the following,
three detection tests, Akaike information criterion (AIC) [54],
minimum description length (MDL) [55], and Hannan–Quinn
information criterion (HQC) [68], are considered. Each test is
characterized by a different penalty function p(d); in particular

p(d) =

d(2N − d), AIC
1/2 [d(2N − d) + 1] lnK, MDL
[d(2N − d) + 1] ln(ln(K)) HQC

. (46)

Let us now frame the decision statistic in missing-data
context. Accordingly, the criterion (43) can be modified as:

d̂ = argmax
d=0,...,K1

Ly(θ̂d,ML|Y ,A1, . . . ,AK)− T (d). (47)

This requires, for a given d, the computation of the ML
estimate θ̂d,ML from the observed-data. To this end, a viable
technique is represented by Algorithm 1 applied to a covari-
ance uncertainty set including the fixed rank constraint in (5).
Two relevant case studies are thus developed in the following,
providing tailored solutions to the M-step.

1) Fixed rank constraint: Let us exploit the knowledge that
M belongs to (5). Specifically, for a given d, the M-step at
the h-th iteration is cast as

θd
(h) = argmax

θd

Q
(
θd,θd

(h−1)
)
, (48)

where θd is defined as in (42). The maximizer of Problem (48)
is given by [14]

θd
(h) = [λ̃1, . . . , λ̃d, σ̃

2
n, Φ̃1,R, Φ̃1,I , . . . , Φ̃d,R, Φ̃d,I ]

T, (49)

where λ̃v and Φ̃v, v = 1, . . . , d are the d greatest eigenvalues
and the corresponding eigenvectors of Σ(h−1), with Φ̃v,R, and
Φ̃v,I the real and imaginary components of Φ̃v , whereas

σ̃2
n =

1

N − d

N∑
v=N−d

λ̃v (50)

is the arithmetic mean of the N − d smallest eigenvalues of
Σ(h−1).

Exploiting the above results, the h-th estimate of the co-
variance matrix is given by

M̂(θd
(h)) = UΛSU

† + σ̃2
n I, (51)

where
ΛS = diag(λ̃1 − σ̃2

n, . . . , λ̃d − σ̃2
n), (52)

and
U = [Φ̃1, . . . , Φ̃d]. (53)

Hence, taking the negative value and dropping the constant
terms of the observed-data log-likelihood, the order estimate
is given by

d̂EM = argmin
d=0,...,K1

Ly(θ̂d) + p(d), (54)
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where

Ly(θ̂d) =

K∑
i=1

ln(det(AiM̂(θ̂d)A
†
i ))

+ tr{(AiM̂(θ̂d)A
†
i )
−1yiy

†
i }

(55)

with θ̂d the final estimate of Algorithm 1 and p(d) a specific
penalty function (46) related to the AIC, MDL or HQC tests.

The overall procedure to find the sources number in the
context of missing-data is summarized in Algorithm 3.

Algorithm 3 Detection of number of sources in the context
of missing-data and fixed rank constraint

Input: N, K, Y , A1, . . . ,AK , θ(0), K1, p(d), ε1, ε2.
Output: A solution d̂EM to Problem (47).

1: for d̃ = 0, . . . ,K1 do
a) compute the estimate θ̂d̃ via Algorithm 1 using (49)

as solution to the M-step with d = d̃;
b) compute Ly(θ̂d̃) in (55) using the estimate θ̂d̃.

end for
2: evaluate

d̂EM = argmin
d̃=0,...,K1

Ly(θ̂d̃) + p(d̃);

3: output d̂EM .

2) Rank constraint and centro-Hermitianity: Let us assume
that the covariance matrix belongs to both the uncertainty sets
(5) and (6), i.e.

C =


M = σ2

nI + V SfV
†

M = JM∗J
V SfV

† � 0
Rank(V SfV

†) ≤ d
σ2
n > 0

, (56)

where V , Sf , d, and σ2
n are defined as in (5), whereas J is

given by (7).
Therefore, for a given d, the maximizer of Q(θ,θ(h−1)) is

given by [70]

θ
(h)
d,FB = [λ̃1,FB , . . . , λ̃d,FB , σ̃

2
n,FB ,

Φ̃1,FB,R, Φ̃1,FB,I , . . . , Φ̃d,FB,R, Φ̃d,FB,I ]
T,

(57)

where λ̃v,FB and Φ̃v,FB , v = 1, . . . , d are the d great-
est eigenvalues and the corresponding eigenvectors of ΣFB ,
defined as in (36), with Φ̃v,FB,R and Φ̃v,FB,I the real and
imaginary components of Φ̃v,FB , respectively, and

σ̃2
n,FB =

1

N − d

N∑
v=N−d

λ̃v,FB (58)

is the arithmetic mean of the N − d smallest eigenvalues of
ΣFB . As a consequence,

M̂(θ̂d,FB) =

d∑
v=1

(λ̃v,FB − σ̃2
n,FB)Φ̃v,FBΦ̃†v,FB+

+ σ̃2
n,FB I

(59)

with θ̂d,FB the resulting estimate of Algorithm 1.
Along the same line as the previous case, the statistic is

computed for each possible d, to get the order estimate

d̂EM−FB = argmin
d=0,...,K1

Ly(θ̂d,FB) +
1

2
p(d), (60)

where Ly(θ̂d,FB) is given by (55) evaluated in correspondence
of the estimate (59) and p(d) is one of the penalty functions
in (46) [71].

IV. PERFORMANCE ANALYSIS

In this section, the performance of the proposed estima-
tion strategy, framed in the context of adaptive beamforming
and detection of number of sources, is analyzed. For both
applications it is considered a radar system equipped with a
uniform linear array (ULA) pointing in the bore-sight direction
(θ0 = 0). The array is composed of N = 20 antennas with
inter-element spacing dx = λ/2, where λ denotes the radar
operating wavelength. Moreover, two different values for the
probability pm of missing an observation are considered, i.e.,
pm = 0.1 or pm = 0.3. For a given pm, the selection matrix Ai
of the i-th snapshot is constructed from the diagonal matrixDi

whose diagonal entries are statistically IID Bernoulli random
variables with parameter 1− pm, skipping rows containing all
zeros. Besides, the computation of the observed-data sample
covariance matrix Sy = 1/K

∑K
i=i ỹiỹ

†
i is performed em-

ploying ỹi = Diri, i = 1, . . . ,K.

A. Adaptive Beamforming

The performance of the adaptive beamformer is analyzed in
terms of beampattern shape and normalized average signal-to-
interference power ratio (S/I) versus the number of snapshots.
Standard Monte Carlo counting techniques over 100 indepen-
dent trials to compute the former performance metric and 500
independent trials for the latter are used.

In the reported case studies the disturbance covariance
matrix is modeled as M = MJ + σ2

aI , where σ2
a is the

white noise power level (assumed without loss of generality
equal to 0 dB) and MJ is the jamming covariance contribu-
tion. Specifically, denoting by JNB and JWB the number of
narrow-band and wide-band jammers (assumed separated in
space), MJ = M1 +M2, where [72]

M1 =

JNB∑
l=1

σ2
l v(θl)v(θl)

†, (61)

with

v(θl) = [1, ej
2π
λ dx sin(θl), . . . , ej(N−1)

2π
λ dx sin(θl)]T ∈ CN

(62)
the steering vector in the direction θl of the l-th jammer and
σ2
l the power of the l-th jammer, while

M2 (n, m) =

JWB∑
r=1

σ̄2
r sinc[0.5Bf r (n−m)ζr]e

j(n−m)ζr , (63)

with (n,m) ∈ {0, . . . , N − 1}2 and ζr = π sin θr; moreover
in (63), σ̄2

r , θr, and Bf r, represent the power, the DOA, and the
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Fig. 2. Adaptive beamformer performance for a ULA with 20 antennas in Scenario 1. Figs. (a) and (c) consider pm = 0.1 while Figs. (b) and (d) consider
pm = 0.3. Figs. (a) and (b) display the normalized average S/I versus number of snapshots, while Figs. (c) and (d) display the resulting beampattern with
K = 60 (therein, the red-Xs along the θ-axis denote the sources directions).

fractional bandwidth Br/f0 (with Br the actual bandwidth and
f0 the carrier frequency) associated with the r-th interferer.
The sinc function appearing in (63) is defined as sinc(x) =
sin(x)/(x).

In the following, two different interfering environments are
analyzed:
• Scenario 1: five narrow-band jammers located at θl =

10+10l degrees, l = 1, . . . , 5 with Jammer to Noise Ratio
(JNR) given by JNRl = 30 dB (σ2

l = JNRl σ
2
a, l =

1, . . . , 5).
• Scenario 2: five wide-band jammers (Bf = 0.03) located

at θr = 10 + 10r degrees, r = 1, . . . , 5 with JNRr =
30 dB (σ2

j = JNRr σ
2
a, r = 1, . . . , 5).

The performance of the adaptive beamformer, assuming
either pm = 0.1 or pm = 0.3, is analyzed in terms of
normalized average S/I in Figs. 2(a), 2(b), 3(a), and 3(b). The
resulting beampatterns (assuming K = 60), are displayed in
Figs. 2(c), 2(d), 3(c), and 3(d). In particular, Figs. 2 and 3
refer to the interference environments of Scenario 1 and 2,
respectively.

The proposed strategy employs the EM procedure assuming

the uncertainty set (2) with the FML computed from Sy ,
used to initialize the EM procedure. The beampattern and the
normalized average S/I obtained using the sample covariance
matrix of the complete-data (as well as its variant based on
FML) and the FML of Sy , are considered for comparison. As
performance benchmark, the clairvoyant beampattern, based
on a perfect knowledge of the covariance matrix, is reported
too. A close inspection of the results under the interference
environment of Scenario 1 shows that for pm = 0.1 and
K ≥ N the performance of the proposed procedure comes
closer and closer to the complete-data FML whereas it exhibits
for pm = 0.3 a slight degradation in terms of normalized
average S/I in the order of 1 dB for K > N , with respect
to the complete-data benchmark. The effectiveness of the
proposed algorithm is also confirmed by the more challenging
interference environment of Scenario 2, where the performance
is very close to the complete-data FML for pm = 0.1 and
experiences a maximum degradation, in terms of normalized
avg S/I, lower than 6 dB, for pm = 0.3 and K ≥ N .
Nevertheless, for all the configurations, the S/I of the EM-
based beampattern approaches the complete-data performance
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Fig. 3. Adaptive beamformer performance for a ULA with 20 antennas in Scenario 2. Figs. (a) and (c) consider pm = 0.1 while Figs. (b) and (d) consider
pm = 0.3. Figs. (a) and (b) display the normalized average S/I versus number of snapshots, while Figs. (c) and (d) display the resulting beampattern with
K = 60 (therein, the red-Xs along the θ-axis denote the sources directions).

as K increases and this represents an indirect proof that
the quality of the proved covariance estimation procedure
improves when more and more snapshots are available for
the estimation process.

As to the beampattern analysis, the inspection of the figures
reveals that the EM FML is able to correctly nullify the
jammers while preserving low side-lobes levels.

Finally, Fig. 4 compares the performance of EM FML
and EM FML-FB, highlighting the capability of FML-FB to
benefit from the underlying structure of the covariance matrix.

B. Detection of Number of Sources

In the following, equal-power signals impinging on the array
from different directions θv are considered. The values of
the parameters involved in the three analyzed scenarios, each
related to a different number of sources, are listed in Table I.

Specifically, SSBW = 0.891/N denotes the 3dB single-side
beam-width (SSBW) of the considered ULA [73], whereas
uv = sin(θv) is the target angular location of the v-th source in
the space of directional cosine [14]. Therefore, the covariance
matrix is modeled as M = MS +σ2

nI , where σ2
n is the white

TABLE I
SIMULATION PARAMETERS

d u1 = sin(θ1) u2 = sin(θ2) u3 = sin(θ3) u4 = sin(θ4)
2 −1/2 SSBW 1/2 SSBW
3 −1/2 SSBW 1/2 SSBW 3/2 SSBW
4 −1/2 SSBW 1/2 SSBW 3/2 SSBW −3/2 SSBW

noise power level (assumed without loss of generality equal
to 0 dB) and MS refers to the useful covariance contribution,
given by

MS = σ2
s

d∑
v=1

v(θv)v(θv)
†, (64)

with σ2
s the power of each signal of interest and v(θv) is

defined as in (62).

The metric used to assess the detection performance is the
Probability of Detection (PD), namely the probability that d̂ =
d [14], which is estimated via standard Monte Carlo counting
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Fig. 4. Normalized average S/I versus number of snapshots for a ULA with 20 antennas. Fig. (a) considers Scenario 1 while Fig. (b) Scenario 2.

techniques over 500 independent trials5. Moreover, the array
signal-to-noise ratio (ASNR) is defined as

ASNR = N
σ2
s

σ2
n

. (65)

Finally, the detection algorithm assumes K = 100 and a
maximum number of sources equal to N/2 = 10.

The detection performance is reported in Fig. 5 assuming
pm ∈ {0.1, 0.3} and K = 100. In particular, denoting by d
the actual number of sources, Figs. 5 (a), (b), and (c) assume
d = 2, Figs. 5 (d), (e), and (f) d = 3, whereas Figs. 5 (g), (h),
and (i) d = 4. Moreover, Figs. 5 (a), (d), and (g) refer to AIC,
Figs. 5 (b), (e), and (h) consider MDL whereas Figs. 5 (c), (f),
and (i) display HQC. The proposed strategy employs the EM
procedure assuming the uncertainty set (5) and considering as
a starting guess, at each trial, the sample covariance matrix
of 2N IID white zero-mean circularly symmetric Gaussian
random vectors of size N .

The results highlight that for pm = 0.1 the EM approach
leads to a performance very close to the complete-data case
(with a loss smaller than 1 dB), and outperforms the ba-
sic approach of replacing the missing observations in the
complete-data with zeros (dashed brown curves), in most of
the analyzed case. In fact, a close inspection of the curves
shows that only when d = 4, low ASNR, and with reference
to the AIC (Fig. 5 (g)), the basic approach performs better
than EM-based technique. This results is not surprising due
to the overestimation behavior of the AIC [14]. Besides, the
basic strategy may not provide a monotonic behaviour with
respect to the ASNR, reflecting the reasonable larger and larger
discrepancy between the actual covariance matrix and that
heuristically computed.

As expected, the EM-based order selection procedure expe-
riences a performance degradation at pm = 0.3, as compared
with the complete-data counterpart. Remarkably, the gap be-
tween the EM and the complete-data curves, for pm = 0.3, is

5Notice that a rank-deficient Sy , due to a possible selection matrix
configuration, is a non-zero probability event. Such realizations are excluded
from the Monte Carlo trials.

less than 3 dB in the worst case, whereas at the high ASNR
regime it is almost absent. As in the case pm = 0.1, EM-
based strategy outperforms the basic counterpart, with the only
exception of AIC with 4 sources, reported in Fig. 5 (g).

Finally, the detection performance using EM and EM-FB
(both initialized, at each trial, with the sample covariance
matrix of 2N IID white zero-mean circularly symmetric
Gaussian random vectors of size N ) is compared in Fig. 6.
Inspection of the curves pinpoints that capitalizing on the
centro-Hermitian structure, EM-FB achieves higher PD levels
than the unstructured EM in all the considered scenarios,
except for the AIC at high ASNR regime where an expected
saturation is experienced [14].

V. CONCLUSION

This paper has considered the problem of structured covari-
ance matrix estimation in the presence of missing-(complex)
data with special attention to a radar signal processing back-
ground. After providing a substantial motivation on the study
and specifying some constraint sets of particular interest for
the covariance matrix, the missing-data model is described
assuming Gaussian observations. Hence, the ML covariance
estimation problem is formulated as the maximization of
the observed-data log-likelihood. To circumvent the analytical
difficulties which are usually connected with the direct opti-
mization of the mentioned function, an iterative maximization
procedure based on the EM algorithm is developed and its
convergence properties are established. Besides, a closed-
form expression is computed for the convergence rate. The
theoretical results are capitalized for some specific structural
covariance models with reference to two radar applications:
adaptive beamforming and detection of the number of sources.
General procedures are suggested to construct adaptive beam-
formers and to detect the number of active sources in a
collection of snapshots when missing observations are present.
At the analysis stage, extensive numerical results have been
discussed to show the effectiveness of the bespoke strategies
to handle missing-data scenarios. In conclusion, the main
contributions of the paper can be summarized as followed:
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Fig. 5. Detection performance for a ULA with 20 antennas assuming K = 100 and pm ∈ {0.1, 0.3}. Figs. (a), (b), and (c) assume d = 2, Figs. (d), (e), and
(f) assume d = 3, whereas Figs. (g), (h), and (i) assume d = 4 equal-power signals impinging the array, respectively, with signal separation corresponding
to 0.891/N . Moreover, Figs. (a), (d), and (g) consider AIC, Figs. (b), (e), and (h) consider MDL, whereas Figs. (c), (f), and (i) consider HQC.

a) the development of an EM-based technique for the esti-
mation of a structured covariance matrix in the presence
of missing-data;

b) the study of the convergence properties for the resulting
iterative procedure according to B-stationarity as well as
the computation of the rate of convergence;

c) the application of the methodology in the context of two
fundamental radar problems: beamforming and detection
of the number of sources;

d) the presentation of numerical results aimed at corroborat-
ing the theoretical achievements.

Possible future research avenues might include the valida-
tion of the approach on measured data, the assessment of the

framework under different covariance structures, as well as
its application in the context of adaptive target detection [74]
in the presence of missing observations, possibly accounting
for compound Gaussian interference. Finally, it is absolutely
worth of consideration a careful study on electronic protection
techniques when some array elements (or sub-array) of the
radar antenna are put in saturation by a strong interference
source and, as a consequence, the data can be modeled as
missing.
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